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Abstract
By using Leggett-Williams? fixed point theorem and Hölder?s inequality, the existence
of three positive solutions for the fourth-order impulsive differential equations with
integral boundary conditions x(4)(t) =ω(t)f (t, x(t)), 0 < t < 1, t �= tk , �x|t=tk = Ik(tk , x(tk)),
�x′|t=tk = 0, k = 1, 2, . . . ,m, x(0) =

∫ 1
0 g(s)x(s)ds, x′(1) = 0, x′′(0) =

∫ 1
0 h(s)x′′(s)ds, x′′′(1) = 0

is considered, where ω(t) is Lp-integrable. Our results cover a fourth-order boundary
value problem without impulsive effects and are compared with some recent results.

Keywords: triple positive solutions; impulsive differential equations; integral
boundary conditions; Leggett-Williams? fixed point theorem; Hölder?s inequality

1 Introduction
Impulsive differential equations occur in many applications. Various mathematical mod-
els, such as population dynamics, ecology, biological systems, biotechnology, industrial
robotic, pharmacokinetics, optimal control, etc., can be expressed by differential equa-
tions with impulses. Therefore, the study of impulsive differential equations has gained
prominence and it is a rapidly growing field; see [–] and the references therein. We
note that the difficulties dealing with such problems are that theirs states are discontinu-
ous. Therefore, the results of impulsive differential equations, especially for higher-order
impulsive differential equations, are fewer in number than those of differential equations
without impulses.

At the same time, owing to its importance in modeling the stationary states of the de-
flection of an elastic beam, fourth-order boundary value problems have attracted much
attention from many authors; see, for example [–] and the references therein. In par-
ticular, we would like to mention some results of Yang [], Anderson and Avery [], and
Zhang et al. []. In [], Yang considered the following fourth-order two-point boundary
value problem:

{
x()(t) = g(t)f (x(t)),  ≤ t ≤ ,
x() = x′() = x′′() = x′′′() = .

By using Krasnoselskii?s fixed point theorem, the author established some new estimates
to the positive solutions to the above problem and obtained some sufficient conditions for
the existence of at least one positive solution.
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In [], Anderson and Avery considered the following fourth-order four-point right focal
boundary value problem:

{
–x()(t) = f (x(t)), t ∈ [, ],
x() = x′(q) = x′′(r) = x′′′() = ,

where  < q < r <  are two constants, f : R → R is continuous and f (x) ≥  for x ≥ . By
using the five functionals fixed point theorem, the authors gave sufficient conditions for
the existence of three positive solutions of above problem.

Recently, Zhang et al. [] studied the existence of positive solutions of the following
fourth-order boundary value problem with integral boundary conditions:

⎧
⎪⎨

⎪⎩

x()(t) – λf (t, x(t)) = θ ,  < t < ,
x() = x() =

∫ 
 g(s)x(s) ds,

x′′() = x′′() =
∫ 

 h(s)x(s) ds,

where θ is the zero element of E.
However, to the best of our knowledge, no paper has considered the existence results

of triple positive solutions for fourth-order impulsive differential equations with integral
boundary conditions till now; for example, see [–] and the references therein.

In this paper, we investigate the existence of three positive solutions for the following
fourth-order impulsive differential equations with integral boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x()(t) = ω(t)f (t, x(t)),  < t < , t �= tk ,
�x|t=tk = Ik(tk , x(tk)),
�x′|t=tk = , k = , , . . . , m,
x() =

∫ 
 g(s)x(s) ds, x′() = ,

x′′() =
∫ 

 h(s)x′′(s) ds, x′′′() = .

(.)

Here ω ∈ Lp[, ] for some  ≤ p ≤ +∞, tk (k = , , . . . , m) (where m is fixed positive in-
teger) are fixed points with  = t < t < t < · · · < tk < · · · < tm < tm+ = , �x|t=tk denotes
the jump of x(t) at t = tk , i.e. �x|t=tk = x(t+

k ) – x(t–
k ), where x(t+

k ) and x(t–
k ) represent the

right-hand limit and left-hand limit of x(t) at t = tk , respectively. In addition, ω, f , Ik , g ,
and h satisfy

(H) ω ∈ Lp[, ] for some  ≤ p ≤ +∞ and there exists n >  such that ω(t) ≥ n a.e. on J ;
(H) f ∈ C([, ] × [, +∞), [, +∞)), Ik ∈ C([, ] × [, +∞), [, +∞));
(H) g, h ∈ L[, ] are nonnegative and μ ∈ [, ), ν ∈ [, ), where

ν =
∫ 


g(t) dt, μ =

∫ 


h(t) dt. (.)

