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1 Introduction
Boundary value problems on an infinite interval arise quite naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and in various applications such as
an unsteady flow of gas through a semi-infinite porous medium, theory of drain flows
and plasma physics. For an extensive collection of results to boundary value problems on
unbounded domains, we refer the reader to a monograph by Agarwal and O’Regan [].
The study of nonlocal elliptic boundary value problems was investigated by Bicadze and
Samarskĭı [], and later continued by Il’in and Moiseev [] and Gupta []. Since then, the
existence of solutions for nonlocal boundary value problems has received a great deal of
attention in the literature. For more recent results, we refer the reader to [–] and the
references therein.
In this paper, we consider the following second-order nonlinear differential equation

with integral boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(cϕp(u′))′(t) = f (t,u(t),u′(t)), a.e. t ∈ (–∞,∞),

limt→–∞(cϕp(u′))(t) =
∫ ∞
–∞ g(s)(cϕp(u′))(s)ds,

limt→∞(cϕp(u′))(t) =
∫ ∞
–∞ h(s)(cϕp(u′))(s)ds,

()

where ϕp(s) := |s|p–s, p > , f : (–∞,∞) → (–∞,∞) is a Carathéodory function, i.e., f =
f (t,u, v) is Lebesgue measurable in t for all (u, v) ∈ (–∞,∞) and continuous in (u, v) for
almost all t ∈ (–∞,∞). Throughout this paper, we assume that the following assumptions
hold:
(H) g,h ∈ L(–∞,∞) satisfy

∫ ∞
–∞ g(s)ds =

∫ ∞
–∞ h(s)ds = ;

(H) c : (–∞,∞)→ (,∞) is a continuous function which satisfy
ϕ–
p ( c ) ∈ Lloc(–∞,∞) \ L(–∞,∞);
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(H) let w(t) :=
∫ t
 ϕ–

p ( 
c(s) )ds, and there exist nonnegative measurable functions α, β

and γ such that ( + |w|)p–α,β/c,γ ∈ L(–∞,∞) and

∣
∣f (t,u, v)

∣
∣ ≤ α(t)|u|p– + β(t)|v|p– + γ (t), a.e. t ∈ (–∞,∞);

(H) there exists a function k(t) such that ( + |w(·)|)e–k(·) ∈ L(–∞,∞) and

� := aa – aa �= ,

where a :=Q(w(·)e–k(·)), a := –Q(w(·)e–k(·)), a := –Q(e–k(·)), a :=Q(e–k(·)),
and Q,Q : L(–∞,∞)→ (–∞,∞) will be defined in Section .

A boundary value problem is called a resonance one if the corresponding homogeneous
boundary value problem has a non-trivial solution. Resonance problems can be expressed
as an abstract equation Lx = Nx, where L is a noninvertible operator. When L is linear,
Mawhin’s continuation theorem [] is an efficient tool in finding solutions for these prob-
lems. However, it is not suitable for the case L is nonlinear. Recently, Ge and Ren []
extended Mawhin’s continuation theorem from the case of linear L to the case of quasi-
linear L. The purpose of this paper is to establish the sufficient conditions for the existence
of solutions to the problem () on the real line at resonance with dim(kerL) =  by using
an extension of Mawhin’s continuation theorem [].

2 Preliminaries
In this section, we recall some definitions and theorems. LetX andY be twoBanach spaces
with the norms ‖ · ‖X and ‖ · ‖Y , respectively.

Definition . A continuous operatorM : X ∩ domM → Y is said to be quasi-linear if
(i) ImM :=M(X ∩ domM) is a closed subset of Y ;
(ii) KerM := {x ∈ X ∩ domM :Mx = } is linearly homeomorphic to (–∞,∞)n for some

n <∞.

Definition . Let M : X ∩ domM → Y be a quasi-linear operator. Let X = KerM and
� ⊂ X be an open and bounded set with the origin θX ∈ �. Then Nλ :� → Y , λ ∈ [, ] is
said to beM-compact in� ifNλ :� → Y , λ ∈ [, ] is a continuous operator, and there exist
a vector subspace Y of Y satisfying dimY = dimX and an operator R : � × [, ] → X

being continuous and compact such that, for λ ∈ [, ],
(i) (I –Q)Nλ(�) ⊂ ImM ⊂ (I –Q)Y ;
(ii) QNλx = θY , λ ∈ (, ) ⇔ QNx = θY ;
(iii) R(·, ) is the zero operator and R(·,λ)|	λ

= (I – P)|	λ
, where

	λ = {x ∈ � :Mx =Nλx};
(iv) M[P + R(·,λ)] = (I –Q)Nλ.

