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Abstract
In this paper, we introduce a new class of boundary value problems consisting of a
fractional differential equation of Riemann-Liouville type, RLDqx(t) = f (t, x(t)), t ∈ [0, T ],
subject to the Hadamard fractional integral conditions x(0) = 0, x(T ) =

∑n
i=1 αiHIpi x(ηi).

Existence and uniqueness results are obtained by using a variety of fixed point
theorems. Examples illustrating the results obtained are also presented.
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1 Introduction
In this paper, we concentrate on the study of existence and uniqueness of solutions for
the nonlinear Riemann-Liouville fractional differential equation with nonlocal Hadamard
fractional integral boundary conditions of the form

RLDqx(t) = f
(
t,x(t)

)
, t ∈ [,T], (.)

x() = , x(T) =
n∑

i=

αiHIpix(ηi), (.)

where  < q ≤ , RLDq is the standard Riemann-Liouville fractional derivative of order q,
HIpi is the Hadamard fractional integral of order pi > , ηi ∈ (,T), f : [,T]×R→R, and

αi ∈R, i = , , . . . ,n are real constants such that
∑n

i=
αiη

q–
i

(q–)pi �= Tq–.
Several interesting and important results concerning existence and uniqueness of so-

lutions, stability properties of solutions, analytic and numerical methods of solutions for
fractional differential equations can be found in the recent literature on the topic and the
search formore andmore results is in progress. Fractional-order operators are nonlocal in
nature and take care of the hereditary properties ofmany phenomena and processes. Frac-
tional calculus has also emerged as a powerful modeling tool for many real world prob-
lems. For examples and recent development of the topic, see [–]. However, it has been
observed that most of the work on the topic involves either Riemann-Liouville or Caputo
type fractional derivatives. Besides these derivatives, the Hadamard fractional derivative
is another kind of fractional derivative that was introduced by Hadamard in  [].

© 2014 Tariboon et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://www.boundaryvalueproblems.com/content/2014/1/253
mailto:jessadat@kmutnb.ac.th


Tariboon et al. Boundary Value Problems 2014, 2014:253 Page 2 of 16
http://www.boundaryvalueproblems.com/content/2014/1/253

This fractional derivative differs from the other ones in the sense that the kernel of the
integral (in the definition of the Hadamard derivative) contains a logarithmic function of
an arbitrary exponent. For backgroundmaterial of theHadamard fractional derivative and
integral, we refer to [, –].
In the present paper we initiate the study of boundary value problems like (.)-(.),

in which we combine Riemann-Liouville fractional differential equations subject to the
Hadamard fractional integral boundary conditions. The key tool for this combination is
Property . from [], p.. To the best of the authors’ knowledge this is the first paper
dealing with the Riemann-Liouville fractional differential equation subject to Hadamard
type integral boundary conditions.
Several new existence and uniqueness results are obtained by using a variety of fixed

point theorems. Thus, in Theorem . we present an existence and uniqueness result via
Banach’s fixed point theorem, while in Theorems . and . we give two other existence
and uniqueness results via Banach’s fixed point theorem andHölder inequality and nonlin-
ear contractions, respectively. In the sequel existence results are obtained in Theorem .,
via Krasnoselskii’s fixed point theorem, in Theorem . via Leray-Schauder’s nonlinear al-
ternative and finally in Theorem . via Leray-Schauder’s degree theory. Examples illus-
trating the results obtained are also presented.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus and
present preliminary results needed in our proofs later.

Definition . The Riemann-Liouville fractional derivative of order q >  of a continuous
function f : (,∞)→R is defined by

RLDqf (t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–f (s)ds, n –  < q < n,

where n = [q] + , [q] denotes the integer part of a real number q. Here � is the Gamma
function defined by �(q) =

∫ ∞
 e–ssq– ds.

Definition . The Riemann-Liouville fractional integral of order q >  of a continuous
function f : (,∞)→R is defined by

RLIqf (t) =


�(q)

∫ t


(t – s)q–f (s)ds.

Definition . The Hadamard derivative of fractional order q for a function f : (,∞) →
R is defined as

HDqf (t) =


�(n – q)

(

t
d
dt

)n ∫ t



(

log
t
s

)n–q– f (s)
s

ds, n –  < q < n,n = [q] + ,

where log(·) = loge(·), provided the integral exists.
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Definition . The Hadamard fractional integral of order q ∈ R
+ of a function f (t), for

all t > , is defined as

HIqf (t) =


�(q)

∫ t



(

log
t
s

)q–

f (s)
ds
s
,

provided the integral exists.