Remark . The idea of impulsive effect for problem (.) is from Ding and O?Regan [].

Some special cases of problem (.) have been investigated. For example, Zhang and Ge
[] studied the existence and multiplicity of symmetric positive solutions for problem
(.) with Ik ≡  (k = , , . . . , m) and ω ∈ C(, ), not ω ∈ Lp[, ].

Motivated by the results mentioned above, in this paper we study the existence of three
positive solutions for problem (.) by new technique (different from the proof of The-
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orems .-. of []) to overcome difficulties arising from the appearances of Ik �= 
(k = , , . . . , m) and ω(t) is Lp-integrable. The arguments are based upon a fixed point
theorem due to Leggett and Williams which deals with fixed points of a cone-preserving
operator defined on an ordered Banach space.

The rest of the paper is organized as follows: In Section , we provide some necessary
background. In particular, we state some properties of the Green?s function associated with
problem (.). In Section , the main results of problem (.) will be stated and proved.

2 Preliminaries
Let J ′ = J\{t, t, . . . , tm}, and

PC[, ] =
{

x : x is continuous at t �= tk , x
(
t–
k
)

= x(tk) and x
(
t+
k
)

exists, k = , , . . . , m
}

.

Then PC[, ] is a real Banach space with norm

‖x‖ = max
t∈J

∣
∣x(t)

∣
∣.

Definition . (See []) Let E be a real Banach space over R. A nonempty closed set
P ⊂ E is said to be a cone provided that

(i) au + bv ∈ P for all u, v ∈ P and all a ≥ , b ≥  and
(ii) u, –u ∈ P implies u = .
Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y – x ∈ P.

Definition . The map β is said to be a nonnegative continuous concave functional on
a cone P of a real Banach space E provided that β : P → [,∞) is continuous and

β
(
tx + ( – t)y

) ≥ tβ(x) + ( – t)β(y)

for all x, y ∈ P and  ≤ t ≤ .

Definition . A function x ∈ PC[, ] ∩ C(J ′) is called a solution of problem (.) if it
satisfies (.).

We shall reduce problem (.) to an integral equation. With this goal, firstly by means of
the transformation

x′′(t) = –y(t), (.)

we convert problem (.) into
{

y′′(t) + ω(t)f (t, x(t)) = , t ∈ J ,
y() =

∫ 
 h(t)y(t) dt, y′() = ,

(.)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–x′′(t) = y(t), t ∈ J , t �= tk ,
�x|t=tk = Ik(tk , x(tk)),
�x′|t=tk = , k = , , . . . , m,
x() =

∫ 
 g(t)x(t) dt, x′() = .

(.)
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Lemma . Assume that (H)-(H) hold. Then problem (.) has a unique solution y given
by

y(t) =
∫ 


H(t, s)ω(s)f

(
s, x(s)

)
ds, (.)

where

H(t, s) = G(t, s) +


 – μ

∫ 


G(s, τ )h(τ ) dτ , (.)

G(t, s) =

{
t,  ≤ t ≤ s ≤ ,
s,  ≤ s ≤ t ≤ .

(.)

Proof The proof of Lemma . is similar to that of Lemma . in []. �

Write e(t) = t. Then from (.) and (.), we can prove that H(t, s) and G(t, s) have the
following properties.

Proposition . Let δ ∈ (, 
 ), Jδ = [δ,  – δ]. If μ ∈ [, ), then we have

H(t, s) > , G(t, s) > , ∀t, s ∈ (, ), (.)

H(t, s) ≥ , G(t, s) ≥ , ∀t, s ∈ J , (.)

e(t)e(s) ≤ G(t, s) ≤ G(t, t) = t = e(t) ≤ , ∀t, s ∈ J , (.)

ρe(t)e(s) ≤ H(t, s) ≤ γ s = γ e(s) ≤ γ , ∀t, s ∈ J , (.)

G(t, s) ≥ δG(s, s), H(t, s) ≥ δH(s, s), ∀t ∈ Jδ , s ∈ J , (.)

where

γ =


 – μ
, ρ =  +

∫ 
 sh(s) ds

 – μ
. (.)

Remark . From (.) and (.), we can obtain

H(t, s) ≥ δs = δG(s, s), ∀t ∈ Jδ , s ∈ J .

Lemma . If (H) and (H) hold, then problem (.) has a unique solution x and x can
be expressed in the form

x(t) =
∫ 


H(t, s)y(s) ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)
, (.)

where

H(t, s) = G(t, s) +


 – ν

∫ 


G(s, τ )g(τ ) dτ , (.)