Here,X is a complement space ofX inX, θY is the origin of Y and P : X → X,Q : Y → Y

are projections.

Now, we give an extension of Mawhin’s continuation theorem [].

Theorem . Let � ⊂ X be an open and bounded set with θX ∈ �. Suppose that M :
X ∩ domM → Y is a quasi-linear operator and Nλ : � → Y , λ ∈ [, ] is M-compact. In
addition, if the following conditions hold:
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(A) Mx �=Nλx for every (u,λ) ∈ (domM ∩ ∂�)× (, );
(A) deg{JQN,� ∩ KerM, } �= , where J : ImQ → KerM is a homeomorphism with

J(θX) = θY ,
then the abstract equation Mx =Nx has at least one solution in �.

Finally, we give a theorem which is useful to show the compactness of operators defined
on an infinite interval.

Theorem . [] Let Z be the space of all bounded continuous functions on (–∞,∞) and
S ⊂ Z. Then S is relatively compact in Z if the following conditions hold:

(i) S is bounded in Z;
(ii) S is equicontinuous on any compact interval of (–∞,∞);
(iii) S is equiconvergent at ±∞, that is, given ε > , there exists a constant T = T(ε) > 

such that |φ(t) – φ(∞)| < ε (respectively, |φ(t) – φ(–∞)| < ε) for all t > T
(respectively, t < –T ) and all φ ∈ S.

3 Main result
Let X be the set of the functions u ∈ C(–∞,∞) such that

u
 + |w| ,ϕ

–
p (c)u′ ∈ L∞(–∞,∞),

where w is the function in the assumption (H). Then X is a Banach space equipped with
a norm ‖u‖X = ‖u‖ + ‖u‖, where

‖u‖ = sup
t∈(–∞,∞)

|u(t)|
 + |w(t)| and ‖u‖ = sup

t∈(–∞,∞)

∣
∣
(
ϕ–
p (c)u′)(t)

∣
∣.

Let Y denote the Banach space L(–∞,∞) equipped with a usual norm

‖h‖Y =
∫ ∞

–∞

∣
∣h(s)

∣
∣ds.

Remark .
() It is well known that, for any u, v ∈ (–∞,∞) and q > ,

|u + v|q ≤ max
{
, q–

}(|u|q + |v|q).

Thus, ϕ–
p (u + v)≤ αp(ϕ–

p (u) + ϕ–
p (v)) for all u, v ≥ , where αp := max{,  –p

p– }.
() Since ϕ–

p ( c ) ∈ Lloc(–∞,∞) \ Y , then w is a continuous function which satisfies
limt→∞ w(t) = ∞ and limt→–∞ w(t) = –∞.

() For any continuous functions w(t), we can choose a function k(t) which satisfies
( + |w(·)|)e–k(·) ∈ Y . For example, put k(t) =

∫ t
 ( + |w(s)|)ds, then

( + |w(·)|)e–k(·) ∈ Y .
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DefineM : X ∩ domM → Y byMu = (cϕp(u′))′, where

domM =
{

u :
(
cϕp

(
u′))′ ∈ Y , lim

t→–∞
(
cϕp

(
u′))(t) =

∫ ∞

–∞
g(s)

(
cϕp

(
u′))(s)ds,

and lim
t→∞

(
cϕp

(
u′))(t) =

∫ ∞

–∞
h(s)

(
cϕp

(
u′))(s)ds

}

.

Then M : X ∩ domM → Y is continuous. Let � be an open bounded subset of X such
that domM ∩ � �= ∅. For λ ∈ [, ], define Nλ : � → Y by Nλx = λf (·,x,x′). By (H) and
the Lebesgue dominated convergence theorem, Nλ is continuous. Denote N by N . Then
problem () is equivalent toMx =Nx, x ∈ domM. Define Q,Q : Y → (–∞,∞) by

Q(y) :=
∫ ∞

–∞
g(s)

∫ s

–∞
y(τ )dτ ds, Q(y) :=

∫ ∞

–∞
h(s)

∫ ∞

s
y(τ )dτ ds.

