
Tan Boundary Value Problems  (2015) 2015:4 
DOI 10.1186/s13661-014-0267-3

R E S E A R C H Open Access

A free boundary problem arising in the
ecological models with N-species
Qi-Jian Tan*

*Correspondence:
tanqjxxx@163.com
Department of Mathematics,
Chengdu Normal University,
Chengdu, 611130, P.R. China

Abstract
This paper is concerned with the one-dimensional free boundary problem for
quasilinear reaction-diffusion systems arising in the ecological models with N-species,
where some of the species are made up of two separated groups and the mankind?s
influence is taken into account. In the problem under consideration, there are n free
boundaries, the coefficients of the equations are allowed to be discontinuous on the
free boundaries and the reaction functions are mixed quasimonotone. The aim is to
show the local existence of the solutions for the free boundary problem by the fixed
point method, and the global existence and uniqueness of the solutions for the
corresponding diffraction problem by the approximation and estimate methods.
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1 Introduction
For some animal species, different groups may live in different habitats separated by free
boundaries (see []). For the case of one-species and one-dimensional, Kim and Lin []
proposed a model to describe the evolution of the free boundary. In this paper, we consider
the one-dimensional ecological models with N-species where the mankind?s influence is
taken into account. Assume that there are N species sharing the same habitat, the one-
dimensional domain (, d). For some  ≤ n ≤ N , assume further that each of the n species
is divided into two groups, whereas each of the rest of N – n species has a single group.

To describe the free boundary problem, we introduce some notations:
QT := (, d) × (, T] is the open rectangle (and upper horizontal line).
Q̄T is the entire closed rectangle.
ST is made up of the closed left and right boundaries of QT .
�l

T := {(x, t) : x = ϕl(t),  ≤ t ≤ T} is the free boundary for species l, l ∈ {, . . . , n}.
Ql–

T := {(x, t) :  < x < ϕl(t),  < t ≤ T}, Ql+
T := {(x, t) : ϕl(t) < x < d,  < t ≤ T} are the

subdomains of QT separated by �l
T , l ∈ {, . . . , n}.

Qk,T := {(x, t) : ϕk–(t) < x < ϕk(t),  < t ≤ T} is the region between consecutive
boundaries, k ∈ {, . . . , n + }, where ϕ(t) ≡ , ϕn+(t) ≡ d for  ≤ t ≤ T .

Let ul = ul(x, t) be the population density of the lth species. For any l ∈ {, . . . , n}, the
diffusion coefficients of the lth species in Ql–

T , Ql+
T are positive constants âl and ãl , respec-

tively. For any l ∈ {n + , . . . , N}, the diffusion coefficient of the lth species in the whole
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domain QT is positive constant al . Then Fick?s law shows that the flux of the population
density can be represented as

J l =

⎧
⎪⎨

⎪⎩

–âlul
x ((x, t) ∈ Ql–

T ), l = , . . . , n,
–ãlul

x ((x, t) ∈ Ql+
T ), l = , . . . , n,

–alul
x ((x, t) ∈ QT ), l = n + , . . . , N .

Assume that for each l ∈ {, . . . , N}, harvesting rate or stocking rate for the lth species
depends on its density and flux. Using the principle of conservation, we conclude that the
vector functions u = (u, . . . , uN ) and ϕ = (ϕ, . . . ,ϕn) are governed by quasilinear reaction-
diffusion equations

ul
t =

{
âlul

xx + b̂l(ul)ul
x + Gl(x, t, u) ((x, t) ∈ Ql–

T ),
ãlul

xx + b̃l(ul)ul
x + Gl(x, t, u) ((x, t) ∈ Ql+

T ),
l = , . . . , n, (.a)

ul
t = alul

xx + bl(ul)ul
x + Gl(x, t, u)

(
(x, t) ∈ QT

)
, l = n + , . . . , N , (.b)

where b̂i(ui)ui
x, b̃i(ui)ui

x (i = , . . . , n) and bj(uj)uj
x (j = n + , . . . , N ) represent the mankind?s

influence, and Gl(x, t, u) (l = , . . . , N ) are the reaction functions defined by (see the exam-
ple in Section )

Gl(x, t, u) := gl
k(u)

(
(x, t) ∈ Qk,T , k = , . . . , n + 

)
.

Here and below,

ul
t := ∂ul/∂t, ul

x := ∂ul/∂x, ul
xx := ∂ul/∂x.

On the parabolic boundary, u is required to satisfy the condition

ul = ψ l(x, t)
(
(x, t) ∈ ST ∪ (

[, d] × {})), l = , . . . , N . (.)

For each l ∈ {, . . . , n}, on the free boundary �l
T , assume that the density and the flux are

continuous (see []). By the conservation law of population, the rate of increase of popula-
tion ϕl

t(t)ul–(ϕl(t), t) is equal to the flux –âlul–
x (ϕl(t), t), where ul–(ϕl(t), t) and ul+(ϕl(t), t)

represent the limits of ul from left and right for the space variable, respectively. Then u
and ϕ are required to satisfy the free boundary conditions

{
ul–(ϕl(t), t) = ul+(ϕl(t), t),
âlul–

x (ϕl(t), t) = ãlul+
x (ϕl(t), t) (t ∈ [, T]), l = , . . . , n,

(.)

ϕl() = dl, ϕl
t(t)ul–(

ϕl(t), t
)

= –âlul–
x

(
ϕl(t), t

) (
t ∈ [, T]

)
, l = , . . . , n. (.)

Condition (.) is used to describe the rates of change of the free boundaries.
The motivation to deal with problem (.a)-(.) are some real processes. For example,

consider -species system with two predators and two preys, where two predator species
comprise two groups of wolves and two groups of lions, two prey species comprise a herd
of sheep and a herd of horses, and four species share the same habitat. In each of predator
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species, the two groups live in different habitats separated by a free boundary and have
different diffusion coefficients and biological habits. Then this ecological system can be
described by problem (.a)-(.).

The aim of this paper is to investigate: (i) the global existence and uniqueness of the
solutions for diffraction problem (.a)-(.); (ii) the local existence of the solutions for
problem (.a)-(.).