Lemma . ([, p.]) Let q >  and n > . Then the following formulas:

(
HIqsn

)
(t) = n–qtn and

(
HDqsn

)
(t) = nqtn

hold.

Lemma . Let q >  and x ∈ C(,T)∩ L(,T). Then the fractional differential equation

RLDqx(t) = 

has a unique solution

x(t) = ctq– + ctq– + · · · + cntq–n,

where ci ∈R, i = , , . . . ,n, and n –  < q < n.

Lemma . Let q > . Then for x ∈ C(,T)∩ L(,T) we have

RLIqRLDqx(t) = x(t) + ctq– + ctq– + · · · + cntq–n,

where ci ∈R, i = , , . . . ,n, and n –  < q < n.

Lemma . Let
∑n

i=((αiη
q–
i )/((q – )pi )) �= Tq–,  < q ≤ , pi > , αi ∈ R, ηi ∈ (,T), i =

, , , . . . ,n, and h ∈ C([,T],R).Then the nonlocal Hadamard fractional integral problem
for the nonlinear Riemann-Liouville fractional differential equation

RLDqx(t) = h(t),  < t < T , (.)

subject to the boundary conditions

x() = , x(T) =
n∑

i=

αiHIpix(ηi), (.)

has a unique solution given by

x(t) = RLIqh(t) –
tq–

λ

(

RLIqh(T) –
n∑

i=

αi
(
HIpiRLIqh

)
(ηi)

)

, (.)

where

λ := Tq– –
n∑

i=

αiη
q–
i

(q – )pi
�= . (.)
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Proof Using Lemmas .-., (.) can be expressed as an equivalent integral equation

x(t) = RLIqh(t) – ctq– – ctq–, (.)

for c, c ∈ R. The first condition of (.) implies that c = . Taking the Hadamard frac-
tional integral of order pi >  for (.) and using the property of the Hadamard fractional
integral (HIpi sq–)(t) = (q – )–pi tq–, we get

HIpix(t) =
(
HIpiRLIqh

)
(t) – c

(
HIpi sq–

)
(t) =

(
HIpiRLIqh

)
(t) – c

tq–

(q – )pi
.

The second condition of (.) implies that

RLIqh(T) – cTq– =
n∑

i=

αi
(
HIpiRLIqh

)
(ηi) – c

n∑

i=

αiη
q–
i

(q – )pi
.

Thus,

c =

λ

(

RLIqh(T) –
n∑

i=

αi
(
HIpiRLIqh

)
(ηi)

)

.

Substituting the values of c and c in (.), we obtain the solution (.). �

3 Main results
Throughout this paper, for convenience, we use the following expressions:

RLIαf
(
s,x(s)

)
(z) =


�(α)

∫ z


(z – s)α–f

(
s,x(s)

)
ds, z ∈ {t,T},

for t ∈ [,T] and

HIpiRLIαf
(
s,x(s)

)
(ηi) =


�(pi)�(α)

∫ ηi



∫ r



(

log
ηi

r

)pi–

(r – s)α–
f (s,x(s))

r
dsdr,

where ηi ∈ (,T) for i = , , . . . ,n.
Let C = C([,T],R) denote the Banach space of all continuous functions from [,T] to

R endowed with the norm defined by ‖x‖ = supt∈[,T] |x(t)|. As in Lemma ., we define
an operatorA : C → C by

(Ax)(t) = RLIqf
(
s,x(s)

)
(t)

–
tq–

λ

(

RLIqf
(
s,x(s)

)
(T) –

n∑

i=

αi
(
HIpiRLIqf

(
s,x(s)

))
(ηi)

)

. (.)

It should be noticed that problem (.)-(.) has a solution if and only if the operator A
has fixed points.
In the following, for the sake of convenience, we set a constant

� :=
Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i . (.)
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In the following subsections we prove existence, as well as existence and uniqueness re-
sults, for the boundary value problem (.)-(.) by using a variety of fixed point theorems.

3.1 Existence and uniqueness result via Banach’s fixed point theorem
Theorem . Assume that:

(H) there exists a constant L >  such that |f (t,x) – f (t, y)| ≤ L|x – y|, for each t ∈ [,T]
and x, y ∈R.