H ′
s(t, s) = G′

s(t, s) +


 – ν

∫ 


G′

s(τ , s)g(τ ) dτ , (.)
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G′
s(t, s) =

{
,  ≤ t ≤ s ≤ ,
,  ≤ s ≤ t ≤ .

(.)

Proof The proof of Lemma . is similar to that of Lemma . in []. �

From (.)-(.), we can prove that H(t, s), H ′
s(t, s), and G′

s(t, s) have the following
properties.

Proposition . If ν ∈ [, ), then we have

H(t, s) ≥ , ∀t, s ∈ J ; (.)

ρe(t)e(s) ≤ H(t, s) ≤ γs = γe(s) ≤ γ, ∀t, s ∈ J , (.)

H(t, s) ≥ δH(s, s), ∀t ∈ Jδ , s ∈ J . (.)

G′
s(t, s) ≤ ,  ≤ H ′

s(t, s) ≤ 
 – ν

, (.)

where

γ =


 – ν
, ρ =  +

∫ 
 sg(s) ds

 – ν
. (.)

Remark . From (.) and (.), we can obtain

H(t, s) ≥ δs = δG(s, s), ∀t ∈ Jδ , s ∈ J .

Remark . From (.), one can prove that

 < H ′
s(t, s)( – ν) ≤ , ∀t ∈ Jδ , s ∈ [, ). (.)

Suppose that x is a solution of problem (.). Then from Lemma . and Lemma ., we
have

x(t) =
∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)
.

Define a cone in PC[, ] by

K =
{

x ∈ PC[, ] : x ≥ 
}

. (.)

It is easy to see K is a closed convex cone of PC[, ].
Define an operator T : K → PC[, ] by

(Tx)(t) =
∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)
. (.)

From (.), we know that x ∈ PC[, ] is a solution of problem (.) if and only if x is a
fixed point of operator T .
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Lemma . Suppose that (H)-(H) hold. Then T(K) ⊂ K and T : K → K is completely
continuous.

Proof The proof of Lemma . is similar to that of Lemma . in []. �

Let  < a < b be given and let β be a nonnegative continuous concave functional on the
cone K . Define the convex sets Ka, K(β , a, b) by

Ka =
{

x ∈ K : ‖x‖ < a
}

,

K(β , a, b) =
{

x ∈ K : a ≤ β(x),‖x‖ ≤ b
}

.

Finally we state Leggett-Williams? fixed point theorem [].

Lemma . Let K be a cone in a real Banach space E, A : K̄a → K̄a be completely contin-
uous and β be a nonnegative continuous concave functional on K with β(x) ≤ ‖x‖ for all
x ∈ Ka. Suppose there exist  < d < a < b ≤ c such that

(i) {x ∈ K(β , a, b) : β(x) > a} �= ∅ and β(Ax) > a for x ∈ K(β , a, b);
(ii) ‖Ax‖ < d for ‖x‖ ≤ d;

(iii) β(Ax) > a for x ∈ K(β , a, c) with ‖Ax‖ > b.
Then A has at least three positive solutions x, x, x satisfying

‖x‖ < d, a < β(x), ‖x‖ > d and β(x) < a.

To obtain some of the norm inequalities in Theorem . and Corollary ., we employ
Hölder?s inequality.

Lemma . (Hölder) Let f ∈ Lp[a, b] with p > , g ∈ Lq[a, b] with q > , and 
p + 

q = . Then
fg ∈ L[a, b] and

‖fg‖ ≤ ‖f ‖p‖g‖q.

Let f ∈ L[a, b], g ∈ L∞[a, b]. Then fg ∈ L[a, b] and

‖fg‖ ≤ ‖f ‖‖g‖∞.

3 Existence of triple positive solutions to (1.1)
In this section, we apply Lemma . and Lemma . to establish the existence of triple
positive solutions for problem (.). We consider the following three cases for ω ∈ Lp[, ]:
p > , p = , and p = ∞. Case p >  is treated in the following theorem.

For convenience, we introduce the following notation:

D = γ γ‖e‖q‖ω‖p, D =
m

 – ν
,

δ = min
t∈Jδ ,s∈(,)

H ′
s(t, s)( – ν), δ∗ = min

{
δ

γ
, δ

}

,

f ∞ = lim sup
x→∞

max
t∈J

f (t, x)
x

, I∞(k) = lim sup
x→∞

max
t∈J

Ik(t, x)
x

, k = , , . . . , m.
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Theorem . Assume that (H)-(H) hold. Furthermore, suppose that there exist constants
 < d < a < a

δ∗ ≤ c such that

(H) f ∞ < 
D , I∞(k) < 

D
, k = , , . . . , m;

(H) f (t, x) > a
δ(–δ)n for (t, x) ∈ Jδ × [a, a

δ∗ ];
(H) f (t, x) < d

D , Ik(t, x) < d
D

for (t, x) ∈ J × [, d], k = , , . . . , m.