The free boundary problems often appear in different fields, such as physics, ecology
and chemistry. They have been investigated extensively in the literature (see [–] and
the references therein). For the free boundary problems of single equations, the linear
problems describing the flow of fluids in a one-dimensional porous medium were studied
by Kamynin [] and Evans and Friedman [–], and the quasilinear problem was studied
by Liang []. The work in [] is concerned with the other quasilinear problem describing
ecological model with one-species. For the free boundary problems of parabolic systems,
Mimura et al. [], Ling et al. [] and Lin [] investigated the problems arising from two-
species models in ecology, where the number of the free boundaries is one and the condi-
tions on the free boundary are Stefan conditions. In this paper, there are n free boundaries
in problem (.a)-(.) and the vector functions gi(u) := (g

i (u), . . . , gN
i (u)), i = , . . . , n, are

mixed quasimonotone.
Since for any given ϕ(t), problem (.a)-(.) is a diffraction problem, we must first in-

vestigate the corresponding diffraction problem. In the study of diffraction problem, �i
T ,

i = , . . . , n, are called inner boundaries. The papers in [–] are concerned with the
diffraction problems of parabolic systems with the inner boundaries in the special form
{x : ϕk(x) = } × [, T], k = , . . . , K , where ϕk(x) ∈ C+α . In this paper, by the approxi-
mation and estimate methods, we show the existence and uniqueness of the solutions
for diffraction problem (.a)-(.) with the inner boundaries in the form �i

T : x = ϕi(t),
i = , . . . , n, where ϕi(t) ∈ W 

 (, T).
The rest of this paper is organized as follows. In Section , we state the notations, defi-

nitions, hypotheses and main results. Section  is devoted to investigating the global ex-
istence and uniqueness of the solutions for the corresponding diffraction problem (.a)-
(.). Section  is concerned with the local existence of solutions for the free boundary
problem (.a)-(.) by Schauder?s fixed point theorem. Finally, in Section we give an
example.

2 The notations, hypotheses and main results
Fist, let us define some basic function spaces (see [])

W 
p(D) :=

{
v(x) : v, vx ∈ Lp(D)

}
(p ≥ ),

W ,
 (QT ) :=

{
u(x, t) : u, ux ∈ L(QT )

}
,

W ,
 (QT ) :=

{
u(x, t) : u, ux, ut ∈ L(QT )

}
,

equipped with the norms

‖v‖W 
p (D) := ‖v‖Lp(D) + ‖vx‖Lp(D),

‖u‖W ,
 (QT ) := ‖u‖L(QT ) + ‖ux‖L(QT ),
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‖u‖W ,
 (QT ) := ‖u‖L(QT ) + ‖ux‖L(QT ) + ‖ut‖L(QT ),

respectively, where D ⊂R is an arbitrary interval.
V(QT ) is the Banach space consisting of all elements of W ,

 (QT ) having a finite norm

‖v‖V(QT ) := ess sup
≤t≤T

‖v‖L(,d) + ‖vx‖L(QT ).

V ,
 (QT ) is the Banach space consisting of all elements of V(QT ) that are continuous in t

in the norm of L(, d) with a finite norm

‖v‖V ,
 (QT ) := max

≤t≤T
‖v‖L(,d) + ‖vx‖L(QT ).

◦
W ,

 (QT ) is the set of all functions in W ,
 (QT ) that vanish on ST in the sense of trace. We

write H(, d) := W 
 (, d).

Cα(Q̄T ) is the spaces of Hölder continuous functions in Q̄T with exponent α ∈ (, ).
The product function spaces with N-components of W ,

 (QT ), V(QT ), V ,
 (QT ) and

Cα(Q̄T ) are denoted by W,
 (QT ), V(QT ), V,

 (QT ) and Cα(Q̄T ), respectively, and the
product function spaces with n-components of W 

p(, T), Lp(, T) and Cα([, T]) are de-
noted by W

p(, T), Lp(, T) and Cα([, T]), respectively. We note that the norm of ϕ(t) in
Lp([, T]) is defined by

‖ϕ‖Lp([,T]) :=
∥
∥ϕ∥∥

Lp([,T]) + · · · +
∥
∥ϕn∥∥

Lp([,T]).

Let us recall the following definition. Write the vector u in the split form

u =
(
ul, [u]ρl , [u]ωl

)
,

and rewrite the functions f l as

f l(x, t, u) = f l(x, t, ul, [u]ρl , [u]ωl
)
, l = , . . . , N ,

where ρ l , ωl are two nonnegative integers such that ρ l + ωl = N –  and [u]σ denotes a
vector with σ number of component of u. The split form of u varies with respect to l and
is determined by the quasimonotone property of f l given as follows.

Definition . (see []) The vector function f(·, u) := (f (·, u), . . . , f N (·, u)) is said to be
mixed quasimonotone in J ⊂ R

N with index vector ([u]ρ ; . . . ; [u]ρN ) if for each l =
, . . . , N , there exist nonnegative integers 
l , ωl , satisfying the relation

ρ l + ωl = N – ,

such that f l(·, ul, [u]ρl , [u]ωl ) is nondecreasing in [u]
l and is nonincreasing in [u]ωl for all
u ∈ J .

Throughout the paper we make the following hypotheses:
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(H)
(i) di, i = , . . . , n, are constants satisfying the relation  < d < · · · < dn < d. ψ l(x, t),

l = , . . . , N , are all positive functions, and they possess the following properties: for
some constants α ∈ (, ) and χ ∈ (, min{d, d – dn}),

ψ l(x, t) ∈ Cα
(
[–χ, d + χ] × [, T]

) ∩ W ,


(
(–χ, d + χ) × (, T)

)
,

ψ l(x, t) ∈ C+α
(
[–χ,χ] × [, T]

) ∩ C+α
(
[d – χ, d + χ] × [, T]

)
,

l = , . . . , N ,

ψ i(x, ) ∈ H(, d) ∩ C+α
([

, di]) ∩ C+α
([

di, d
])

, i = , . . . , n,

ψ j(x, ) ∈ C+α
(
[, d]

)
, j = n + , . . . , N ,

and

âiψ i–
x

(
di, 

)
= ãiψ i+

x
(
di, 

)
, i = , . . . , n.

(ii) There exist constant vectors M := (M, . . . , MN ) and m := (m, . . . , mN ),  < m ≤ M,
such that for each l = , . . . , N ,

⎧
⎪⎨

⎪⎩

gl
k(Ml, [M]
l , [m]ωl ) ≤ ,

gl
k(ml, [m]
l , [M]ωl ) ≥ , k = , . . . , n + ,

ml < ψ l(x, t) < Ml ((x, t) ∈ ST ∪ {� × {}}),
(.)

where the component [u]
l is independent of k. Let

S :=
{

u ∈ C(Q̄T ) : m ≤ u ≤ M
}

.