If

L� < , (.)

where � is defined by (.), then the boundary value problem (.)-(.) has a unique solu-
tion on [,T].

Proof We transform the BVP (.)-(.) into a fixed point problem, x =Ax, where the op-
eratorA is defined as in (.). Observe that the fixed points of the operatorA are solutions
of problem (.)-(.). Applying the Banach contraction mapping principle, we shall show
that A has a unique fixed point.
We let supt∈[,T] |f (t, )| =M < ∞, and choose

r ≥ M�

 – L�
. (.)

Now, we show thatABr ⊂ Br , where Br = {x ∈ C : ‖x‖ ≤ r}. For any x ∈ Br , we have

∣
∣(Ax)(t)

∣
∣ ≤ sup

t∈[,T]

{

RLIq
∣
∣f

(
s,x(s)

)∣
∣(t) +

tq–

|λ| RLIq
∣
∣f

(
s,x(s)

)∣
∣(T)

+
tq–

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s,x(s)

)∣
∣(ηi)

}

≤ RLIq
(∣
∣f

(
s,x(s)

)
– f (s, )

∣
∣ +

∣
∣f (s, )

∣
∣
)
(T)

+
Tq–

|λ| RLIq
(∣
∣f

(
s,x(s)

)
– f (s, )

∣
∣ +

∣
∣f (s, )

∣
∣
)
(T)

+
Tq–

|λ|
n∑

i=

|αi|HIpiRLIq
(∣
∣f

(
s,x(s)

)
– f (s, )

∣
∣ +

∣
∣f (s, )

∣
∣
)
(ηi)

≤ (
L‖x‖ +M

)
RLIq()(T) +

(
L‖x‖ +M

)Tq–

|λ| RLIq()(T)

+
(
L‖x‖ +M

)Tq–

|λ|
n∑

i=

|αi|HIpiRLIq()(ηi)

= (Lr +M)

(
Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i

)

= (Lr +M)� ≤ r,

which implies that ABr ⊂ Br .
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Next, we let x, y ∈ C . Then for t ∈ [,T], we have
∣
∣(Ax)(t) – (Ay)(t)

∣
∣

≤ RLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(t) +

Tq–

|λ| RLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(T)

+
Tq–

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(ηi)

≤ L

(
Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i

)

‖x – y‖

= L�‖x – y‖,

which implies that ‖Ax –Ay‖ ≤ L�‖x – y‖. As L� < , A is a contraction. Therefore, we
deduce, by the Banach contraction mapping principle, that A has a fixed point which is
the unique solution of the boundary value problem (.)-(.). The proof is completed.

�

3.2 Existence and uniqueness result via Banach’s fixed point theorem and Hölder
inequality

Theorem . Suppose that: f : [,T]×R →R is a continuous function satisfying the fol-
lowing assumption:

(H) |f (t,x) – f (t, y)| ≤ δ(t)|x – y|, for t ∈ [,T], x, y ∈R and δ ∈ L 
σ ([,T],R+), σ ∈ (, ).

Denote ‖δ‖ = (
∫ T
 |δ(s)| 

σ ds)σ . If

‖δ‖
{
Tq–σ

�(q)

(
 – σ

q – σ

)–σ

+
Tq–σ–

|λ|�(q)
(
 – σ

q – σ

)–σ

+
Tq–

|λ|�(q)
(
 – σ

q – σ

)–σ n∑

i=

|αi|(q – σ )piηq–σ

i

}

< ,

then the boundary value problem (.)-(.) has a unique solution.

Proof For x, y ∈ C([,T],R) and for each t ∈ [,T], by Hölder’s inequality, we have
∣
∣(Ax)(t) – (Ay)(t)

∣
∣

≤ RLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(t) +

Tq–

|λ| RLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(T)

+
Tq–

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(ηi)

=


�(q)

∫ t


(t – s)q–δ(s)

∣
∣x(s) – y(s)

∣
∣ds +

Tq–

|λ|�(q)
∫ T


(T – s)q–δ(s)

∣
∣x(s) – y(s)

∣
∣ds

+
Tq–

|λ|
n∑

i=

|αi|
�(pi)�(q)

∫ ηi

+

∫ s

+

(

log
ηi

s

)pi–

(s – r)q–δ(r)
∣
∣x(r) – y(r)

