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Abstract
In this paper, the periodic and subharmonic solutions are investigated for a class of
second-order non-autonomous ordinary differential equations with a p-Laplacian.
With the perturbation technique and the dual least action principle, some existence
results are given of solutions to the convex p-Laplacian systems.
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1 Introduction
In this paper, we consider the second-order ordinary differential equations with a p-
Laplacian

d
dt

�p
(
ẋ(t)

)
+∇F

(
t,x(t)

)
= , a.e. t ∈R, ()

where p > , x = (x,x, . . . ,xN ), �p(x) = |x|p–x. Here | · | stands the Euclidean norm in R
N .

In what follows we always suppose that F :R×R
N →R, (t,x)→ F(t,x) is measurable and

T-periodic in t for every x ∈R
N , continuously differentiable and convex in x for a.e. t ∈R.

When p = , () reduces to the second-order Hamiltonian system

ẍ(t) +∇F
(
t,x(t)

)
= , a.e. t ∈R. ()

Since F is T-periodic in t, it is natural to seek T-periodic solutions of () and (). Also, F
is kT-periodic for k ∈N, one can search the kT-periodic solutions, which is called subhar-
monic solutions. By a subharmonic solution, it means a kT periodic solution with k ≥ 
an integer, that is, the minimal period is strictly greater than T . When k = , it is a peri-
odic solution or harmonic. Clearly, a solution x of () over [,kT] verifying x() = x(kT)
and ẋ() = ẋ(kT) can be extended by kT-periodicity over R to give a kT-periodic solution.
So, it is fine to study the periodic boundary value of problem of () over [,kT] to present
conditions for the existence of the periodic and subharmonic solutions of (). For the study
of the subharmonic solutions, we refer to [–] for a few examples.
The dual action principle was firstly introduced by Clarke [] and developed by Clarke

and Ekeland [–], which is from the spirit of optimal control theory and convex analy-
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sis; see []. Following this use and the direct variational method, the periodic solutions
are obtained for the Hamiltonian system of () in [, , , ] and the references therein.
Mawhin and Willem [] presented the existence results of solutions to the more general
systems by using such a principle and the perturbation technique argument. In , Tian
and Ge [] generalized the existence results to the p-Laplacian system (). By transform-
ing the variable, they found a first-order Hamiltonian system equivalent to the second-
order p-Laplacian system (). Then by applying the Clarke duality, the perturbation tech-
nique, and the least action principle, they obtained the existence result of the periodic
solution. The authors [] also discussed the multi-point boundary value problem of a
second-order differential equation with a p-Laplacian.
Motivated by the work listed above, we aim to discuss the periodic and subharmonic

solutions to the p-Laplacian systems of (). The proofs are depending on the dual least
action principle and the perturbation arguments. To the best of our knowledge, there is no
paper discussing the subharmonics solutions of p-Laplacian system by using the dual least
action principle. This paper is a first try. The existence of the periodic solutions obtained
in this paper slightly improves the result in []. New arguments are considered for the
posterior estimates of the periodic solutions and the existence of subharmonic solutions
are presented, which extend those in [, ].
Other existence results for periodic and subharmonic solutions of the p-Laplacian dif-

ferential equation using other variational methods can be found in [, –].
The paper is organized as follows. In Section , we establish the variational structure

of () and transfer the existence of the solution into the existence of a critical point of the
corresponding functional. The dual action ismainly discussed here. In Section , sufficient
conditions are presented to guarantee the existence of the periodic solution of (). We
also estimate the prior bounds of all the periodic solutions of (). The existence of the
subharmonic solutions are given in the last section.

2 Preliminary and dual action
Let k ≥  be any integer and p >  a constant. The Sobolev space W ,p

kT (,kT ;RN ) is the
space of functions x : [,kT] → R

N with x ∈ Lp(,kT ;RN ) having a weak derivative ẋ ∈
Lp(,kT ;RN ) and x() = x(kT). The norm overW ,p

kT is defined by

‖x‖W ,p
kT

=
(∫ kT



∣∣x(t)
∣∣p dt +

∫ kT



∣∣ẋ(t)
∣∣p dt

) 
p
.

Here, we recall that

|x| =
√√
√√

N∑

i=

|xi|, ‖x‖Lp =
(∫ kT



∣
∣x(t)

∣
∣p dt

) 
p
, ‖x‖∞ = max

t∈[,kT]
∣
∣x(t)

∣
∣.