Then Q,Q : Y → (–∞,∞) are continuous.

Lemma . Assume that (H) and (H) hold. Then the operator M : X ∩ domM → Y
is quasi-linear. Moreover, KerM = {a + bw : a,b ∈ (–∞,∞)} and ImM = {y ∈ Y : Q(y) =
Q(y) = }.

Proof Clearly, KerM = {a + bw : a,b ∈ (–∞,∞)}, and it is linearly homeomorphic to
(–∞,∞). Next, we show that

ImM =
{
y ∈ Y :Q(y) =Q(y) = 

}
.

Let y ∈ ImM. Then there exists x ∈ X ∩ domM such that

(
cϕp

(
x′))′(t) = y(t), t ∈ (–∞,∞).

For t ∈ (–∞,∞),

(
cϕp

(
x′))(t) =

(
cϕp

(
x′))(–∞) +

∫ t

–∞
y(s)ds

and
∫ ∞

–∞
g(s)

(
cϕp

(
x′))(s)ds =

(
cϕp

(
x′))(–∞) +

∫ ∞

–∞
g(s)

∫ s

–∞
y(τ )dτ ds.

Thus Q(y) = . In a similar manner, Q(y) = .
On the other hand, let y ∈ Y satisfying Q(y) =Q(y) = . Take

x(t) =
∫ t


ϕp

–
(


c(s)

)

ϕp
–

(∫ s


y(τ )dτ

)

ds.

Then x ∈ X ∩ domM, and (cϕp(x′))′ = y ∈ ImM. Thus, ImM = {y ∈ Y : Q(y) = Q(y) = }.
Since Q,Q : Y → (–∞,∞) are continuous, ImM is closed in Y . Consequently, M is a
quasi-linear operator.
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Let T,T : Y → Y be linear operators which are defined as follows:

Ty =

�

(
aQ(y) + aQ(y)

)
e–k(·)

and

Ty =

�

(
aQ(y) + aQ(y)

)
e–k(·),

where aij (i, j = , ) are the constants in the assumption in (H). Then, by direct calcula-
tions,

T(Ty) = Ty, T
(
(Ty)w

)
= , T(Ty) =  and T

(
(Ty)w

)
= Ty.

Define the bounded linear operators Q : Y → Y and P : X → X by

Q(y) = Ty + (Ty)w, P(x) = x() +
(
ϕ–
p (c)x′)()w,

where X := KerM and Y := ImQ = {(a + bw(·))e–k(·) : a,b ∈ (–∞,∞)}. Then Q : Y → Y,
P : X → X are projections, and dimY = dimX = . By (H), � �= , and it follows from
Lemma . that ImM = KerQ. �

Lemma . Assume that (H)-(H) hold. Assume that � is an open bounded subset of X
such that domM ∩ � �= ∅. Then Nλ :� → Y , λ ∈ [, ] is M-compact on �.

Proof Let X := KerP. Then X is a complement space of X in X, i.e., X = X ⊕X. Define
R :� × [, ]→ X, for t ∈ (–∞,∞), by

R(x,λ)(t) =
∫ t


ϕ–
p

(

c(s)

)[

ϕ–
p

(
(
cϕp

(
x′))() + λ

∫ s


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

]

ds.

Since � is bounded, there exists a constant r >  such that ‖x‖X ≤ r for any x ∈ �. For
x ∈ �, and for almost all t ∈ (–∞,∞), by (H)

∣
∣(Nx)(t)

∣
∣ =

∣
∣f

(
t,x(t),x′(t)

)∣
∣

≤ (
 +

∣
∣w(t)

∣
∣
)p–

α(t)
( |x(t)|
 +w(t)

)p–

+
β

c
(t)

∣
∣
(
ϕ–
p (c)x′)(t)

∣
∣p– + γ (t)

≤
(

(
 +

∣
∣w(t)

∣
∣
)p–

α(t) +
β

c
(t)

)

‖x‖p–X + γ (t), ()

which implies that

‖Nx‖Y ≤ rp–
∥
∥
∥
∥

(
 + |w|)p–α +

β

c

∥
∥
∥
∥
Y
+ ‖γ ‖Y =: lr .

http://www.boundaryvalueproblems.com/content/2014/1/255
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Since |Q(Nx)| ≤ ‖Nx‖Y and |Q(Nx)| ≤ ‖Nx‖Y , for x ∈ �,