∣
∣dr

ds
s

≤ 
�(q)

(∫ t



(
(t – s)q–

) 
–σ ds

)–σ (∫ t



(
δ(s)

) 
σ ds

)σ

‖x – y‖
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+
Tq–

|λ|�(q)
(∫ T



(
(T – s)q–

) 
–σ ds

)–σ (∫ T



(
δ(s)

) 
σ ds

)σ

‖x – y‖

+
Tq–

|λ|
n∑

i=

|αi|
�(q)�(pi)

∫ ηi



(

log
ηi

s

)pi–(∫ s



(
(s – r)q–

) 
–σ dr

)–σ

×
(∫ s



(
δ(r)

) 
σ dr

)σ ds
s

‖x – y‖

≤ ‖δ‖T
q–σ

�(q)

(
 – σ

q – σ

)–σ

‖x – y‖ + ‖δ‖T
q–σ–

|λ|�(q)
(
 – σ

q – σ

)–σ

‖x – y‖

+ ‖δ‖ Tq–

|λ|�(q)
(
 – σ

q – σ

)–σ n∑

i=

|αi|
�(pi)

∫ ηi



(

log
ηi

s

)pi–

sq–σ ds
s

‖x – y‖

≤ ‖δ‖
[
Tq–σ

�(q)

(
 – σ

q – σ

)–σ

+
Tq–σ–

|λ|�(q)
(
 – σ

q – σ

)–σ

+
Tq–

|λ|�(q)
(
 – σ

q – σ

)–σ

×
n∑

i=

|αi|(q – σ )piηq–σ

i

]

‖x – y‖.

It follows thatA is contractionmapping. Hence Banach’s fixed point theorem implies that
A has a unique fixed point, which is the unique solution of the boundary value problem
(.)-(.). The proof is completed. �

3.3 Existence and uniqueness result via nonlinear contractions
Definition . Let E be a Banach space and let A : E → E be a mapping. A is said to be
a nonlinear contraction if there exists a continuous nondecreasing function 	 :R+ →R

+

such that 	() =  and 	(ε) < ε for all ε >  with the property:

‖Ax –Ay‖ ≤ 	
(‖x – y‖), ∀x, y ∈ E.

Lemma . (Boyd and Wong) [] Let E be a Banach space and let A : E → E be a non-
linear contraction. Then A has a unique fixed point in E.

Theorem . Let f : [,T]×R→R be a continuous function satisfying the assumption:

(H) |f (t,x) – f (t, y)| ≤ h(t) |x–y|
H∗+|x–y| , for t ∈ [,T], x, y ≥ , where h : [,T] → R

+ is contin-
uous and H∗ the constant defined by

H∗ := RLIqh(T) +
Tq–

|λ| RLIqh(T) +
Tq–

|λ|
n∑

i=

|αi|HIpiRLIqh(ηi).

Then the boundary value problem (.)-(.) has a unique solution.

Proof We define the operator A : C → C as in (.) and the continuous nondecreasing
function 	 :R+ →R

+ by

	(ε) =
H∗ε
H∗ + ε

, ∀ε ≥ .

Note that the function 	 satisfies 	() =  and 	(ε) < ε for all ε > .

http://www.boundaryvalueproblems.com/content/2014/1/253
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For any x, y ∈ C and for each t ∈ [,T], we have

∣
∣(Ax)(t) – (Ay)(t)

∣
∣

≤ RLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(t) +

Tq–

|λ| RLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(T)

+
Tq–

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s,x(s)

)
– f

(
s, y(s)

)∣
∣(ηi)

≤ RLIq
(

h(s)
|x – y|

H∗ + |x – y|
)

(T) +
Tq–

|λ| RLIq
(

h(s)
|x – y|

H∗ + |x – y|
)

(T)

+
Tq–

|λ|
n∑

i=

|αi|HIpiRLIq
(

h(s)
|x – y|

H∗ + |x – y|
)

(ηi)

≤ 	(‖x – y‖)
H∗

(

RLIqh(T) +
Tq–

|λ| RLIqh(T) +
Tq–

|λ|
n∑

i=

|αi|HIpiRLIqh(ηi)
)

= 	
(‖x – y‖).