Consider the spaces X and Y defined by

X =
{
u = (u,u) : [,kT] →R

N ,u ∈W ,p
kT

(
,kT ;RN)

,u ∈W ,q
kT

(
,kT ;RN)}

,

Y =
{
v = (v, v) : [,kT] →R

N , v ∈W ,q
kT

(
,kT ;RN)

, v ∈ W ,p
kT

(
,kT ;RN)}

,
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with the norm ‖u‖X = ‖u‖W ,p
kT

+ ‖u‖W ,q
kT

and ‖v‖Y = ‖v‖W ,q
kT

+ ‖v‖W ,p
kT
, respectively.

Here q is a constant such that 
p + 

q = . It is easy to verify that X and Y are reflexive
Banach spaces and X∗ = Y .
For any h = (h,h) ∈ L(,kT ;RN ×R

N ), the mean value is defined by

h̄ =

kT

∫ kT


h(t)dt.

Similarly, we can define h̄ and h̄. We denote by Ỹ the subspace of Y by

Ỹ = {v ∈ Y : v̄ = }.

We easily find the following inequality.

Lemma . For every u ∈W ,p
kT and ū = , we have

‖u‖Lp ≤ kT‖u̇‖Lp .

For every u ∈ W ,q
kT and ū = , we have

‖u‖Lq ≤ kT‖u̇‖Lq .

Let u = x, αu = �p(ẋ), then the second-order p-Laplacian system () can be changed
to the first-order ones,

⎧
⎨

⎩
u̇ = �q(αu(t)),

u̇ = – 
α
∇F(t,u(t)),

()

where α >  is a parameter. DefineHi : [,kT]×R
N →R, i = , , andH : [,kT]×R

N →
R by

H(t,u) =

α
F(t,u), H(t,u) =

αq–

q
|u|q,

H(t,u) =H(t,u) +H(t,u)

for u = (u,u) ∈ RN . Then the system () can be written by

Ju̇(t) +∇H
(
t,u(t)

)
= , ()

where J =
( N IN
–IN N

)
is the symplectic matrix. Obviously, J = –IN and (Ju, v) = –(u, Jv) for

all u, v ∈R
N .

By the kT-periodic property, we have the Hamiltonian action of () on X given by

ψ(u) =
∫ kT



(
–


(
Ju̇(t),u(t)

)
–H

(
t,u(t)

))
dt, ()
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where (·, ·) is the inner product in R
N . Because the first part of ψ is indefinite, the dual

least process is applied to discuss the existence of the periodic solutions of ().
Let � the set of all convex lower semi-continuous functions from R

N to (–∞,∞]
whose effective domain (not equal to∞) is nonempty. Then the Fenchel transformH∗(t, ·)
of H(t, ·) ∈ � is defined by

H∗(t, v) = sup
u∈RN

(
(v,u) –H(t,u)

)
. ()

Similarly, we also can define

F∗(t, v) = sup
x∈RN

(
(v,x) – F(t,x)

)
.

For more properties of the Fenchel transform, we refer to [, ]. By Theorem . and
Proposition . in [], we have the following conclusion.

Lemma . Suppose the following condition holds.

(A) There exist positive constants α, δ, and positive functions β ,γ ∈ Lq(,kT ; [, +∞)) such
that

δ

p
|x|p – β(t)≤ F(t,x)≤ α

p
|x|p + γ (t)

holds for a.e. t ∈ [,kT] and x ∈ R
N .

Then


q
α
– q
p |v|q – γ (t)≤ F∗(t, v)≤ 

q
δ
– q
p |v|q + β(t), a.e. t ∈ [,kT].

Furthermore, we have F∗(t, ·) ∈ C(RN ) and

∣∣∇F∗(t, v)
∣∣ ≤

(
p
δ

(|v| + β(t) + γ (t)
)
+ 

)q–

, a.e. t ∈ [,kT].

From the definition of H and Lemma ., we have the following result.

Corollary . H∗
 (t, v) =


pα |v|p.