The vector functions gk(u) = (g
k(u), . . . , gN

k (u)), k = , . . . , n + , are mixed
quasimonotone in S with the same index vector ([u]ρ ; . . . ; [u]ρN ).

(iii) b̂i(ui), b̃i(ui), bj(uj) ∈ C+α (R), i = , . . . , n, j = n + , . . . , N , and gl
k(u) ∈ C+α (S ),

k = , . . . , n + , l = , . . . , N . There exists a positive nondecreasing function μ(θ ) for
θ ∈ [, +∞) such that

{
|b̂i(ui), b̃i(ui)| ≤ μ(|ui|), i = , . . . , n,
|bj(uj)| ≤ μ(|uj|), j = n + , . . . , N .

(.)

Hypothesis (H)(i) implies that there exists a positive constant μ such that

∥
∥ψ l(x, t)

∥
∥

Cα (Q̄T ) +
∥
∥ψ l(x, t)

∥
∥

W ,
 (QT ) +

∥
∥ψ l(x, )

∥
∥

H(,d)

+
∥
∥ψ l

x(x, )
∥
∥

C([,δ]) +
∥
∥ψ l

x(x, )
∥
∥

C([d–δ,d]) +
∥
∥ψ l(x, t)

∥
∥

C+α ([,χ]×[,T])

+
∥
∥ψ l(x, t)

∥
∥

C+α ([d–χ,d]×[,T]) ≤ μ, l = , . . . , N , (.)

where δ := mini=,...,n+(di – di–), d =  and dn+ = d. Hypothesis (H)(ii) is used to guar-
antee the existence of the coupled weak upper and lower solutions for the approximation
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problem of (.a)-(.). (H)(iii) shows that on QT the coefficients of the equations are al-
lowed to be discontinuous, but on Qk,T the reaction functions are required to be indepen-
dent of (x, t) and have Hölder continuous derivatives with respect to u, and on Ql–

T and Ql+
T

the remaining coefficients of the lth equation are also required to be independent of (x, t)
and have Hölder continuous derivatives with respect to u.

For convenience, let

Al(x, t) :=

⎧
⎪⎨

⎪⎩

âl ((x, t) ∈ Ql–
T ), l = , . . . , n,

ãl ((x, t) ∈ Ql+
T ), l = , . . . , n,

al ((x, t) ∈ QT ), l = n + , . . . , N ,

and

Bl(x, t, ul) :=

⎧
⎪⎨

⎪⎩

b̂l(ul) ((x, t) ∈ Ql–
T ), l = , . . . , n,

b̃l(ul) ((x, t) ∈ Ql+
T ), l = , . . . , n,

bl(ul) ((x, t) ∈ QT ), l = n + , . . . , N .

Definition . For a given ϕ(t) ∈ W
(, T), a vector function u(x, t) is said to be a solution

of diffraction problem (.a)-(.) corresponding to ϕ(t) if (i) For each l = , . . . , N , ul ∈
Cα,α/(Q̄T ) for some  < α < , ul ∈ V ,

 (QT ), Al(x, t)ul
x ∈ V(QT ), ul

t ∈ L(QT ), and ul ∈
C+α,+α/(Q̄′) for any given k ∈ {, . . . , n + } and any given subdomain Q′, Q̄′ ⊂ Qk,T ; (ii) u
satisfies pointwise the equations in (.a) and (.b) for (x, t) ∈ Qk,T (k = , . . . , n + ) and
the parabolic boundary condition (.), and satisfies the inner boundary condition (.)
for almost all t ∈ [, T]; (iii) For any vector function η = (η, . . . ,ηN ) ∈ ◦

W,
 (QT ) and any

τ ∈ [, T], the following equalities hold:

∫ d


ulηl dx

∣
∣
∣
τ


+

∫∫

Qτ

{
–ulηl

t + Al(x, t)ul
xη

l
x –

[
Bl(x, t, ul)ul

x + Gl(x, t, u)
]
ηl}dx dt

= , l = , . . . , N . (.)

Definition . {u(x, t),ϕ(t)} is said to be a solution of problem (.a)-(.) if (i) u is a
solution of diffraction problem (.a)-(.) corresponding to ϕ(t); (ii) ϕ(t) is in C+α((, T]),
and (.) holds for t ∈ (, T].

Throughout the paper, α, α, C(· · · ) and Cj(· · · ) (j = , , . . .) denote constants depend-
ing only on T , d, di, /mi, Mi (i = , . . . , n), μ(|M|), μ, and the quantities appearing in
parentheses. Constant C in different expressions may be different.

The main results in this paper are the following theorems.

Theorem . Let hypothesis (H) be satisfied.
(i) If ϕ is in W

(, T) and satisfies

ϕ() =
(
d, . . . , dn), min

i=,...,n+
min

t∈[,T]

{
ϕi(t) – ϕi–(t)

} ≥ δ >  (.)

for some δ > , then the corresponding diffraction problem (.a)-(.) has a unique solution
u in S . Moreover, the following estimates hold:

∥
∥ul∥∥

Cα,α/(Q̄T ) ≤ C ( < α < ), (.)
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∥
∥ul∥∥

V ,
 (QT ) ≤ C(/δ), (.)

ess sup
≤t≤T

∥
∥ul

x
∥
∥

L(,d) +
∥
∥ul

t
∥
∥

L(QT ) +
∥
∥
(
A(x, t)ul

x
)

x

∥
∥

L(QT )

≤ C
(
/δ,‖ϕt‖L(,T)

)
, (.)

∥
∥ul

x
∥
∥

L∞,(QT ) ≤ C
(
/δ,‖ϕt‖L(,T)

)
, l = , . . . , N . (.)

(ii) If ϕ, ϕ are in W
(, T) and satisfy (.), and if u, u are the solutions in S corre-

sponding to ϕ and ϕ, respectively, then

∥
∥ul

 – ul

∥
∥

V ,
 (QT ) ≤ C‖ϕ – ϕ‖L(,T), (.)

∥
∥ul

 – ul

∥
∥

L∞,(QT ) ≤ C‖ϕ – ϕ‖L(,T), l = , . . . , N . (.)