Then problem (.) has at least three positive solutions x, x, and x such that

‖x‖ < d, a < β(x), and x > d with β(x) < a.

Proof By the definition of operator T and its properties, it suffices to show that the con-
ditions of Lemma . hold with respect to T .

Let β(x) = mint∈Jδ x(t). Then β(x) is a nonnegative continuous concave functional on the
cone K satisfying β(x) ≤ ‖x‖ for all x ∈ K .

For convenience, we denote b = a
δ∗ .

Considering (H), there exist  < σ < 
D ,  < σ < 

D
, and l >  such that

f (t, x) ≤ σx, Ik(t, x) ≤ σx, k = , , . . . , m,∀t ∈ J , x ≥ l.

Let

η = max
≤x≤l,t∈J

f (t, x), η = max
≤x≤l,t∈J

Ik(t, x), k = , , . . . , m.

Then

f (t, x) ≤ σx + η, Ik(t, x) ≤ σx + η, ∀t ∈ J ,  ≤ x ≤ +∞. (.)

Set

c > max

{
Dη

 – Dσ
,

Dη

 – Dσ
,

a
δ∗

}

.

Then, for x ∈ K̄c, it follows from (.), (.), and (.) that

(Tx)(t) =
∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)

≤
∫ 



∫ 


γγ e(τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +


 – ν

m∑

k=

Ik
(
tk , x(tk)

)

≤
∫ 



∫ 


γγ e(τ )ω(τ )(σx + η) dτ ds +


 – ν

m∑

k=

(σx + η)

≤
∫ 



∫ 


γγ e(τ )ω(τ )

(
σ‖x‖ + η

)
dτ ds +


 – ν

m∑

k=

(
σ‖x‖ + η

)

≤ γγ (σ c + η)
∫ 


e(τ )ω(τ ) dτ +

m
 – ν

(σc + η)
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≤ γγ (σ c + η)‖e‖q‖ω‖p +
m

 – ν
(σc + η)

<
c


+
c


= c,

which shows that Tx ∈ Kc.
Hence, we have shown that if (H) holds, then T maps K̄c into Kc.
Next, we verify that {x ∈ K(β , a, b) : β(x) > a} �= ∅ and β(Tu) > a for all x ∈ K(β , a, b).
Take ϕ(t) ≡ δ∗+

δ∗ a, for t ∈ J . Then

ϕ ∈
{

x
∣
∣
∣ x ∈ K

(

β , a,
a
δ∗

)

,β(x) > a
}

.

This shows that

{
x ∈ K(β , a, b) : β(x) > a

} �= ∅.

Therefore, it follows from (H) that

β(Tx) = min
t∈Jδ

(Tx)(t)

= min
t∈Jδ

∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)

≥ min
t∈Jδ

∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds

≥ δ

∫ 



∫ 


e(s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds

≥ δ

∫ 



∫ –δ

δ

e(s)H(s, τ )ω(τ )f
(
τ , x(τ )

)
dτ ds

≥ δ
∫ 


s ds

∫ –δ

δ

ω(τ )f
(
τ , x(τ )

)
dτ

>


δn( – δ)

a
δ( – δ)n

= a.

If x ∈ K̄d , then it follows from (H) that

(Tx)(t) =
∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)

≤
∫ 



∫ 


γγ e(τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +


 – ν

m∑

k=

Ik
(
tk , x(tk)

)

<
∫ 



∫ 


γγ e(τ )ω(τ )

d
D

dτ ds +


 – ν

m∑

k=

d
D

= d.
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Finally, we assert that if x ∈ K(β , a, c) and ‖Tx‖ > b, then β(Tx) > a.
Suppose x ∈ K(β , a, c) and ‖Tx‖ > b, then it follows from (.), (.), and (.) that

β(Tx) = min
t∈Jδ

(Tx)(t)

= min
t∈Jδ

[∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)
]

≥ δ

∫ 



∫ 


e(s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds

+ min
t∈Jδ

m∑

k=

H ′
s(t, tk)( – ν)


 – ν

Ik
(
tk , x(tk)

)

≥ δ

γ

∫ 



∫ 


γe(s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds + δ

m∑

k=


 – ν

Ik
(
tk , x(tk)

)

≥ min

{
δ

γ
, δ

}[∫ 



∫ 


γe(s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=


 – ν

Ik
(
tk , x(tk)

)
]

≥δ∗‖Tx‖
> a.