This implies that ‖Ax–Ay‖ ≤ 	(‖x– y‖). ThereforeA is a nonlinear contraction. Hence,
by Lemma . the operatorA has a unique fixed point which is the unique solution of the
boundary value problem (.)-(.). This completes the proof. �

3.4 Existence result via Krasnoselskii’s fixed point theorem
Lemma. (Krasnoselskii’s fixed point theorem) [] LetM be a closed, bounded, convex,
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+Bx ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

Theorem . Let f : [,T]×R →R be a continuous function satisfying (H). In addition
we assume that:

(H) |f (t,x)| ≤ ϕ(t), ∀(t,x) ∈ [,T]×R, and ϕ ∈ C([,T],R+).

Then the boundary value problem (.)-(.) has at least one solution on [,T] provided

L

(
Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i

)

< . (.)

Proof Setting supt∈[,T] ϕ(t) = ‖ϕ‖ and choosing

ρ ≥ ‖ϕ‖� (.)

(where � is defined by (.)), we consider Bρ = {x ∈ C([,T],R) : ‖x‖ ≤ ρ}. We define the
operatorsA and A on Bρ by

Ax(t) = RLIqf
(
s,x(s)

)
(t), t ∈ [,T],

Ax(t) = –
tq–

λ

(

RLIqf
(
s,x(s)

)
(T) –

n∑

i=

αi
(
HIpiRLIqf

(
s,x(s)

))
(ηi)

)

, t ∈ [,T].

http://www.boundaryvalueproblems.com/content/2014/1/253
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For any x, y ∈ Bρ , we have

∣
∣(Ax)(t) + (Ay)(t)

∣
∣

≤ sup
t∈[,T]

{

RLIq
∣
∣f

(
s,x(s)

)∣
∣(t) +

tq–

|λ| RLIq
∣
∣f

(
s, y(s)

)∣
∣(T)

+
tq–

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s, y(s)

)∣
∣(ηi)

}

≤ ‖ϕ‖
(

Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i

)

= ‖ϕ‖� ≤ ρ.

This shows thatAx +Ay ∈ Bρ . It is easy to see using (.) thatA is a contraction map-
ping.
Continuity of f implies that the operator A is continuous. Also, A is uniformly

bounded on Bρ as

‖Ax‖ ≤ Tq

�(q + )
‖ϕ‖.

Now we prove the compactness of the operatorA.
We define sup(t,x)∈[,T]×Bρ

|f (t,x)| = f̄ < ∞, and consequently we have

∣
∣(Ax)(t) – (Ax)(t)

∣
∣ =


�(q)

∣
∣
∣
∣

∫ t



[
(t – s)q– – (t – s)q–

]
f
(
s,x(s)

)
ds

+
∫ t

t
(t – s)q–f

(
s,x(s)

)
ds

∣
∣
∣
∣

≤ f̄
�(q + )

∣
∣tq – tq

∣
∣,

which is independent of x and tend to zero as t – t → . Thus, A is equicontinuous.
So A is relatively compact on Bρ . Hence, by Arzelá-Ascoli’s theorem, A is compact on
Bρ . Thus all the assumptions of Lemma . are satisfied. So the conclusion of Lemma .
implies that the boundary value problem (.)-(.) has at least one solution on [,T].

�

3.5 Existence result via Leray-Schauder’s nonlinear alternative
Theorem. (Nonlinear alternative for single valuedmaps) [] Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C and  ∈ U . Suppose that A : Ū → C
is a continuous, compact (that is,A(Ū) is a relatively compact subset of C)map. Then:

(i) either A has a fixed point in Ū , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with x = λA(x).

Theorem . Assume that:

(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ C([,T],R+) such that
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∣
∣f (t,u)

∣
∣ ≤ p(t)ψ

(‖x‖) for each (t,x) ∈ [,T]×R;

(H) there exists a constantM >  such that

M
ψ(M)‖p‖� > ,

where � is defined by (.).

Then the boundary value problem (.)-(.) has at least one solution on [,T].