Easily we find H∗(t, v) = 
α
F∗(t, v) + H∗

 (t, v). So when F satisfies the condition (A),
H∗(t, v) is continuously differentiable in v for a.e. t ∈ [,kT] and

H∗(t, v) = (v,u) –H(t,u) ⇔ v = ∇H(t,u) ⇔ u = ∇H∗(t, v). ()

Let v = –Ju and by duality, we have

ψ(u) =
∫ kT



(
–


(
Ju̇(t),u(t)

)
–H

(
t,u(t)

))
dt

=
∫ kT



(


(
v̇(t),u(t)

)
–H

(
t,u(t)

))
dt
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=
∫ kT



(
–


(
v̇(t),u(t)

)
+

(
v̇(t),u(t)

)
–H

(
t,u(t)

)
)
dt

=
∫ kT



(


(
J v̇(t), v(t)

)
+H∗(t, v̇(t)

)
)
dt.

So the dual action can be defined on Y by

X (v) =
∫ kT



(


(
J v̇(t), v(t)

)
+H∗(t, v̇(t)

))
dt. ()

X is the functional we needed since the critical points of X on Y coincide with the solu-
tions of (). BecauseX (v+ c) =X (v), it suffices to find a critical point in Ỹ . Similarly to the
discussion of the related lemmas in reference [], we have the following results.

Lemma . Suppose the condition (A) holds. Then X is continuously differential on Ỹ .
For any h ∈ Ỹ , we have

〈
X ′(v),h

〉
=

∫ kT



(


(
J v̇(t),h(t)

)
+

(
∇H∗(t, v̇(t)

)
–


Jv(t), ḣ(t)

))
dt. ()

Lemma . Suppose the condition (A) holds. If v ∈ Ỹ is a critical point of X , then the
function u(t) = ∇H∗(t, v̇(t)) is the kT-periodic solution of () in X.

Lemma . For every u ∈ X, we have

∫ kT



(
Ju̇(t),u(t)

)
dt ≥ –

kT
p

‖u̇‖pLp –
kT
q

‖u̇‖qLq .

For every v ∈ Y , we have

∫ kT



(
J v̇(t), v(t)

)
dt ≥ –

kT
q

‖v̇‖qLq –
kT
p

‖v̇‖pLp .

Remark . There are some extended versions of the inequalities in Lemmas . and .;
see [, ].

3 Periodic solutions
In this section, we discuss the kT-periodic solution of (). Here we note that the H(t,u) is
T-periodic in t for each u ∈R

N .

Theorem . Suppose the following conditions are satisfied.

(A) There exists l ∈ Lpq(,kT ;RN ) such that for all x ∈ R
N and a.e. t ∈ [,kT], one has

F(t,x)≥ (
l(t),�p(x)

)
.

(A) There exists α ∈ (, (kT)–max{p,q}/q), γ ∈ Lmax{p,q}(,kT ;RN ) such that for all x ∈ R
N

and a.e. t ∈ [,kT], one has

F(t,x)≤ α

p
|x|p + γ (t).
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(A)
∫ kT
 F(t,x)dt → +∞ as |x| → +∞, x ∈R

N .

Then the problem () has at least one solution u = (u,u) ∈ X such that u is the kT-
periodic solutions of () and

v(t) = –J
[
u(t) –


kT

∫ kT


u(s)ds

]

minimizes the dual action

X : Ỹ → (–∞,∞], v �→
∫ kT



(


(
J v̇(t), v(t)

)
+H∗(t, v̇(t)

)
)
dt.

Proof From the discussion in Section , we can see that if the problem () has one solution
u = (u,u) ∈ X, then u ∈ W ,p

kT is for the kT-periodic solutions of (). Now we need to
prove the problem () has at least one kT-periodic solution in X. The proof is divided into
three parts.
Step : Existence of a solution for the perturbed problem.
Choose ε >  such that

 < α + ε < min
{
(kT)–p, (kT)–

}
,

and for any  < ε < ε, let

Hε(t,u) =H(t,u) +
ε

p
|u|p.

Clearly,Hε(t,u) is strictly convex and continuously differentiable in u for a.e. t ∈ [,kT].
From (A) and (A), we have

–

α

∣
∣l(t)

∣
∣|u|p– + ε

p
|u|p ≤ Hε(t,u) ≤ α + ε

p
|u|p + 

α
γ (t).

Because the function g(s) = ε
p s

p – 
α
|l(t)|sp–, s > , attains its minimum at s = (p –

)|l(t)|/αε, we have

–


αp

(
(p – )

αε

)p–∣∣l(t)
∣∣p +

ε

p
|u|p ≤ Hε(t,u) ≤ α + ε

p
|u|p + 

α
γ (t).