∣
∣Q(Nx)(t)

∣
∣ ≤ ∣

∣T(Nx)(t)
∣
∣ +

∣
∣
(
T(Nx)(t)

)
w(t)

∣
∣

≤ 
|�|

(|a|
∣
∣Q(Nx)

∣
∣ + |a|

∣
∣Q(Nx)

∣
∣

+
(|a|

∣
∣Q(Nx)

∣
∣ + |a|

∣
∣Q(Nx)

∣
∣
)∣
∣w(t)

∣
∣
)
e–k(t)

≤ ‖Nx‖Y
(
M +M

∣
∣w(t)

∣
∣
)
e–k(t) ≤ lr

(
M +M

∣
∣w(t)

∣
∣
)
e–k(t). ()

Here,

M :=


|�|
[|a| + |a|

]
and M :=


|�|

[|a| + |a|
]
.

Thus

∥
∥Q(Nx)

∥
∥
Y ≤ D‖Nx‖Y , ()

where

D :=
∫ ∞

–∞

(
M +M

∣
∣w(τ )

∣
∣
)
e–k(τ ) dτ . ()

First, we prove that R : � × [, ] → X is compact by using Theorem .. Let Z =
C(–∞,∞)∩ L∞(–∞,∞) with the usual sup norm. For x ∈ �,

sup
t∈(–∞,∞)

|R(x,λ)(t)|
 + |w(t)|

≤
(

ϕ–
p

(
∣
∣
(
cϕp

(
x′))()

∣
∣ +

∫ ∞

–∞

∣
∣Nx(τ )

∣
∣ +

∣
∣Q(Nx)(τ )

∣
∣dτ

)

+
∣
∣
(
ϕ–
p (c)x′)()

∣
∣

)

≤ (αp + )r + αp
(
( +D)‖Nx‖Y

) 
p– ≤ (αp + )r + αp

(
( +D)lr

) 
p–

and

sup
t∈(–∞,∞)

∣
∣
(
ϕ–
p (c)R(x,λ)′

)
(t)

∣
∣

= sup
t∈(–∞,∞)

∣
∣
∣
∣ϕ

–
p

(
(
cϕp

(
x′))() + λ

∫ t


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

∣
∣
∣
∣

≤ (αp + )r + αp
(
( +D)‖Nx‖Y

) 
p– ≤ (αp + )r + αp

(
( +D)lr

) 
p– .

Here αp is the constant in Remark .(). Thus { R(x,λ)
+|w(x)| : x ∈ �} and {ϕ–

p (c)R(x,λ)′ : x ∈ �}
are bounded in Z.
Let T >  and let ε >  be given. First, for any t, t ∈ [,T] with t < t, we have

∣
∣
∣
∣
R(x,λ)(t)
 +w(t)

–
R(x,λ)(t)
 +w(t)

∣
∣
∣
∣

≤ w(t) –w(t)
( +w(t))( +w(t))

∣
∣w(t)

∣
∣
(
(αp + )r + αp

(
( +D)‖Nx‖Y

) 
p–

)
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+


 +w(t)
(
w(t) –w(t)

)(
(αp + )r + αp

(
( +D)‖Nx‖Y

) 
p–

)

≤ 
(
w(t) –w(t)

)(
(αp + )r + αp

(
( +D)‖Nx‖Y

) 
p–

)

and

∣
∣
(
ϕ–
p (c)R(x,λ)′

)
(t) –

(
ϕ–
p (c)R(x,λ)′

)
(t)

∣
∣

=
∣
∣
∣
∣ϕ

–
p

(
(
cϕp

(
x′))() + λ

∫ t


(I –Q)Nx(τ )dτ

)

– ϕ–
p

(
(
cϕp

(
x′))() + λ

∫ t


(I –Q)Nx(τ )dτ

)∣
∣
∣
∣.

By () and (), there exists z ∈ Y such that

∣
∣(I –Q)Nx

∣
∣ ≤ z for all x ∈ �, ()

and since ϕ–
p and w are uniformly continuous on a compact interval in (–∞,∞), there

exists δ >  such that if |t – t| < δ with t, t ∈ [,T], then

∣
∣
∣
∣
R(x,λ)(t)
 + |w(t)| –

R(x,λ)(t)
 + |w(t)|

∣
∣
∣
∣ <

ε



and

∣
∣
(
ϕ–
p (c)R(x,λ)′

)
(t) –

(
ϕ–
p (c)R(x,λ)′

)
(t)

∣
∣ <

ε


.