Proof Let the operator A be defined by (.). Firstly, we shall show that A maps bounded
sets (balls) into bounded sets in C([,T],R). For a number r > , let Br = {x ∈ C([,T],R) :
‖x‖ ≤ r} be a bounded ball in C([,T],R). Then for t ∈ [,T] we have

∣
∣(Ax)(t)

∣
∣ ≤ sup

t∈[,T]

{

RLIq
∣
∣f

(
s,x(s)

)∣
∣(t) +

tq–

|λ| RLIq
∣
∣f

(
s,x(s)

)∣
∣(T)

+
tq–

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s,x(s)

)∣
∣(ηi)

}

≤ ψ
(‖x‖)RLIqp(s)(T) +ψ

(‖x‖)T
q–

|λ| RLIqp(s)(T)

+ψ
(‖x‖)T

q–

|λ|
n∑

i=

|αi|HIpiRLIqp(s)(ηi)

≤ ψ
(‖x‖)‖p‖

(
Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i

)

,

and consequently,

‖Ax‖ ≤ ψ(r)‖p‖�.

Next we will show thatAmaps bounded sets into equicontinuous sets of C([,T],R). Let
τ, τ ∈ [,T] with τ < τ and x ∈ Br . Then we have

∣
∣(Ax)(τ) – (Ax)(τ)

∣
∣

≤ 
�(q)

∣
∣
∣
∣

∫ τ



[
(τ – s)q– – (τ – s)q–

]
f
(
s,x(s)

)
ds +

∫ τ

τ

(τ – s)q–f
(
s,x(s)

)
ds

∣
∣
∣
∣

+
(τ q–

 – τ
q–
 )

|λ| RLIq
∣
∣f

(
s,x(s)

)∣
∣(T) +

(τ q–
 – τ

q–
 )

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s,x(s)

)∣
∣(ηi)

≤ ψ(r)
�(q)

∣
∣
∣
∣

∫ τ



[
(τ – s)q– – (τ – s)q–

]
p(s)ds +

∫ τ

τ

(τ – s)q–p(s)ds
∣
∣
∣
∣

+
(τ q–

 – τ
q–
 )ψ(r)

|λ| RLIqp(s)(T) +
(τ q–

 – τ
q–
 )ψ(r)

|λ|
n∑

i=

|αi|HIpiRLIqp(s)(ηi).
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As τ – τ → , the right-hand side of the above inequality tends to zero independently of
x ∈ Br . Therefore by Arzelá-Ascoli’s theorem the operator A : C([,T],R) → C([,T],R)
is completely continuous.
Let x be a solution. Then, for t ∈ [,T], and following similar computations to the first

step, we have

∣
∣x(t)

∣
∣ ≤ ψ

(‖x‖)‖p‖�,

which leads to

‖x‖
ψ

(‖x‖)‖p‖� ≤ .

In view of (H), there existsM such that ‖x‖ �=M. Let us set

U =
{
x ∈ C

(
[,T],R

)
: ‖x‖ <M

}
.

We see that the operator A :U → C([,T],R) is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = νAx for some ν ∈ (, ). Conse-
quently, by the nonlinear alternative of Leray-Schauder type, we deduce thatA has a fixed
point x ∈U which is a solution of the boundary value problem (.)-(.). This completes
the proof. �

3.6 Existence result via Leray-Schauder’s degree theory
Theorem . Let f : [,T]×R→ R be a continuous function. Suppose that

(H) there exist constants  ≤ κ < �– andM >  such that

∣
∣f (t,x)

∣
∣ ≤ κ|x| +M for all (t,x) ∈ [,T]×R,

where � is defined by (.).

Then the boundary value problem (.)-(.) has at least one solution on [,T].

Proof We define an operatorA : C → C as in (.). In view of the fixed point problem

x =Ax. (.)

We shall prove the existence of at least one solution x ∈ C[,T] satisfying (.). Set a ball
BR ⊂ C[,T], as

BR =
{
x ∈ C : max

t∈C[,T]
∣
∣x(t)

∣
∣ < R

}
,

where a constant radius R > . Hence, we shall show that A : BR → C[,T] satisfies the
condition

x �= θAx, ∀x ∈ ∂BR,∀θ ∈ [, ]. (.)

http://www.boundaryvalueproblems.com/content/2014/1/253
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We set

H(θ ,x) = θAx, x ∈ C, θ ∈ [, ].