Let Hε(t,u) = Hε(t,u) + H(t,u). Easily we find H∗
ε (t, v) = H∗

ε(t, v) + H∗
 (t, v), where

v = (v, v) ∈ Y . From Lemma . and Lemma ., we find that the perturbed dual action

Xε(v) =
∫ kT



(


(
J v̇(t), v(t)

)
+H∗

ε

(
t, v̇(t)

)
)
dt ()

is continuously differentiable on Ỹ and if vε ∈ Ỹ is a critical point of Xε , the function uε

defined by

uε(t) = ∇H∗
ε

(
t, v̇ε(t)

)

http://www.boundaryvalueproblems.com/content/2014/1/260


Lian et al. Boundary Value Problems 2014, 2014:260 Page 7 of 15
http://www.boundaryvalueproblems.com/content/2014/1/260

is a solution of
⎧
⎨

⎩
Ju̇(t) +∇Hε(t,u(t)) = ,

u() = u(kT),
()

i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

u̇ε(t) –�q(αuε(t)) = ,

u̇ε(t) + ε�p(uε(t)) + 
α
∇F(t,uε(t)) = ,

uε() = uε(kT),

()

where we rewrite uε = (uε ,uε) ∈ X. Meanwhile, from Lemma ., we have

H∗
ε

(
t, v̇(t)

) ≥ 
q
(α + ε)–q/p

∣∣v̇(t)
∣∣q +


p
α–∣∣v̇(t)

∣∣p –

α

γ (t),

which together with () and Lemma . implies that

Xε(v) ≥ 
q
(
(α + ε)–q/p – kT

)∫ kT



∣∣v̇(t)
∣∣q dt

+

p
(
α– – kT

)∫ kT



∣∣v̇(t)
∣∣p dt –

∫ kT




α

γ (t)dt

≥ δ‖v̇‖qLq + δ‖v̇‖pLp – γ ()

with δ > , δ > . Thus every minimizing sequence of Xε on Ỹ is bounded by () and
Lemma .. From the continuity ofHε and the definition ofH∗

ε , we can see that the second
term ofXε is weakly lower semi-continuous on Ỹ . Meanwhile the first part ofXε is weakly
continuous. So Xε is weakly lower semi-continuous. This implies that Xε has a minimum
at some vε ∈ Ỹ . So () has a solution uε = ∇H∗

ε (t, v̇ε(t)).
Step : Estimation of uε .
It follows from a similar discussion to Lemma . that

∣∣∇H(t,u)
∣∣ ≤ (

pα– q
p
(|u| +

∣∣l(t)
∣∣|u|p– + γ (t)

))p– + .

So for any u ∈R
N , ∇H(t,u) ∈ Lq[,kT]. Then the function

H̄ :RN →R, u →
∫ kT


H(t,u)dt

is continuously differentiable. By (A), H̄ has a minimum at some point ū ∈R
N such that

∫ kT


∇H(t, ū)dt = .

Easily, ∇H(t,u) = �p(αu) and

∫ kT


∇H(t, )dt = .

http://www.boundaryvalueproblems.com/content/2014/1/260
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So, let ū = (ū, ) ∈ R
N , and then v̇(t) = ∇H(t, ū) has a unique solution ω ∈ Ỹ . By duality,

we also have

H∗(t, ω̇) = (ω̇, ū) –H(t, ū),

and H∗(·, ω̇(·)) ∈ L[,kT]. From the inequality H(t, ū) ≤ Hε(t, ū), we have H∗
ε (t, ω̇) ≤

H∗(t, ω̇), and from (), we obtain

δ‖v̇ε‖qLq + δ‖v̇ε‖pLp – γ ≤Xε(vε) ≤Xε(ω) ≤X (ω) = c < +∞.

By Lemma ., we have ‖vε‖Y ≤ c, where c and c are constants independent of ε, as well
as the following constants ci, i = ,, . Furthermore, from u̇ε = J v̇ε , we have

‖u̇ε‖Lp + ‖u̇ε‖Lq = ‖v̇ε‖Lq + ‖v̇ε‖Lp ≤ ‖vε‖Y ≤ c,

and from
∫ kT
 ũε(t)dt = , i.e.