In a similar manner, there exists δ >  such that if |t – t| < δ with t, t ∈ [–T , ], then

∣
∣
∣
∣
R(x,λ)(t)
 + |w(t)| –

R(x,λ)(t)
 + |w(t)|

∣
∣
∣
∣ <

ε



and

∣
∣
(
ϕ–
p (c)R(x,λ)′

)
(t) –

(
ϕ–
p (c)R(x,λ)′

)
(t)

∣
∣ <

ε


.

Letting δ = min{δ, δ} > , if |t – t| < δ with t, t ∈ [–T ,T], then

∣
∣
∣
∣
R(x,λ)(t)
 + |w(t)| –

R(x,λ)(t)
 + |w(t)|

∣
∣
∣
∣ < ε

and

∣
∣
(
ϕ–
p (c)R(x,λ)′

)
(t) –

(
ϕ–
p (c)R(x,λ)′

)
(t)

∣
∣ < ε.

Consequently, { R(x,λ)
+|w(x)| : x ∈ �} and {ϕ–

p (c)R(x,λ)′ : x ∈ �} are equicontinuous on any com-
pact intervals in (–∞,∞).

http://www.boundaryvalueproblems.com/content/2014/1/255
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For x ∈ �, by L’Hôspital’s rule,

lim
t→∞

R(x,λ)(t)
 + |w(t)|

= lim
t→∞


 + |w(t)|

∫ t


ϕ–
p

(

c(s)

)[

ϕ–
p

(
(
cϕp

(
x′))()

+ λ

∫ s


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

]

ds

= lim
t→∞ϕ–

p

(
(
cϕp

(
x′))() + λ

∫ t


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

= ϕ–
p

(
(
cϕp

(
x′))() + λ

∫ ∞


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

and

lim
t→∞

(
ϕ–
p (c)R(x,λ)′

)
(t)

= ϕ–
p

(
(
cϕp

(
x′))() + λ

∫ ∞


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)().

In a similar manner,

lim
t→–∞

R(x,λ)(t)
 + |w(t)|

= ϕ–
p

(

–
(
cϕp

(
x′))() + λ

∫ 

–∞
(I –Q)Nx(τ )dτ

)

+
(
ϕ–
p (c)x′)()

and

lim
t→–∞

(
ϕ–
p (c)R(x,λ)′

)
(t)

= ϕ–
p

(
(
cϕp

(
x′))() – λ

∫ 

–∞
(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)().

By (), we conclude that { R(x,λ)
+|w(x)| : x ∈ �} and {ϕ–

p (c)R(x,λ)′ : x ∈ �} are equiconvergent at
±∞. Thus, R : � × [, ]→ X is compact in view of Theorem ..
Next, we prove that R : � × [, ] → X is continuous. Let {(xn,λn)} be a sequence in

� × [, ] such that xn → x in X and λn → λ in (–∞,∞) as n → ∞. Then {xn} is bounded
in X and xn(t) → x(t) pointwise as n → ∞. Since R is compact, there exists a subsequence
{(xnk ,λnk )} of {(xn,λn)} such that R(xnk ,λnk )(t)→ L inX as nk → ∞. By the Lebesgue dom-
inated convergence theorem, R(xn,λn)(t) → R(x,λ)(t) as n → ∞. Thus, L ≡ R(x,λ). By a
standard argument, R :� × [, ] → X is continuous.
Finally, we show that (i)-(iv) hold in Definition .. Since Q(I – Q)Nλ(�) = , (I –

Q)Nλ(�) ∈ KerQ = ImM. For y ∈ ImM,Qy = , and y = (I –Q)y ∈ (I –Q)Y . Consequently,
(I –Q)Nλ(�) ⊂ ImM ⊂ (I –Q)Y . Since Nλx = λNx for any x ∈ �,

QNλx = , λ ∈ (, ) ⇔ QNx = ,

http://www.boundaryvalueproblems.com/content/2014/1/255
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and R(·, ) = θX . For x ∈ 	λ = {x ∈ � :Mx = Nλx}, Nλx = (cϕp(x′))′ ∈ ImM = KerQ. Then,
for x ∈ X and t ∈ (–∞,∞),