As shown in Theorem . we see that the operator A is continuous, uniformly bounded,
and equicontinuous. Then, by Arzelá-Ascoli’s theorem, a continuous map hθ defined by
hθ (x) = x – H(θ ,x) = x – θAx is completely continuous. If (.) holds, then the following
Leray-Schauder degrees are well defined, and by the homotopy invariance of topological
degree it follows that

deg(hθ ,BR, ) = deg(I – θA,BR, ) = deg(h,BR, )

= deg(h,BR, ) = deg(I,BR, ) =  �= ,  ∈ BR,

where I denotes the unit operator. By the nonzero property of the Leray-Schauder degree,
h(x) = x –Ax =  for at least one x ∈ BR. Let us assume that x = θAx for some θ ∈ [, ]
and for all t ∈ [,T] so that

∣
∣x(t)

∣
∣ =

∣
∣θ (Ax)(t)

∣
∣

≤ RLIq
∣
∣f

(
s,x(s)

)∣
∣(t) +

tq–

|λ| RLIq
∣
∣f

(
s,x(s)

)∣
∣(T)

+
tq–

|λ|
n∑

i=

|αi|HIpiRLIq
∣
∣f

(
s,x(s)

)∣
∣(ηi)

≤ (
κ|x| +M

)
RLIq()(T) +

(
κ|x| +M

)Tq–

|λ| RLIq()(T)

+
(
κ|x| +M

)Tq–

|λ|
n∑

i=

|αi|HIpiRLIqp(s)(ηi)

≤ (
κ|x| +M

)
(

Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i

)

=
(
κ|x| +M

)
�,

which, on taking the norm supt∈[,T] |x(t)| = ‖x‖ and solving for ‖x‖, yields

‖x‖ ≤ M�

 – κ�
.

If R = M�
–κ�

+ , inequality (.) holds. This completes the proof. �

4 Examples
In this section, we present some examples to illustrate our results.

Example . Consider the following nonlocal Hadamard fractional integral conditions
for a nonlinear Riemann-Liouville fractional differential equation:

{
RLD


 x(t) = sin(π t)

(et+) · |x(t)|
|x(t)|+ +

√

 , t ∈ [, ],

x() = , x() +
√
HI/x(  ) =


HI

√
x(  ) +

√

 HIπx(  ).

(.)

http://www.boundaryvalueproblems.com/content/2014/1/253
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Here q = /, n = , T = , α = /, α =
√
/, α = –

√
, p =

√
, p = π , p = /,

η = /, η = /, η = /, and f (t,x) = (sin(π t)/(et + ))(|x|/( + |x|)) + (
√
/). Since

|f (t,x) – f (t, y)| ≤ (/)|x – y|, (H) is satisfied with L = /. By using a Maple program,
we can find that

� :=
Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i ≈ ..

Thus L� ≈ . < . Hence, by Theorem ., the boundary value problem (.)
has a unique solution on [, ].

Example . Consider the following nonlocal Hadamard fractional integral conditions
for a nonlinear Riemann-Liouville fractional differential equation:

⎧
⎪⎨

⎪⎩

RLD

 x(t) = et

et+ · |x(t)|
|x(t)|+ + , t ∈ [,  ],

x() = ,
x(  ) +


HI

√
/x(  ) + πHI

√
x(  ) =


HI

/x( 
 ) +

√
HI

/x( 
 ).

(.)

Here q = /, n = , T = /, α = /, α = –/, α = /
√
, α = –π/, p = /,

p =
√
/, p = /, p =

√
, η = /, η = /, η = /, and η = /. Since |f (t,x) –

f (t, y)| ≤ (et/(et + ))|x – y|, then (H) is satisfied with δ(t) = et/(et + ) and σ = /. By
using a Maple program, we can show that

‖δ‖
{
Tq–σ

�(q)

(
 – σ

q – σ

)–σ

+
Tq–σ–

|λ|�(q)
(
 – σ

q – σ

)–σ

+
Tq–

|λ|�(q)
(
 – σ

q – σ

)–σ n∑

i=

|αi|(q – σ )piηq–σ

i

}

≈ . < .

Hence, by Theorem ., the boundary value problem (.) has a unique solution on
[, /].

Example . Consider the following nonlocal Hadamard fractional integral conditions
for a nonlinear Riemann-Liouville fractional differential equation:

{
RLD


 x(t) = t

(t+) · |x(t)|
|x(t)|+ + t + 

 , t ∈ [, ],
x() = , x() = HI

√
πx(  ) +


HI

/x(  ) +
√
HI/x(  ).

(.)