(iii) If ϕ is in C((, T]) and u is the solution in S , then for any given t ∈ (, T) and any
given l ∈ {, . . . , n}, ul

x(x, t) and ul
t(x, t) are continuous with respect to x in [ϕl(t) – δ/,ϕl(t)]

and in [ϕl(t),ϕl(t) + δ/] for almost all t ∈ [t, T], and ul
xt is square integrable in Ql(δ, t),

where Ql(δ, t) := {(x, t) : x ∈ (ϕl(t) – δ/,ϕl(t) + δ/), t ∈ (t, T)}.

Theorem . Let hypothesis (H) hold. Then there exist T >  and a pair of vector functions
u(x, t), ϕ(t), such that {u(x, t),ϕ(t)} is a solution to free boundary problem (.a)-(.).

3 The corresponding diffraction problem
Let ϕ(t) be given and let (.) hold for some δ > . The aim of this section is to prove
Theorem ..

3.1 An approximation problem
We will construct an approximation problem of (.a)-(.). We first construct some ap-
proximation functions.

For an arbitrary ε > , choose ϕε = (ϕ
ε(t), . . . ,ϕn

ε (t)) ∈ C([, T]) such that ϕε(t) → ϕ(t)
in W

(, T) as ε → . Then, for small enough ε,

‖ϕε‖W
(,T) ≤ ‖ϕ‖W

(,T) + . (.)

Let sε = sε(θ ) be a smooth function with values between  and  such that |dsε(θ )/dθ | ≤
C/ε for all θ ∈R, sε(θ ) =  for θ ≤  and sε(θ ) =  for θ ≥ ε, and let

zε,k(x, t) :=

⎧
⎪⎨

⎪⎩

∏n
τ= sε(x – ϕτ

ε (t)) ((x, t) ∈ QT ), k = ,
∏n

ϑ=[ – sε(x – ϕϑ
ε (t))] ((x, t) ∈ QT ), k = n + ,

∏n
τ=k sε(x – ϕτ

ε (t))
∏k–

ϑ=[ – sε(x – ϕϑ
ε (t))] ((x, t) ∈ QT ), k = , . . . , n.

Define

Al
ε(x, t) :=

{
âlsε(x – ϕl

ε(t)) + ãl[ – sε(x – ϕl
ε(t))] ((x, t) ∈ QT ), l = , . . . , n,

al ((x, t) ∈ QT ), l = n + , . . . , N ,
(.)

Bl
ε

(
x, t, ul) :=

⎧
⎪⎨

⎪⎩

b̂l(ul)sε(x – ϕl
ε(t)) + b̃l(ul)[ – sε(x – ϕl

ε(t))]
((x, t) ∈ QT ), l = , . . . , n,

bl(ul) ((x, t) ∈ QT ), l = n + , . . . , N ,
(.)



Tan Boundary Value Problems  (2015) 2015:4 Page 8 of 24

and

Gl
ε(x, t, u) :=

n+∑

k=

gl
k(u)zε,k(x, t)

(
(x, t) ∈ QT

)
, l = , . . . , N .

Then according to hypothesis (H)(ii) and (iii), it follows that the vector function Gε(·, u) =
(G

ε(·, u), . . . , GN
ε (·, u)) is mixed quasimonotone in S with index vector ([u]ρ ; . . . ; [u]ρN ),

and

Al
ε(x, t) ∈ C+α (Q̄T ), Bl

ε

(
x, t, ul) ∈ C+α (Q̄T ×R),

Gl
ε(x, t, u) ∈ C+α (Q̄T × S ),

(.)

ν ≤ Al
ε(x, t) ≤ C, Bl

ε

(
x, t, ul)| ≤ μ

(∣
∣ul∣∣

)
, (.)

∣
∣Gl

ε(x, t, u)
∣
∣ ≤ C

(
(x, t) ∈ Q̄T , u ∈ S

)
, l = , . . . , N , (.)

where ν := mini=,...,n,j=n+,...,N {âi, ãi, aj}. The definition of function sε(θ ) implies that

Al
ε(x, t) =

{
âl (x – ϕl

ε(t) ≤ ),
ãl (x – ϕl

ε(t) ≥ ε),
(.)

Bl
ε

(
x, t, ul) =

{
b̂l(ul) (x – ϕl

ε(t) ≤ ),
b̃l(ul) (x – ϕl

ε(t) ≥ ε),
l = , . . . , n. (.)

In addition, it is obvious from (.) that

k⋃

τ=

Q̄τ ,T – �k
T =

{
(x, t) : x – ϕk(t) < 

} ∩ Q̄T , (.)

where Q̄T , Q̄τ ,T are the closure of QT and Qτ ,T , respectively. Thus by (.) and the defini-
tion of functions zε,k(x, t), an argument similar to the one used in [, Lemma .] shows
that

n+∑

k=

zε,k(x, t) = 
(
(x, t) ∈ Q̄T

)
,

and

Gl
ε(x, t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gl
(u) if x – ϕ

ε(t) ≤ ,
gl

n+(u) if x – ϕn
ε (t) ≥ ε,

gl
k(u) if x – ϕk–

ε (t) ≥ ε and x – ϕk
ε (t) ≤ 

for some k ∈ {, . . . , n},
gl

k–(u)sε(x – ϕk–
ε (t)) + gl

k(u)[ – sε(x – ϕk–
ε (t))]

if  < x – ϕk–
ε (t) < ε for some k ∈ {, . . . , n}.

(.)

We next construct the approximation functions of ψ l(x, t). Let ω(|x|) be a sufficiently
smooth nonnegative function such that ω(|x|) =  for |x| ≥  and

∫

|x|≤ ω(x) dx = , and
let λ = λ(x) be a sufficiently smooth nonnegative function taking values in [, ] such that
λ(x) =  for δ ≤ x ≤ d – δ, λ(x) =  for x ≤ δ/ or x ≥ d – δ/, and λx(x) ≤ C/δ for all x ∈R.
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Define

ψ l
ε = ψ l

ε(x, t) :=
∫

|x–y|≤ε

ω
(|x – y|)( – λ(y)

)
ψ l(y, t) dy + λ(x)ψ l(x, t), l = , . . . , N .