R(x,λ)(t)

=
∫ t


ϕ–
p

(

c(s)

)[

ϕ–
p

(
(
cϕp

(
x′))() +

∫ s


(I –Q)Nλx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

]

ds

=
∫ t


ϕ–
p

(

c(s)

)[

ϕ–
p

(
(
cϕp

(
x′))() +

∫ s


Nλx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

]

ds

=
∫ t


ϕ–
p

(

c(s)

)
[(

ϕ–
p (c)x′)(s) –

(
ϕ–
p (c)x′)()

]
ds

= x(t) –
(
x() +

(
ϕ–
p (c)x′)()w(t)

)
= (I – P)x(t).

On the other hand, for x ∈ X and t ∈ (–∞,∞),

M
[
Px + R(x,λ)

]
(t)

=M
[

x() +
(
ϕ–
p (c)x′)()w(t) +

∫ t


ϕ–
p

(

c(s)

)[

ϕ–
p

(
(
cϕp

(
x′))()

+ λ

∫ s


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

]

ds
]

= (I –Q)Nλx(t).

Thus, Nλ isM-compact on �. �

Now, we give the main result in this paper.

Theorem . Assume that (H)-(H) hold. Assume also that the following hold:
(H) there exist positive constants A and B such that if |x(t)| > A for every t ∈ [–B,B] or

|(cϕp(x′))(t)| > A for every t ∈ (–∞,∞), then Q(Nx) �= , i.e., either Q(Nx) �=  or
Q(Nx) �= ;

(H) there exists a positive constant C such that if |a| > C or |b| > C, then either
() aQ(N(a + bw(·))) + bQ(N(a + bw(·))) <  or
() aQ(N(a + bw(·))) + bQ(N(a + bw(·))) > .

Then problem () has at least one solution in X provided that

∥
∥
(
 + |w|)p–α∥

∥
Y +

∥
∥
∥
∥
β

c

∥
∥
∥
∥
Y
<

(


α
p + ( + |w(B)| + ( +D)


p– )α

p

)p–

. ()

Here, D is the constant defined in ().

Proof We divide the proof into three steps.
Step . Let

� =
{
x ∈ domM :Mx =Nλx, for some λ ∈ (, )

}
.

We will prove that � is bounded. For x ∈ �,Mx =Nλx ∈ ImM = KerQ.

http://www.boundaryvalueproblems.com/content/2014/1/255
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Thus

Q(Nx) =Q(Nx) = .

By (H), there exist t ∈ [–B,B] and t ∈ (–∞,∞) such that

∣
∣x(t)

∣
∣ ≤ A and

∣
∣
(
cϕp

(
x′))(t)

∣
∣ ≤ A,

which imply that

∣
∣
(
cϕp

(
x′))()

∣
∣ =

∣
∣
(
cϕp

(
x′))(t) –

(
cϕp

(
x′))(t) +

(
cϕp

(
x′))()

∣
∣

≤ ∣
∣
(
cϕp

(
x′))(t)

∣
∣ +

∣
∣
∣
∣

∫ t



(
cϕp

(
x′))′(s)ds

∣
∣
∣
∣

≤ A + ‖Mx‖Y ≤ A + ‖Nx‖Y ,

and |(ϕ–
p (c)x′)()| ≤ (A + ‖Nx‖Y )


p– ≤ αpA


p– + αp‖Nx‖


p–
Y . Then we have

∣
∣x()

∣
∣ =

∣
∣
∣
∣x(t) –

∫ t


ϕ–
p

(

c(s)

)

ϕ–
p

[
(
cϕp

(
x′))(t) +

∫ s

t

(
cϕp

(
x′))′(τ )dτ

]

ds
∣
∣
∣
∣

≤ ∣
∣x(t)

∣
∣ +

∣
∣w(B)

∣
∣

[

ϕ–
p

(
∣
∣
(
cϕp

(
x′))(t)

∣
∣ +

∫ ∞



∣
∣
(
cϕp

(
x′))′(τ )

∣
∣dτ

)]

≤ A +
∣
∣w(B)

∣
∣
(
αpA


p– + αp‖Nx‖


p–
Y

)
.