Here q = /, n = ,T = , α = , α = /, α =
√
, p =

√
π , p = /, p = /, η = /,

η = /, η = /, and f (t,x) = (t|x|/((t + ))(|x| + )) + t + (/). We choose h(t) = t/
and

H∗ := RLIqh(T) +
Tq–

|λ| RLIqh(T) +
Tq–

|λ|
n∑

i=

|αi|HIpiRLIqh(ηi)

≈ ..
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Clearly,

∣
∣f (t,x) – f (t, y)

∣
∣ =

t

(t + )

∣
∣
∣
∣

|x| – |y|
 + |x| + |y| + |x||y|

∣
∣
∣
∣ ≤ t



( |x – y|
. + |x – y|

)

.

Hence, by Theorem ., the boundary value problem (.) has a unique solution on [, ].

Example . Consider the following nonlocal Hadamard fractional integral conditions
for a nonlinear Riemann-Liouville fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

RLD

 x(t) = e–t


sin(t)

(t+) · |x(t)|
|x(t)|+ +

t–
t+ , t ∈ [, π ],

x() = ,
x(π ) +

√
HI/x(π

 ) +

HI

/x( π ) = HI/x(π ) + 
HI

/x( π
 ) + HI/x( π ).

(.)

Here q = /, n = , T = π , α = –
√
, α = –/, α = , α = /, α = , p = /,

p = /, p = /, p = /, p = /, η = π/, η = π/, η = π , η = π/, η = π/,
and f (t,x) = (e–t sin(t)|x|)/(((t + ))(|x| + )) + (t – )/(t + ). Since |f (t,x) – f (t, y)| ≤
(/)|x – y|, (H) is satisfied with L = /. By a Maple program, we show that

L

(
Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i

)

≈ . < .

Clearly,

∣
∣f (t,x)

∣
∣ =

∣
∣
∣
∣
e–t sin(t)
(t + )

· |x(t)|
|x(t)| + 

+
t – 
t + 

∣
∣
∣
∣ ≤ e–t


+
t – 
t + 

.

Hence, by Theorem ., the boundary value problem (.) has at least one solution on
[, π ].

Example . Consider the following nonlocal Hadamard fractional integral conditions
for a nonlinear Riemann-Liouville fractional differential equation:

{
RLD


 x(t) = 

 ( + t)( x
|x|+ +

√|x|
(+

√|x|) +

 ), t ∈ [, e],

x() = , x(e) = 
HI

√
x(  ) – HI

√
x(  ) +

√
HI

√
x().

(.)

Here q = /, n = ,T = e, α = /, α = –, α =
√
, p =

√
, p =

√
, p =

√
, η = /,

η = /, η = , and f (t,x) = (/)(+ t)((x/(|x|+))+ (√x)/((+
√
x))+ (/)). It is easy

to verify that

� :=
Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i ≈ ..

Clearly,

∣
∣f (t,x)

∣
∣ =

∣
∣
∣
∣



(
 + t

)
(

x

|x| + 
+

√|x|
( +

√|x|) +



)∣
∣
∣
∣ ≤ 


(
 + t

)(|x| + 
)
.
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Choosing p(t) = (/)( + t) and ψ(|x|) = |x| + , we can show that

M
ψ(M)‖p‖� > ,

which implies thatM > ..Hence, byTheorem., the boundary value problem
(.) has at least one solution on [, e].

Example . Consider the following nonlocal Hadamard fractional integral conditions
for a nonlinear Riemann-Liouville fractional differential equation:

{
RLD


 x(t) = 

π sin(π
 x) · |x|

|x|+ + , t ∈ [, ],
x() = , x() = HI/x(  ) – HI/x(  ).

(.)

Here q = /, n = , T = , α = , α = –, p = /, p = /, η = /, η = /, and
f (t,x) = (/π )(sin(πx/))(|x|/(|x| + )) + . We can show that

� :=
Tq

�(q + )
+

Tq–

|λ|�(q + )
+

Tq–

|λ|�(q + )

n∑

i=

|αi|q–piηq
i ≈ ..

Since

∣
∣f (t,x)

∣
∣ =

∣
∣
∣
∣

π

sin

(
π


x
)

· |x|
|x| + 

+ 
∣
∣
∣
∣ ≤ 


|x| + ,

(H) is satisfied with κ = / andM =  such that

κ =


<


�

≈ ..

Hence, by Theorem ., the boundary value problem (.) has at least one solution on
[, ].
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