∣
∣ũε(t)

∣
∣ ≤

∣∣
∣∣

∫ kT


˙̃uε(t)dt

∣∣
∣∣ ≤ (kT)/q‖ ˙̃uε‖Lp + (kT)/p‖ ˙̃uε‖Lq ,

we have ‖ũε‖X ≤ c.
Meanwhile, by the convexity of F(t, ·), we have

H(t, ūε/)

≤ 

H

(
t,uε(t)

)
+


H

(
t, –ũε(t)

)

≤ 

H

(
t,uε(t)

)
–


H(t, ) +



H(t, ) +

α

p
∣∣ũε(t)

∣∣p +

α

γ (t) +
αq–

q
∣∣ũε(t)

∣∣q

≤ 

(∇H

(
t,uε(t)

)
,uε(t)

)
+

α

p
∣∣ũε(t)

∣∣p +
αq–

q
∣∣ũε(t)

∣∣q +

α

γ (t)

=


(
–Ju̇ε(t),uε(t)

)
– ε

(
�p

(
uε(t)

)
,uε(t)

)
+

α

p
∣∣ũε(t)

∣∣p +
αq–

q
∣∣ũε(t)

∣∣q +

α

γ (t).

So,

∫ kT


F(t, ūε/)dt

≤
∫ kT





(
–Ju̇ε(t),uε(t)

)
dt +

α

p
‖ũε‖pLp +

αq–

q
‖ũε‖qLq + γ

≤ 

‖ũε‖Lp‖ ˙̃uε‖Lq + 


‖ ˙̃uε‖Lp‖ũε‖Lq + α

p
‖ũε‖pLp +

αq–

q
‖ũε‖qLq + γ

≤ c.

This together with condition (A) implies that |ūε | is bounded. Consequently,

‖uε‖X ≤ ‖ūε‖X + ‖ũε‖X ≤ c.

http://www.boundaryvalueproblems.com/content/2014/1/260
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Step : Existence of a solution for the problem ().
Since ‖uε‖X is bounded, there is a sequence εn →  (n → ∞) with εn ∈ (, ε) and a

function u ∈ X such that

uεn ⇀ u as n→ ∞.

Moreover, from v̇ε = –Ju̇ε , we have

vε(t) = –J
(
uε(t) – ūε

)
.

So {vεn} converges weakly to v(t) = –J(u(t) – ū). From (), we have the integrated form

⎧
⎨

⎩
uεn (t) – uεn () –

∫ t
 �q(αuεn (s))ds = ,

uεn (t) – uεn () + εn
∫ t
 �p(αuεn (s))ds +

∫ t



α
∇F(s,uεn (s))ds = .

Because uεn converges weakly to u in X, uεn converges uniformly to u in C∞
kT (see Propo-

sition . in []). So, let n→ ∞ and we have

⎧
⎨

⎩
u(t) – u() –

∫ t
 �q(αu(s))ds = ,

u(t) – uεn () + 
α

∫ t
 ∇F(s,u(s))ds = ,

that is, u is a solution of () in X.
Finally, we show v = –J(u(t) – ū) minimizes the dual action X on Ỹ . Because vεn is a

minimum of Xεn and H∗
εn (t, v)≤ H∗(t, v), we have

Xεn (vεn ) ≤Xεn (h)≤X (h), ∀h ∈ Ỹ .

By the duality between uεn and v̇εn and the definition of Hεn (t, v), we have

Xεn (vεn ) =
∫ kT



(


(
J v̇εn (s), vεn (s)

)
+

(
v̇εn (s),uεn (s)

)
–Hεn

(
s,uεn (s)

))
ds

=
∫ kT



(


(
J v̇εn (s), vεn (s)

)
+

(
uεn (s), v̇εn (s)

)
–H

(
s,uεn (s)

)
–

εn

p
∣
∣uεn (s)

∣
∣p

)
ds.

Moreover, as vεn converges weakly to v in Ỹ , J v̇εn converges weakly to Jv. Letting n→ ∞
we obtain, by v̇(t) = ∇H(t,u(t)),

lim
n→∞Xεn (vεn )

= lim
n→∞

∫ T



(


(
J v̇εn (s), vεn (s)

)
+

(
uεn (s), v̇εn (s)

)
–H

(
s,uεn (s)

)
–

εn

p
∣∣uεn (s)

∣∣p
)
ds

=
∫ T



(


(
J v̇(s), v(s)

)
+H∗(s, v̇(s)

))
ds =X (v).

So X (v)≤X (h) for all h ∈ Ỹ . The proof is complete. �
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Remark . Theorem . still holds if condition (A) is changed to:

(A) There exists l ∈ Lpq/(p–m+)(,kT ;RN ) such that for all x ∈ R
N and a.e. t ∈ [,kT], one

has

F(t,x)≥ (
l(t),�m(x)

)
,

wherem is an integer such that  ≤ m ≤ p.