Thus,

‖Px‖X = ‖Px‖ + ‖Px‖ ≤ ∣
∣x()

∣
∣ + 

∣
∣
(
ϕ–
p (c)x′)()

∣
∣

≤ A + αp
(
 +

∣
∣w(B)

∣
∣
)
A


p– + αp

(
 +

∣
∣w(B)

∣
∣
)‖Nx‖


p–
Y .

On the other hand, by (),

|R(x,λ)(t)|
 + |w(t)| =


 + |w(t)|

∣
∣
∣
∣

∫ t


ϕ–
p

(

c(s)

)[

ϕ–
p

(
(
cϕp

(
x′))() + λ

∫ s


(I –Q)Nx(τ )dτ

)

–
(
ϕ–
p (c)x′)()

]

ds
∣
∣
∣
∣

≤ (αp + )ϕ–
p

(∣
∣
(
cϕp

(
x′))()

∣
∣
)
+ αpϕ

–
p

(‖Nx‖Y + ‖QNx‖Y
)

≤ (αp + )
(
A + ‖Nx‖Y

) 
p– + αp( +D)


p– ‖Nx‖


p–
Y

= αp(αp + )A


p– + αp
(
αp +  + ( +D)


p–

)‖Nx‖


p–
Y

and

∣
∣
(
ϕ–
p (c)

(
R(x,λ)

)′)(t)
∣
∣

≤ αp(αp + )A


p– + αp
(
αp +  + ( +D)


p–

)‖Nx‖


p–
Y .
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Thus,

∥
∥R(x,λ)

∥
∥
X ≤ αp(αp + )A


p– + αp

(
αp +  + ( +D)


p–

)‖Nx‖


p–
Y .

It follows that

‖x‖X =
∥
∥Px + (I – P)x

∥
∥
X

≤ ‖Px‖X +
∥
∥(I – P)x

∥
∥
X

= ‖Px‖X +
∥
∥R(x,λ)

∥
∥
X

≤ A + αp
(
 +

∣
∣w(B)

∣
∣
)
A


p– + αp

(
 +

∣
∣w(B)

∣
∣
)‖Nx‖Y


p– + αp(αp + )A


p–

+ αp
(
αp +  + ( +D)


p–

)‖Nx‖


p–
Y

≤ A + αp
(
αp +  +

∣
∣w(B)

∣
∣
)
A


p– + α

p
(
αp +  +

∣
∣w(B)

∣
∣ + ( +D)


p–

)‖γ ‖


p–
Y

+ α
p
(
αp +  +

∣
∣w(B)

∣
∣ + ( +D)


p–

)
(

∥
∥
(
 + |w|)p–α∥

∥
Y +

∥
∥
∥
∥
β

c

∥
∥
∥
∥
Y

) 
p– ‖x‖X .

By (), � is bounded.
Step . Define a homeomorphism J : ImQ → KerM by

J
((
a + bw(·))ek(·)) = aa – ab + (–aa + ab)w(·).

Assume (H)() holds, i.e., there exists a positive constant C such that if |a| > C or |b| > C,
then aQ(N(a + bw(·))) + bQ(N(a + bw(·))) < . Let

� =
{
x ∈ kerM : –λx + ( – λ)JQNx = , for some λ ∈ [, ]

}
.

Let x ∈ �. Then x = a + bw for some a,b ∈ (–∞,∞). If λ = , JQN(a + bw(·)) = . Since
J is homeomorphism, QN(a + bw(·)) = . By (H), we obtain |a| ≤ C and |b| ≤ C. If λ = ,
then a = b = .
For λ ∈ (, ), by λx = ( – λ)JQNx, we obtain

λa = ( – λ)Q
(
N

(
a + bw(·))), λb = ( – λ)Q

(
N

(
a + bw(·))).

If |a| > C or |b| > C, then, by (H)(), we obtain

λ
(
a + b

)
= ( – λ)

(
aQN

(
a + bw(·)) + bQN

(
a + bw(·))) < ,

which is a contradiction. Thus, � is bounded.
In the case that (H)() holds, we take

� =
{
x ∈ kerM : λx + ( – λ)JQNx =  for some λ ∈ [, ]

}
,

and it follows that � is bounded in a similar manner.
Step . Take an open bounded set � ⊃ � ∪ � ∪ {} in X. By Step ,

http://www.boundaryvalueproblems.com/content/2014/1/255
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(A) Mu �=Nλu for every (u,λ) ∈ (domM ∩ ∂�)× (, ).
Now we will show that
(A) deg(JQN ,� ∩ kerM, ) �= .