Then hypothesis (H)(i) and [, Chapter II] imply that
{

ψ l
ε(x, t) ∈ Cα (Q̄T ) ∩ W ,

 (QT ), ψ l
ε(x, ) ∈ C+α ([, d]),

ψ l
ε(, t),ψ l

ε(d, t) ∈ C+α ([, T]), l = , . . . , N ,
(.)

and

ψ l
ε(x, t) → ψ l(x, t) in Cα (Q̄T ) and in W ,

 (QT ),

ψ l
ε(x, ) → ψ l(x, ) in H(, d),

and (.) and (.) imply that

ml ≤ ψ l
ε(x, t) ≤ Ml (

(x, t) ∈ ST ∪ {
� × {}}), (.)

∥
∥ψ l

ε(x, t)
∥
∥

Cα (Q̄T ) ≤ μ + , (.)
∥
∥ψ l

ε(x, t)
∥
∥

W ,
 (QT ) +

∥
∥ψ l

ε(x, )
∥
∥

H(,d) +
∥
∥ψ l

εx(x, )
∥
∥

C([,δ])

+
∥
∥ψ l

εx(x, )
∥
∥

C([d–δ,d]) ≤ C(/δ), l = , . . . , N . (.)

In addition, for ε < δ/,

ψ l
ε(x, t) = ψ l(x, t)

(
(x, t) ∈ {

[, δ/] ∪ [d – δ/]
} × [, T]

)
. (.)

Employing the above approximation functions, we consider the following approxima-
tion problem:

{
ul

t – (Al
ε(x, t)ul

x)x = Bl
ε(x, t, ul)ul

x + Gl
ε(x, t, u) ((x, t) ∈ QT ),

ul = ψ l
ε(x, t) ((x, t) ∈ ST ∪ ([, d] × {})), l = , . . . , N .

(.)

Lemma . Problem (.) has a unique classical solution uε in S , and the following es-
timates hold:

∥
∥ul

ε

∥
∥

Cα,α/(Q̄T ) ≤ C
(
α ∈ (, )

)
, (.)

∥
∥ul

ε

∥
∥

V ,
 (QT ) ≤ C(/δ), (.)

∣
∣ul

x(, t)
∣
∣ +

∣
∣ul

x(d, t)
∣
∣ ≤ C(/δ)

(
t ∈ [, T]

)
, (.)

max
[,T]

∥
∥ul

εx
∥
∥

L(,d) +
∥
∥ul

εt
∥
∥

L(QT ) +
∥
∥
(
Al

ε(x, t)ul
εx

)

x

∥
∥

L(QT ) ≤ C
(
/δ,‖ϕt‖L(,T)

)
, (.)

∥
∥ul

εx
∥
∥

L∞,(QT ) ≤ C
(
/δ,‖ϕt‖L(,T)

)
, l = , . . . , N , (.)

where constants α and C are independent of ε.

Proof In [], by using the method of upper and lower solutions, together with the as-
sociated monotone iterations and various estimates, we investigated the existence and
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uniqueness of the global piecewise classical solutions of the quasilinear parabolic system
with discontinuous coefficients and continuous delays under various conditions includ-
ing mixed quasimonotone property of reaction functions. The same problem was also
discussed for the system with continuous coefficients without time-delay.

It is obvious that problem (.) is the special case of [, problem (.)] without discon-
tinuous coefficients and time delays. Hypothesis (H)(ii) shows that ũ = M, û = m are the
coupled weak upper and lower solutions of (.) in the sense of [, Definition .]. By
(.)-(.) and (.)-(.), we conclude from [, Theorem .] that problem (.) has
a unique classical solution uε in S . Furthermore, using (.), (.), (.) and (.)-(.),
the proof similar to that of [, Lemma .] shows that estimates (.) and (.) hold.

To prove (.), we first fix l ∈ {, . . . , n}. In view of (.), (.), (.) and (.), we find
that ul

ε is the solution of the following problems for single equation:

{
ul

εt – (âlul
εx)x = b̂l(ul

ε)ul
εx + gl

(ul
ε , [uε]ρl , [uε]ωl ) ((x, t) ∈ (, δ/) × (, T]),

ul
ε = ψ l(x, t) (x = ,  ≤ t ≤ T or  ≤ x ≤ δ/, t = ),

(.)

and
⎧
⎪⎨

⎪⎩

ul
εt – (ãlul

εx)x = b̃l(ul
ε)ul

εx + gl
n+(ul

ε , [uε]ρl , [uε]ωl )
((x, t) ∈ (d – δ/, d) × (, T]),

ul
ε = ψ l(x, t) (x = d,  ≤ t ≤ T or d – δ/ ≤ x ≤ d, t = ).

(.)

By (.), (.), (.) and (.), the proof similar to that of [, Chapter VI, Lemma .]
gives (.) for l ∈ {, . . . , n}. The similar argument shows that (.) holds for l ∈ {n +
, . . . , N}.

We next prove (.). For any fixed l ∈ {, . . . , n}, let

y = x – ϕl
ε(t), t′ = t (denoted by t still),

and let

q(y, t) = ul
ε

(
y + ϕl

ε(t), t
)
.

By a direct computation we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qy(y, t) = ul
εx(x, t), qt(y, t) = qy(y, t)ϕl

εt + ul
εt ,

qy(d – ϕl
ε(t), t) = ul

εx(d, t), qy(–ϕl
ε(t), t) = ul

εx(, t),
qt(d – ϕl

ε(t), t) = ul
εx(d, t)ϕl

εt + ψ l
εt(d, t),

qt(–ϕl
ε(t), t) = ul

εx(, t)ϕl
εt + ψ l

εt(, t).

(.)

Then (.), (.), (.) and (.) imply that the function q = q(y, t) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qt – {[âlsε(y) + ãl( – sε(y))]qy}y – qyϕ
l
εt

= Bl
ε(y + ϕl

ε(t), t, q)qy + Gl
ε(y + ϕl

ε(t), t, uε(y + ϕl
ε(t), t)) ((y, t) ∈ El

T ),
q(–ϕl

ε(t), t) = ψ l
ε(, t), q(d – ϕl

ε(t), t) = ψ l
ε(d, t) (t ∈ [, T]),

q(y, ) = ψ l
ε(y + ϕl

ε(), ) (y ∈ [–ϕl
ε(), d – ϕl

ε()]),

(.)

where El
T := {(y, t) : –ϕl

ε(t) < y < d – ϕl
ε(t),  < t ≤ T}.
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A double integration by parts gives

–
∫∫

El
τ

{[
âlsε(y) + ãl( – sε(y)

)]
qy

}

yqt dy dt

=



∫ d–ϕl
ε (t)

–ϕl
ε(t)

[
âlsε(y) + ãl( – sε(y)

)]
(qy) dy

∣
∣
∣
t=τ

t=

+
∫ τ



[
âlsε(y) + ãl( – sε(y)

)]
{

–qyqt +


ϕl

εt(qy)
}∣
∣
∣
y=d–ϕl

ε

y=–ϕl
ε

dt. (.)