When the parameter α is smaller, we can obtain the prior bound for all the solutions of
the p-Laplacian system ().

Theorem . If there exist α ∈ (,min{(kT)–p/q,p(kT)–}), β ≥ , γ ≥ , and δ >  such
that

δ|x| – β ≤ F(t,x)≤ α

p
|x|p + γ

for a.e. t ∈ [,kT] and x ∈R
N , then each solution of () satisfies the inequalities

∫ kT



∣∣ẋ(t)
∣∣p dt ≤ pkT(β + γ )

p – kTα
, ()

∫ kT



∣∣x(t)
∣∣dt ≤ kT(β + γ )

δ( – kTαq/p)
. ()

Proof We still set u = x, αu = �p(ẋ), and the equalities () hold. Easily we find


q
α
– q

p
∣∣∇F(t,u)

∣∣q ≤ (∇F(t,u),u
)
+ β + γ .

It follows from

(∇H(t,u),u
)
=


α

(∇F(t,u),u
)
+

(
�q(αu),u

)

that


q
α
–– q

p
∣
∣∇F(t,u)

∣
∣q +

(
�q(αu),u

) ≤ (∇H(t,u),u
)
+

β

α
+

γ

α
.

That is,


q
α
– q
p
∣
∣u̇(t)

∣
∣q + αq–|u|q ≤ (

–Ju̇(t),u(t)
)
+

β

α
+

γ

α
.

Integrating over [,kT] and using Lemma ., we have


q
α
– q
p ‖u̇‖qLq + αq–‖u‖qLq

≤ –
∫ kT



(
Ju̇(t),u(t)

)
dt +

kT(β + γ )
α

http://www.boundaryvalueproblems.com/content/2014/1/260
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≤ kT
p

‖u̇‖pLp +
kT
q

‖u̇‖qLq +
kT(β + γ )

α

=
kT
p

αq‖u‖qLq +
kT
q

‖u̇‖qLq +
kT(β + γ )

α
.

So,
(

q
α
– q
p –

kT
q

)
‖u̇‖qLq +

(
αq– –

kT
p

αq
)

‖u‖qLq ≤ kT(β + γ )
α

.

Hence

‖u‖qLq ≤ pkT(β + γ )
αq(p – kTα)

, ‖u̇‖qLq ≤ qkT(β + γ )
α–q/p – kTα

and

‖u̇‖pLp =
∥
∥�q(αu)

∥
∥p
Lp = αq‖u‖qLq ≤ pkT(β + γ )

p – kTα
.

Meanwhile, by the convexity of F , we have

δ

∫ kT



∣∣u(t)
∣∣dt – βkT

≤
∫ kT


F
(
t,u(t)

)
dt ≤

∫ kT



(
F(t, ) +

(∇F
(
t,u(t)

)
,u(t)

))
dt

≤ γ kT + α

∫ kT



(∇H
(
t,u(t)

)
,u(t)

)
dt – α

∫ kT



(
�q(αu),u

)
dt

= γ kT – α

∫ kT



(
Ju̇(t),u(t)

)
dt – αq‖u‖qLq

≤ γ kT + α
kT
q

‖u̇‖qLq ≤ γ kT +
kT(β + γ )
α–q/p – kT

,

which completes the proof. �

4 Subharmonic solutions
Theorem . Assume that F :R×R

N →R is continuous. Suppose further that

F(t,x)→ +∞ ()

and

F(t,x)
|x|p →  ()

as |x| → +∞ uniformly in t ∈R. Then for each k ∈R\{}, the system () has a kT-periodic
solution xk such that

‖xk‖∞ → +∞

and such that the minimal period Tk of xk tends to ∞ when k → +∞.

http://www.boundaryvalueproblems.com/content/2014/1/260
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Proof Let c = maxt∈R |F(t, )|. Then condition () implies that there exists a r >  such
that

F(t,x)≥  + c

for all t ∈ R and x ∈R
N with |x| > r. By the convexity of F , we have

 + c ≤ F
(
t,

r
|x|x

)
≤ r

|x|F(t,x) +
(
 –

r
|x|

)
F(t, )

≤ r
|x|F(t,x) +

(
 –

r
|x|

)
c,

i.e.