To sum up, the hypotheses of Lemma . hold. Therefore, an application of Lemma .
implies problem (.) has at least three positive solutions x, x, and x such that

‖x‖ < d, a < β(x), and x > d with β(x) < a. �

The following theorem deals with the case p = ∞.

Corollary . Assume that (H)-(H) hold. Then problem (.) has at least three positive
solutions x, x, and x such that

‖x‖ < d, a < β(x), and x > d with β(x) < a.

Proof Let ‖e‖‖ω‖∞ replace ‖e‖p‖ω‖q and repeat the argument above. �

Finally we consider the case of p = . Let

(H)′ f ∞ < 
D′ , I∞(k) < 

D
, k = , , . . . , m;

(H)′ f (t, x) ≤ d
D′ , Ik(t, x) ≤ d

D
(k = , , . . . , m) for (t, x) ∈ J × [, d],

where

D′ = γ γ‖ω‖.

Corollary . Assume that (H)-(H), (H)′, (H), and (H)′ hold. Then problem (.) has
at least three positive solutions x, x, and x such that

‖x‖ < d, a < β(x), and x > d with β(x) < a.
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Proof Set

c′ > max

{
D′η

 – D′σ ′ ,
Dη

 – Dσ
,

a
δ∗

}

,

where  < σ ′ < 
D′ . Then, for x ∈ K̄c′ , it follows from (.), (.), and (.) that

(Tx)(t) =
∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)

≤
∫ 



∫ 


γγ e(τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +


 – ν

m∑

k=

Ik
(
tk , x(tk)

)

≤
∫ 



∫ 


γγ e(τ )ω(τ )(σx + η) dτ ds +


 – ν

m∑

k=

(σx + η)

≤
∫ 



∫ 


γγ e(τ )ω(τ )

(
σ‖x‖ + η

)
dτ ds +


 – ν

m∑

k=

(
σ‖x‖ + η

)

≤ γγ
(
σ c′ + η

)
∫ 


ω(τ ) dτ +

m
 – ν

(
σc′ + η

)

≤ γγ
(
σ c′ + η

)‖ω‖ +
m

 – ν

(
σc′ + η

)

<
c′


+

c′


= c′,

which shows that Tx ∈ Kc′ .
Hence, we have shown that if (H)′ holds, then T maps K̄c′ into Kc′ .
If x ∈ K̄d , then it follows from (H)′ that

(Tx)(t) =
∫ 



∫ 


H(t, s)H(s, τ )ω(τ )f

(
τ , x(τ )

)
dτ ds +

m∑

k=

H ′
s(t, tk)Ik

(
tk , x(tk)

)

≤
∫ 



∫ 


γγ e(τ )ω(τ )

d
D′ dτ ds +


 – ν

m∑

k=

d
D

≤ γγ
d

D′

∫ 


ω(τ ) dτ +


 – ν

m∑

k=

d
D

= d.

Similar to the proof of Theorem ., one can find the results of Corollary .. �

We remark that the condition (H) in Theorem . can be replaced by the following
condition:

(H)′′ f d
 ≤ 

D , Id
 (k) ≤ 

D
, k = , , . . . , m, where

f d
 = max

{

max
t∈J

f (t, x)
d

: x ∈ [, d]
}

, Id
 (k) = max

{

max
t∈J

Ik(t, x)
d

: x ∈ [, d]
}

.

(H)′′′ f  ≤ 
D , I(k) ≤ 

D
, k = , , . . . , m.
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Corollary . If the condition (H) in Theorem . is replaced by (H)′′ or (H)′′′, respec-
tively, then the conclusion of Theorem . also holds.

Proof It follows from the proof of Theorem . that Corollary . holds. �

Remark . Comparing with Zhang and Ge [], the main features of this paper are as
follows.

(i) Triple positive solutions are available.
(ii) Ik �=  (k = , , . . . , m) is considered.

(iii) ω(t) is Lp-integrable, not only ω(t) ∈ C(, ) for t ∈ J .