Thus multiplying the equation in (.) by qt , integrating it on El
τ and using (.), (.),

(.) and (.), we find that




∫ d–ϕl
ε(τ )

–ϕl
ε (τ )

[
âlsε(y) + ãl( – sε(y)

)](
qy(y, τ )

) dy +
∫∫

El
τ

(qt) dy dt

≤ C
∫ d



(
ψ l

x(x, )
) dx + C

∫∫

El
τ

(∣
∣ϕl

εt
∣
∣ + 

)(|qy| + 
)|qt|dx dt

+ C
∫ τ



{∣
∣ul

εx(, t)
∣
∣
[∣
∣ul

εx(, t)ϕl
εt
∣
∣ +

∣
∣ψ l

εt
∣
∣
]

+
∣
∣ul

εx(d, t)
∣
∣
[∣
∣ul

εx(d, t)ϕl
εt
∣
∣ +

∣
∣ψ l

εt
∣
∣
]

+
∣
∣ϕl

εt
∣
∣
[(

ul
εx(, t)

) +
(
ul

εx(d, t)
)]}dt.

Furthermore, by (.)-(.), (.) and Cauchy?s inequality, we deduce that for anyσ > ,



ν

∫ d–ϕl
ε (τ )

–ϕl
ε(τ )

(
qy(y, τ )

) dy +
∫∫

El
τ

(qt) dy dt

≤ σ

∫∫

El
τ

(qt) dy dt + C(σ )
∫∫

El
τ

[
 + (qy)][ +

(
ϕl

εt
)]dy dt + C

(
/δ,‖ϕt‖L(,T)

)
.

Choosing σ = ν/, we get

∫ d–ϕl
ε (τ )

–ϕl
ε(τ )

(
qy(y, τ )

) dy +
∫∫

El
τ

(qt) dy dt

≤
∫ τ



{
[
 +

(
ϕl

εt
)]

∫ d–ϕl
ε (t)

–ϕl
ε(t)

(
qy(y, t)

) dy
}

dt + C
(
/δ,‖ϕt‖L(,T)

)
. (.)

Consequently,

[
 +

(
ϕl

εt(τ )
)]

∫ d–ϕl
ε(τ )

–ϕl
ε (τ )

(
qy(y, τ )

) dy

≤ [
 +

(
ϕl

εt(τ )
)]

∫ τ



{
[
 +

(
ϕl

εt
)]

∫ d–ϕl
ε (t)

–ϕl
ε(t)

(
qy(y, t)

) dy
}

dt

+
[
 +

(
ϕl

εt(τ )
)]C

(
/δ,‖ϕt‖L(,T)

)
.

This, together with Gronwall?s inequality (see [, Chapter II, Lemma .]), implies that
∫∫

El
τ

[
 +

(
ϕl

εt
)][ + (qy)]dy dt ≤ C

(
/δ,‖ϕt‖L(,T)

)
.
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Hence we deduce from (.), (.), (.) and (.) that

max
≤t≤T

∫ d–ϕl
ε (t)

–ϕl
ε(t)

(qy) dy +
∫∫

El
T

{
(qt) +

[((
âlsε(y) + ãl( – sε(y)

))
qy

)

y

]}dy dt

≤ C
(
/δ,‖ϕt‖L(,T)

)
,

which, together with (.), yields (.) for l ∈ {, . . . , n}.
For any fixed l ∈ {n + , . . . , N}, we consider the equality

∫∫

Qτ

{
ul

εt –
(
Al

ε(x, t)ul
εx

)

x – Bl
ε

(
x, t, ul

ε

)
ul

εx – Gl
ε(x, t, uε)

}
ul

εt dx dt = .

A similar argument gives (.) for l ∈ {n + , . . . , N}. Therefore, (.) holds for all l ∈
{, . . . , N}.

It remains to prove (.). For each l ∈ {, . . . , N}, since Al
ε(x, t)ul

εx is in V(QT ), then
(.) and [, Chapter , formula (.)] show that

ν
∥
∥ul

εx
∥
∥

L∞,(QT ) ≤ ∥
∥Al

ε(x, t)ul
εx

∥
∥

L∞,(QT )

≤ ∥
∥
(
Al

ε(x, t)ul
εx

)

x

∥
∥

L(QT ) + sup
≤t≤T

∥
∥Al

ε(x, t)ul
εx

∥
∥

L(,d)

≤ C
(
/δ,‖ϕt‖L(,T)

)
.

Thus (.) holds. �

Lemma . Let uε (x, t), uε (x, t) be the solutions in S for problem (.) corresponding
to ϕε (t) and ϕε (t), respectively. Then

‖uε – uε‖
V,

 (QT )
≤ C

(
/δ,‖ϕt‖L(,T)

)
I,, (.)

where I, :=
∑N

l= ‖ψ l
ε (x, ) – ψ l

ε (x, )‖
H(,d) + ‖ϕε – ϕε‖L(,T) + ε + ε.

Proof Let w = (w, . . . , wN ) = uε – uε , and let l ∈ {, . . . , N} be fixed. We see from (.)
that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wl
t = {[Al

ε (x, t) – Al
ε (x, t)]ul

εx}x + {Al
ε (x, t)wl

x}x

+ [Bl
ε (x, t, ul

ε )ul
εx – Bl

ε (x, t, ul
ε )ul

εx]
+ [Gl

ε (x, t, uε ) – Gl
ε (x, t, uε )] ((x, t) ∈ QT ),

wl = ψ l
ε (x, t) – ψ l

ε (x, t) ((x, t) ∈ ST ∪ ([, d] × {})).
(.)