F(t,x)≥ 
r
|x| + c

for all t ∈ R and x ∈ R
N with |x| > r. Furthermore, the continuity of F implies that there

exist positive constants δ, β such that

F(t,x)≥ δ|x| – β ()

for all t ∈ R and x ∈R
N .

By the condition (), there exists α ∈ (, (kT)–max{p,q}/q) such that

F(t,x)≤ α

p
|x|p + γ ()

for all t ∈ R and x ∈ R
N . Then from Theorem ., we can see that the problem () has at

least one solution uk = (uk ,uk) ∈ X such that uk is the kT-periodic solution of () and

vk(t) = –J
[
uk(t) –


kT

∫ kT


uk(s)ds

]

minimizes the dual action

X : Ỹ → (–∞,∞], v �→
∫ kT



(


(
J v̇(t), v(t)

)
+H∗(t, v̇(t)

))
dt.

Next we estimate the upper bound of ck =X (vk). For any h = (h,h) ∈ Ỹ , we have

ck =X (vk) ≤X (h) =
∫ kT



(


(
Jḣ(t),h(t)

)
+H∗(t, ḣ(t)

)
)
dt

=
∫ kT



(


(
Jḣ(t),h(t)

)
+


α
F∗(t, ḣ(t)

)
+


pα

|ḣ|p
)
dt. ()

Let ρ = (ρ,ρ) ∈R
N ×R

N with |ρi| = , i = , , and ε ≤ πδ/kT . Define the function

h(t) =
εkT
π

(
ρ cos

π
kT

t + Jρ sin
π
kT

t
)
.

http://www.boundaryvalueproblems.com/content/2014/1/260
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Obviously, h ∈ Ỹ and Jḣ(t) = –π
kT h(t). Meanwhile, from (), we can see that when z ∈ R

N

with |z| ≤ δ, we have

F∗(t, z) ≤ sup
x∈Rn

(
(z,x) – F(t,x)

) ≤ sup
x∈Rn

(
(z,x) – δ|x| + β

) ≤ β .

So it follows from () that

ck ≤X (h) ≤
∫ kT



(


(
Jḣ(t),h(t)

)
+

β

α
+


pα

|ḣ|p
)
dt

= –
εT

π
k +

(
β

α
+

εp

pα

)
Tk. ()

If ‖xk‖∞ → +∞ does not hold when k → +∞. Then there exist a subsequence {kn} and a
constant c >  such that

‖xkn‖∞ ≤ c.

From (), we have

∥
∥∥∥
d
dt

�p(ẋkn )
∥
∥∥∥∞

≤ c,

and so ‖ẋkn‖∞ ≤ c for some constants c, c > . This implies that

‖vkn‖ ≤ c, ‖v̇kn‖ ≤ c.

On the other hand, the inequality

ckn =X (vkn )

=
∫ knT



(


(
J v̇kn (t), vkn (t)

)
+H∗(t, v̇kn (t)

))
dt

≥
∫ knT



(
–


‖v̇kn‖∞‖vkn‖∞ –H(t, )

)
dt

≥ –
(


cc +

γ

α

)
Tkn ()

is incompatible with () when n is sufficiently large. Thus ‖xk‖∞ → +∞ when k → +∞.
It remains to prove that the minimal period Tk of xk tends to +∞ as k → +∞. If not,

there exist R >  and a subsequence {kn} such that the minimal period Tkn of xkn is less
than R. Meanwhile, by (), (), and Theorem ., we have

∫ Tkn



∣
∣ẋ(t)

∣
∣p dt ≤ αq‖u‖qLq ≤ pTkn (β + γ )

p – Tknα
, ()

∫ Tkn



∣∣x(t)
∣∣dt ≤ Tkn (β + γ )

δ( – Tknα
q/p)

. ()

http://www.boundaryvalueproblems.com/content/2014/1/260


Lian et al. Boundary Value Problems 2014, 2014:260 Page 14 of 15
http://www.boundaryvalueproblems.com/content/2014/1/260

We notice that

‖xkn‖∞ = ‖x̄kn + x̃kn‖∞ ≤ |x̄kn | + ‖x̃kn‖∞

≤ 
Tkn

∫ Tkn



∣∣x(t)
∣∣dt + T /q

(∫ Tkn



∣∣ẋ(t)
∣∣p dt

)/p

.

Inequalities () and () imply that {‖xkn‖∞} is bounded, which is a contraction. The
proof is complete. �
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