4 Example
To illustrate how our main results can be used in practice, we present an example.

Example . Let δ = 
 , m = , t = 

 , p = . It follows from p =  that q = ∞. Consider the
following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x()(t) = ω(t)f (t, x(t)),  < t < , t �= 
 ,

�x|t= 


= I( 
 , x( 

 )),
�x′|t= 


= ,

x() =
∫ 

 g(s)x(s) ds, x′() = ,
x′′() =

∫ 
 h(s)x′′(s) ds, x′′′() = ,

(.)

where ω(t) = t +  ∈ L[, ], g(t) = h(t) = t, I(t, x) = tx
δ

,

f (t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
 , t ∈ J , x ∈ [, d],
d

 × a–x
a–d + a x–d

a–d , t ∈ J , x ∈ [d, a],
a, t ∈ J , x ∈ [a, a

δ∗ ],
a + t

√
x – a

δ∗ , t ∈ J , x ∈ [ a
δ∗ ,∞).

Thus it is easy to see by calculating that ω(t) ≥ n =  for a.e. t ∈ J , and

μ =
∫ 


h(t) dt =




, ν =
∫ 


g(t) dt =




,

γ =


 – μ
= , γ =


 – ν

= , δ =



, δ∗ =



.

Therefore, it follows from the definitions ω, f , I, g , and h that (H)-(H) hold.
On the other hand, it follows from ω(t) = t +  and e(t) = t that

‖ω‖ =
∫ 


(t + ) dt = , ‖e‖q = ‖e‖∞ = lim

q→∞

(∫ 


tq dt

) 
q

= lim
q→∞

(


q + 

) 
q

= .

Thus, we have

D = γ γ‖ω‖‖e‖∞ = , D =
m

 – μ
= ,


D

=



,


D

=



.
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Choosing  < d < a < a ≤ c, we have

f ∞ =  <



=


D

, I∞() =



<



=


D
,

f (t, x) = a > a =
a

δ( – δ)n
, ∀(t, x) ∈

[



,



]

× [a, a],

f (t, x) =
d


<

d


=


D
, I(t, x) ≤ d


<

d


=
d

D
, ∀(t, x) ∈ J × [, d],

which shows that (H)-(H) hold.
By Corollary ., problem (.) has at least three positive solutions x, x, and x such

that

‖x‖ < d, a < β(x), and x > d with β(x) < a.

Remark . In Example ., we consider the norm of L∞[, ], which is different from
that used in [, , , ].

Competing interests
The authors declare that they have no competing interests.

Authors? contributions
All results belong to YZ and XZ. All authors read and approved the final manuscript.

Acknowledgements
This work is sponsored by the project NSFC (11301178) and the Fundamental Research Funds for the Central Universities
(2014ZZD10, 2014MS58). The authors are grateful to anonymous referees for their constructive comments and
suggestions, which have greatly improved this paper.

Received: 2 June 2014 Accepted: 5 December 2014

References
1. Yan, J: Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model. J. Math.

Anal. Appl. 279, 111-120 (2003)
2. Yan, J: Existence of positive periodic solutions of impulsive functional differential equations with two parameters.

J. Math. Anal. Appl. 327, 854-868 (2007)
3. Agarwal, RP, O?Regan, D: Multiple nonnegative solutions for second order impulsive differential equations. Appl.

Math. Comput. 114, 51-59 (2000)
4. Nieto, JJ, López, RR: Boundary value problems for a class of impulsive functional equations. Comput. Math. Appl. 55,

2715-2731 (2008)
5. Zhang, X, Feng, M: Transformation techniques and fixed point theories to establish the positive solutions of second

order impulsive differential equations. J. Comput. Appl. Math. 271, 117-129 (2014)
6. Ding, W, Han, M: Periodic boundary value problem for the second order impulsive functional differential equations.

Appl. Math. Comput. 155, 709-726 (2004)
7. Lin, X, Jiang, D: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive

differential equations. J. Math. Anal. Appl. 321, 501-514 (2006)
8. Liu, B, Yu, J: Existence of solution ofm-point boundary value problems of second-order differential systems with

impulses. Appl. Math. Comput. 125, 155-175 (2002)
9. Feng, M: Positive solutions for a second-order p-Laplacian boundary value problem with impulsive effects and two

parameters. Abstr. Appl. Anal. (2014). doi:10.1155/2014/534787
10. Feng, M, Du, B, Ge, W: Impulsive boundary value problems with integral boundary conditions and one-dimensional

p-Laplacian. Nonlinear Anal. TMA 70, 3119-3126 (2009)
11. Ma, R, Yang, B, Wang, Z: Positive periodic solutions of first-order delay differential equations with impulses. Appl.