Let H(x,λ) = ±λx + ( – λ)JQNx. By Step , we know that H(x,λ) �= , for every (x,λ) ∈
(kerM ∩ ∂�)× [, ]. Thus, by the homotopy property of the degree, we obtain

deg(JQN ,� ∩ kerM, ) = deg
(
H(·, ),� ∩ kerM, 

)

= deg
(
H(·, ),� ∩ kerM, 

)

= deg(±I,� ∩ kerM, ) = ± �= .

By Theorem .,Mx =Nx has at least one solution in domM∩�, and consequently prob-
lem () has at least one solution in X. �

4 Example
Consider the following second-order nonlinear differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

(|u′|u′)′(t) = f (t,u(t),u′(t)), a.e. t ∈ (–∞,∞),

limt→–∞(|u′|u′)(t) =
∫ ∞
–∞ g(s)(|u′|u′)(s)ds,

limt→∞(|u′|u′)(t) =
∫ ∞
–∞ h(s)(|u′|u′)(s)ds,

()

where

g(t) =

⎧
⎨

⎩

–t, t ∈ [–, ],

, otherwise,
h(t) =

⎧
⎨

⎩

t, t ∈ [, ],

, otherwise.

Define f : (–∞,∞) → (–∞,∞) by f (t,u, v) = α(t)u + β(t)v + γ (t), where

α(t) =

⎧
⎨

⎩

–et , t ∈ [–, ],

, otherwise,
β(t) =

⎧
⎨

⎩

–e–t , t ≥ ,

, otherwise,

γ (t) =

⎧
⎨

⎩

et + e– – , t ∈ [–, ],

, otherwise.

Then

∣
∣f (t,u, v)

∣
∣ ≤ α(t)|u| + β(t)|v| + ∣

∣γ (t)
∣
∣ ≤ α(t)

(|u| + 
)
+ β(t)

(|v| + 
)
+

∣
∣γ (t)

∣
∣

= α(t)|u| + β(t)|v| + γ (t),

where γ (t) = α(t) +β(t) + |γ (t)|. Since c(t) =  for t ∈ (–∞,∞) and p = , w(t) = t, and thus
(H), (H), and (H) hold.
For y ∈ Y ,

Q(y) =
∫ –

–∞
y(τ )dτ +

∫ 

–
y(τ )τ  dτ

http://www.boundaryvalueproblems.com/content/2014/1/255
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and

Q(y) =
∫ ∞


y(τ )dτ +

∫ 


y(τ )τ  dτ .

Take k(t) = |t|, then

a = –e– + , a = –e– + , a = e– – , a = –e– + ,

and

� = aa – aa =
(
–e– + 

)(
–e– + 

)
> .

Thus, (H) holds.
Take B =  and A = . If |x(t)| > , for t ∈ [–, ], then |Q(Nx)| = |– ∫ 

– t
e–|t|x(t)dt| >

|– ∫ 
– t

e–|t| dt| = –(–e– + ) > . If |(|x′|x′)(t)| >  for t ∈ (–∞,∞), then |x′(t)| > 
for t ∈ (–∞,∞), and

∣
∣Q(Nx)

∣
∣ =

∣
∣
∣
∣

–
∫ ∞


e–|t|x′(t)dt

∣
∣
∣
∣ >

∣
∣
∣
∣

–
∫ ∞


e–|t| dt

∣
∣
∣
∣ = –e– > .

Thus, (H) holds.
For any C > , if |a| > C or |b| > C, then

aQ
(
N(a + bt)

)
+ bQ

(
N(a + bt)

)

= –
(
–e– + 

)
a + –

(
e– – 

)
ab + –e–b

= –
(
–e– + 

)
(

a +
e– – 
–e– + 

b
)

+ –
(

e– – 
(e– – )

–e– + 

)

b > .

Thus, (H)() is satisfied.
Since p = , αp = , B = , and D = 

–e–+ +


–e–+ , we have

∥
∥
(
 + |w|)α∥

∥
Y +

∥
∥
∥
∥
β

c

∥
∥
∥
∥
Y
< × –

<
(


 + ( + ( + 

–e–+ +


–e–+ )

 )

)

and () holds. Consequently, there exists at least one solution to problem () in view of
Theorem ..
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