In view of (.), we find wl(, t) = wl(d, t) = . Multiplying the equation in (.) by wl

and integrating by parts on Qτ , we deduce that, for any τ ∈ [, T],




∫ d



(
wl) dx

∣
∣
∣
t=τ

t=
+

∫∫

Qτ

Al
ε (x, t)

(
wl

x
) dx dt

=
∫∫

Qτ

–
[
Al

ε (x, t) – Al
ε (x, t)

]
ul

εxwl
x dx dt
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+
∫∫

Qτ

[
Bl

ε

(
x, t, ul

ε

)
ul

εx – Bl
ε

(
x, t, ul

ε

)
ul

εx
]
wl dx dt

+
∫∫

Qτ

[
Gl

ε (x, t, uε ) – Gl
ε (x, t, uε )

]
wl dx dt

=: Il
, + Il

, + Il
,. (.)

Let us estimate Il
,, Il

, and Il
,. Since (.), (.) and (.) imply that

Al
ε (x, t) – Al

ε (x, t) =

{
[sε (x – ϕl

ε (t)) – sε (x – ϕl
ε (t))](âl – ãl), l = , . . . , n,

, l = n + , . . . , N ,
∣
∣Bl

ε

(
x, t, ul

ε

)
ul

εx – Bl
ε

(
x, t, ul

ε

)
ul

εx
∣
∣

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|[sε (x – ϕl
ε (t)) – sε (x – ϕl

ε (t))][b̂l(ul
ε ) – b̃l(ul

ε )]ul
εx

+ sε (x – ϕl
ε (t))[b̂l(ul

ε )ul
εx – b̂l(ul

ε )ul
εx]

+ [ – sε (x – ϕl
ε (t))][b̃l(ul

ε )ul
εx – b̃l(ul

ε )ul
εx]|, l = , . . . , n,

|[bl(ul
ε ) – bl(ul

ε )]ul
εx + bl(ul

ε )(ul
εx – ul

εx)|, l = n + , . . . , N

≤ C
n∑

l=

∣
∣
[
sε

(
x – ϕl

ε (t)
)

– sε

(
x – ϕl

ε (t)
)]∣

∣
∣
∣ul

εx
∣
∣ + C

N∑

l=

[∣
∣wl∣∣

∣
∣ul

εx
∣
∣ +

∣
∣wl

x
∣
∣
]
,

and

Gl
ε (x, t, uε ) – Gl

ε (x, t, uε )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gl
(uε ) – gl

(uε ) if x ≤ min(ϕ
ε (t),ϕ

ε (t)),
gl

n+(uε ) – gl
n+(uε ) if x ≥ max(ϕn

ε (t) + ε,ϕn
ε (t) + ε),

gl
k(uε ) – gl

k(uε ) if x ≤ min(ϕk
ε (t),ϕk

ε (t)) and
x ≥ max(ϕk–

ε (t) + ε,ϕk–
ε (t) + ε) for k ∈ {, . . . , n},

Gl
ε (x, t, uε ) – Gl

ε (x, t, uε )
if min(ϕk

ε (t),ϕk
ε (t)) < x < max(ϕk

ε (t) + ε,ϕk
ε (t) + ε) for k ∈ {, . . . , n},

then it follows from Cauchy?s inequality that, for anyσ > ,

Il
, ≤ σ

∫∫

Qτ

|wx| dx dt + C(σ )I,, (.)

Il
, ≤ σ

∫∫

Qτ

|wx| dx dt + C(σ )
∫∫

Qτ

|w| dx dt + CI, + CI, (.)

and

Il
, ≤

n+∑

k=

∫∫

Qτ

∣
∣gl

k(uε ) – gl
k(uε )

∣
∣
∣
∣wl∣∣dx dt

+
n∑

k=

∫ τ



∫ max{ϕk
ε +ε,ϕk

ε +ε}

min{ϕk
ε ,ϕk

ε }

∣
∣Gl

ε (x, t, uε ) – Gl
ε (x, t, uε )

∣
∣
∣
∣wl∣∣dx dt

≤ C
∫∫

Qτ

|w| dx dt + C
n∑

k=

∥
∥
∣
∣ϕk

ε – ϕk
ε

∣
∣ + ε + ε

∥
∥

L(,τ ), (.)
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where

I, :=
n∑

l=

∫∫

Qτ

[

 +
∑

j=

(
ul

εjx
)

]
[
sε

(
x – ϕl

ε (t)
)

– sε

(
x – ϕl

ε (t)
)] dx dt,

I, :=
N∑

l=

∫∫

Qτ

[

 +
∑

j=

(
ul

εjx
)

]
(
wl) dx dt.

According to the definition of function sε(θ ), we see that sε (x – ϕl
ε (t)) – sε (x – ϕl

ε (t)) = 
if x < min{ϕl

ε (t),ϕl
ε (t)} or x > max{ϕl

ε (t) + ε,ϕl
ε (t) + ε}. Thus by (.) we have

I, ≤
n∑

l=

{∫ τ



(

 +
∑

l,j=

∥
∥ul

εjx
∥
∥

L∞(,d)

)

dt

}/

×
{∫ τ



[∫ d



(
sε

(
x – ϕl

ε (t)
)

– sε

(
x – ϕl

ε (t)
)) dx

]

dt
}/

≤ C
(
/δ,‖ϕt‖L(,T)

)
n∑

l=

{∫ τ



[∫ max{ϕl
ε +ε,ϕl

ε +ε}

min{ϕl
ε ,ϕl

ε }
 dx

]

dt
}/

≤ C
(
/δ,‖ϕt‖L(,T)

)
n∑

l=

∥
∥
∣
∣ϕl

ε – ϕl
ε

∣
∣ + ε + ε

∥
∥

L(,τ ) (.)

and

I, ≤
∫ τ



[(

 +
∑

j=

‖uεjx‖
L∞(,d)

)∫ d


|w| dx

]

dt. (.)

Summing equality (.) with respect to l from l =  to l = N , using (.)-(.) and
Minkowski?s inequality, and choosingσ = ν/, we then conclude that

∫ d


|w|(x, τ ) dx +

∫ τ



∫ d


|wx| dx dt

≤ C
(
/δ,‖ϕt‖L(,T)

)
{∫ τ



[(

 +
∑

j=

‖uεjx‖
L∞(,d)

)∫ d


|w| dx

]

dt + I,

}

.

This, together with Gronwall?s inequality, yields

∫ τ



[(

 +
∑

j=

‖uεjx‖
L∞(,d)

)∫ d


|w| dx

]

dt

≤ C
(
/δ,‖ϕt‖L(,T)

)
I, exp

{

C
∫ T



(

 +
∑

j=

‖uεjx‖
L∞(,d)

)

dt

}

×
∫ T



(

 +
∑

j=

‖uεjx‖
L∞(,d)

)

dt.