Math. Comput. 219, 6074-6083 (2013)
12. Zhang, X, Feng, M, Ge, W: Existence of solutions of boundary value problems with integral boundary conditions for

second-order impulsive integro-differential equations in Banach spaces. J. Comput. Appl. Math. 233, 1915-1926
(2010)

13. Ding, W, Wang, Y: New result for a class of impulsive differential equation with integral boundary conditions.
Commun. Nonlinear Sci. Numer. Simul. 18, 1095-1105 (2013)

14. Infante, G, Pietramala, P, Zima, M: Positive solutions for a class of nonlocal impulsive BVPs via fixed point index. Topol.
Methods Nonlinear Anal. 36, 263-284 (2010)

http://dx.doi.org/10.1155/2014/534787


Zhou and Zhang Boundary Value Problems  (2015) 2015:2 Page 13 of 14

15. Jankowski, T: Positive solutions for second order impulsive differential equations involving Stieltjes integral
conditions. Nonlinear Anal. TMA 74, 3775-3785 (2011)

16. Liu, Y, O?Regan, D: Multiplicity results using bifurcation techniques for a class of boundary value problems of
impulsive differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 1769-1775 (2011)

17. Hao, X, Liu, L, Wu, Y: Positive solutions for second order impulsive differential equations with integral boundary
conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 101-111 (2011)

18. Sun, J, Chen, H, Yang, L: The existence and multiplicity of solutions for an impulsive differential equation with two
parameters via a variational method. Nonlinear Anal. TMA 73, 440-449 (2010)

19. Shen, J, Wang, W: Impulsive boundary value problems with nonlinear boundary conditions. Nonlinear Anal. TMA 69,
4055-4062 (2008)

20. Bai, L, Dai, B: Three solutions for a p-Laplacian boundary value problem with impulsive effects. Appl. Math. Comput.
217, 9895-9904 (2011)

21. Xu, J, Kang, P, Wei, Z: Singular multipoint impulsive boundary value problem with p-Laplacian operator. J. Appl. Math.
Comput. 30, 105-120 (2009)

22. Ning, P, Huan, Q, Ding, W: Existence result for impulsive differential equations with integral boundary conditions.
Abstr. Appl. Anal. (2013). doi:10.1155/2013/134691

23. Sun, J, Wang, X: Monotone positive solutions for an elastic beam equation with nonlinear boundary conditions.
Math. Probl. Eng. (2011). doi:10.1155/2011/609189

24. Yao, Q: Positive solutions of nonlinear beam equations with time and space singularities. J. Math. Anal. Appl. 374,
681-692 (2011)

25. Yao, Q: Local existence of multiple positive solutions to a singular cantilever beam equation. J. Math. Anal. Appl. 363,
138-154 (2010)

26. O?Regan, D: Solvability of some fourth (and higher) order singular boundary value problems. J. Math. Anal. Appl.161,
78-116 (1991)

27. Wei, Z: A class of fourth order singular boundary value problems. Appl. Math. Comput. 153, 865-884 (2004)
28. Yang, B: Positive solutions for the beam equation under certain boundary conditions. Electron. J. Differ. Equ. 2005, 78

(2005)
29. Zhang, X: Existence and iteration of monotone positive solutions for an elastic beam equation with a corner.

Nonlinear Anal., Real World Appl. 10, 2097-2103 (2009)
30. Gupta, GP: Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 26, 289-304

(1988)
31. Anderson, DR, Avery, RI: A fourth-order four-point right focal boundary value problem. Rocky Mt. J. Math. 36(2),

367-380 (2006)
32. Graef, JR, Yang, B: On a nonlinear boundary value problem for fourth order equations. Appl. Anal. 72, 439-448 (1999)
33. Agarwal, RP: On fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2, 91-110 (1989)
34. Davis, J, Henderson, J: Uniqueness implies existence for fourth-order Lidstone boundary value problems. Panam.

Math. J. 8, 23-35 (1998)
35. Kosmatov, N: Countably many solutions of a fourth order boundary value problem. Electron. J. Qual. Theory Differ.

Equ. 2004, 12 (2004)
36. Zhang, X, Feng, M, Ge, W: Symmetric positive solutions for p-Laplacian fourth order differential equation with integral

boundary conditions. J. Comput. Appl. Math. 222, 561-573 (2008)
37. Bai, Z, Huang, B, Ge, W: The iterative solutions for some fourth-order p-Laplace equation boundary value problems.

Appl. Math. Lett. 19, 8-14 (2006)
38. Liu, X, Li, W: Existence and multiplicity of solutions for fourth-order boundary values problems with parameters.

J. Math. Anal. Appl. 327, 362-375 (2007)
39. Bonanno, G, Bella, B: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 343,

1166-1176 (2008)
40. Ma, R, Wang, H: On the existence of positive solutions of fourth-order ordinary differential equations. Appl. Anal. 59,

225-231 (1995)
41. Han, G, Xu, Z: Multiple solutions of some nonlinear fourth-order beam equations. Nonlinear Anal. TMA 68, 3646-3656

(2008)
42. Zhang, X, Ge, W: Symmetric positive solutions of boundary value problems with integral boundary conditions. Appl.

Math. Comput. 219, 3553-3564 (2012)
43. Zhai, C, Song, R, Han, Q: The existence and the uniqueness of symmetric positive solutions for a fourth-order

boundary value problem. Comput. Math. Appl. 62, 2639-2647 (2011)
44. Zhang, X, Feng, M, Ge, W: Existence results for nonlinear boundary-value problems with integral boundary conditions

in Banach spaces. Nonlinear Anal. TMA 69, 3310-3321 (2008)
45. Zhang, X, Ge, W: Positive solutions for a class of boundary-value problems with integral boundary conditions.

Comput. Math. Appl. 58, 203-215 (2009)
46. Zhang, X, Liu, L: A necessary and sufficient condition of positive solutions for fourth order multi-point boundary

value problem with p-Laplacian. Nonlinear Anal. TMA 68, 3127-3137 (2008)
47. Aftabizadeh, AR: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl.

116, 415-426 (1986)
48. Kang, P, Wei, Z, Xu, J: Positive solutions to fourth-order singular boundary value problems with integral boundary

conditions in abstract spaces. Appl. Math. Comput. 206, 245-256 (2008)
49. Xu, J, Yang, Z: Positive solutions for a fourth order p-Laplacian boundary value problem. Nonlinear Anal. TMA 74,

2612-2623 (2011)
50. Webb, JRL, Infante, G, Franco, D: Positive solutions of nonlinear fourth-order boundary value problems with local and

non-local boundary conditions. Proc. R. Soc. Edinb. 138, 427-446 (2008)
51. Ma, H: Symmetric positive solutions for nonlocal boundary value problems of fourth order. Nonlinear Anal. TMA 68,

645-651 (2008)
52. Zhang, X, Liu, L: Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator.

J. Math. Anal. Appl. 336, 1414-1423 (2007)

http://dx.doi.org/10.1155/2013/134691
http://dx.doi.org/10.1155/2011/609189


Zhou and Zhang Boundary Value Problems  (2015) 2015:2 Page 14 of 14

53. Feng, M: Multiple positive solutions of four-order impulsive differential equations with integral boundary conditions
and one-dimensional p-Laplacian. Bound. Value Probl. (2011). doi:10.1155/2011/654871

54. Cabada, A, Tersian, S: Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive
differential equations. Bound. Value Probl. 2014, 105 (2014)

55. Afrouzi, G, Hadjian, A, Radulescu, V: Variational approach to fourth-order impulsive differential equations with two
control parameters. Results Math. (2013). doi:10.1007/s00025-013-0351-5

56. Sun, J, Chen, H, Yang, L: Variational methods to fourth-order impulsive differential equations. J. Appl. Math. Comput.
35, 323-340 (2011)

57. Xie, J, Luo, Z: Solutions to a boundary value problem of a fourth-order impulsive differential equation. Bound. Value
Probl. 2013, 154 (2013)

58. Zhang, X, Feng, M: Positive solutions for classes of multi-parameter fourth-order impulsive differential equations with
one-dimensional singular p-Laplacian. Bound. Value Probl. 2014, 112 (2014)

59. Ding, Y, O?Regan, D: Positive solutions for a second-orderp-Laplacian impulsive boundary value problem. Adv. Differ.
Equ. (2012). doi:10.1186/1687-1847-2012-159

60. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
61. Feng, M, Ji, D, Ge, W: Positive solutions for a class of boundary value problem with integral boundary conditions in

Banach spaces. J. Comput. Appl. Math. 222, 351-363 (2008)
62. Leggett, R, Williams, L: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ.

Math. J. 28, 673-688 (1979)

http://dx.doi.org/10.1155/2011/654871
http://dx.doi.org/10.1007/s00025-013-0351-5
http://dx.doi.org/10.1186/1687-1847-2012-159

	Triple positive solutions of fourth-order impulsive differential equations with integral boundary conditions
	Abstract
	Keywords

	Introduction
	Preliminaries
	Existence of triple positive solutions to (1.1)
	Example
	Competing interests
	Authors' contributions
	Acknowledgements
	References