Combining the two inequalities above and (.) leads us to estimate (.). �
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3.2 The solutions of the diffraction problem
Proof of Theorem . We divide the proof into three steps.

Step . We prove the global existence of the solutions. Let us discuss the behavior of the
solution uε associated with ϕε(t) by Theorem . as ε → .

We first see from (.) that for any τ ∈ [, T] and any vector function η ∈ ◦
W,

 (QT ),

∫ d


ul

εη
l dx

∣
∣
∣
τ


+

∫∫

Qτ

{
–ul

εη
l
t + Al

ε(x, t)ul
εxη

l
x –

[
Bl

ε

(
x, t, ul

ε

)
ul

εx + Gl
ε(x, t, uε)

]
ηl}dx dt

= , l = , . . . , N . (.)

Furthermore, according to estimates (.), (.), (.) and the Arzela-Ascoli theorem,
we conclude that there exists a subsequence (we retain the same notation for it) {uε} such
that

uε → u in C(Q̄T ), uεt ⇀ ut weakly in L(QT ),

uε → u in V,
 (QT ).

Thus u is in Cα,α/(Q̄T ), u satisfies the parabolic condition (.), and estimates (.) and
(.) hold.

We next show that for each l = , . . . , N , the sequences {Al
ε(x, t)ul

εx}, {Bl
ε(x, t, ul

ε)ul
εx},

{Gl
ε(x, t, uε)} converge in L(QT ) to Al(x, t)ul

x, Bl(x, t, ul)ul
x and Gl(x, t, u), respectively. Since

mes
{

(x, t) : min
(
ϕi

ε(t),ϕi(t)
) ≤ x ≤ max

(
ϕi

ε(t) + ε,ϕi(t) + ε
)
,  ≤ t ≤ T

}

→  as ε → , i = , . . . , n,

and

(
ul

εx
) =

(
ul

εx – ul
x + ul

x
) ≤ 

(
uε

lx – ul
x
) + 

(
ul

x
),

then it follows from (.), (.) and Lebesgue dominated convergence theorem that

∫∫

QT

[
Bl

ε

(
x, t, ul

ε

)
ul

εx – Bl(x, t, ul)ul
x
] dx dt

=
∫ T



{∫ min (ϕl
ε ,ϕl)



[
b̂
(
ul

ε

)
ul

εx – b̂
(
ul)ul

x
]

+
∫ d

max(ϕl
ε+ε,ϕl+ε)

[
b̃
(
ul

ε

)
ul

εx – b̃
(
ul)ul

x
]

+
∫ max(ϕl

ε+ε,ϕl+ε)

min(ϕl
ε ,ϕl)

[
Bl

ε

(
x, t, ul

ε

)
ul

εx – Bl(x, t, ul)ul
x
] dx

}

dt

≤ C
∫∫

QT

(
ul

ε – ul)( +
∣
∣ul

x
∣
∣
) dx dt + C

∫∫

QT

(
ul

εx – ul
x
) dx dt

+ C
∫ T



∫ max(ϕl
ε+ε,ϕl+ε)

min(ϕl
ε ,ϕl)

[(
ul

εx – ul
x
) +

(
ul

x
) + 

]
dx dt

→  as ε → , l ∈ {, . . . , n},



Tan Boundary Value Problems  (2015) 2015:4 Page 16 of 24

and
∫∫

QT

[
Bl

ε

(
x, t, ul

ε

)
ul

εx – Bl(x, t, ul)ul
x
] dx dt

=
∫∫

QT

[
bl(ul

ε

)
ul

εx – bl(ul)ul
x
] dx dt

≤ C
∫∫

QT

(
ul

ε – ul)( +
∣
∣ul

x
∣
∣
) dx dt + C

∫∫

QT

(
ul

εx – ul
x
) dx dt

→  as ε → , l ∈ {n + , . . . , N},

and from (.) that
∫∫

QT

[
Gl

ε(x, t, uε) – Gl(x, t, u)
] dx dt

≤
n+∑

k=

∫∫

QT

[
gl

k(uε) – gl
k(u)

] dx dt

+
n∑

k=

∫ τ



∫ max{ϕk
ε +ε,ϕk +ε}

min{ϕk
ε ,ϕk}

[
Gl

ε(x, t, uε) – Gl(x, t, u)
] dx dt

≤ C
∫∫

QT

|uε – u| dx dt + C
n∑

k=

∫ τ



∫ max{ϕk
ε +ε,ϕk +ε}

min{ϕk
ε ,ϕk}

 dx dt

→ , l ∈ {, . . . , N}.

The similar argument shows that ‖Al
ε(x, t)ul

εx – Al(x, t)ul
x‖L(QT ) →  for each l = , . . . , N .

Based on the above arguments for sequences {Al
ε(x, t)ul

εx}, {Bl
ε(x, t, ul

ε)ul
εx}, {Gl

ε(x, t, uε)}
and {ul

εt}, by letting ε → , we conclude from (.) that (.) holds.
We also see from (.) that there exists a subsequence {uε′ } (denoted by {uε} still) such

that for each l = , . . . , N , {(Aε(x, t)ul
εx)x} converge weakly in L(QT ) to � l(x, t). Recalling

that Aε(x, t)ul
εx → A(x, t)ul

x in L(QT ), we deduce �l = (A(x, t)ul
x)x. These, together with

(.), imply that ul
xx ∈ L(Ql–

T ) ∩ L(Ql+
T ) for each l = , . . . , n, ul

xx ∈ L(QT ) for each l =
n + , . . . , N , Al(x, t)ul

x ∈ V(QT ) for each l = , . . . , N , and (.) holds. Thus (.) implies
that u satisfies the equations in (.a) and (.b) for almost all (x, t) ∈ QT and the inner
boundary condition (.) for almost all t ∈ [, T] (see [, Chapter , Section ]). As we
have done in the derivation of (.), estimate (.) yields (.).

For fixed l ∈ {, . . . , N} and k ∈ {, . . . , n + }, ul satisfies the linear equation

ul
t – alul

xx = bl(x, t)ul
x + gl(x, t)

(
(x, t) ∈ Qk,T

)
,

where

al :=

⎧
⎪⎨

⎪⎩

âl k ≤ l, l = , . . . , n,
ãl k > l, l = , . . . , n,
al l = n + , . . . , N ,

bl(x, t) :=

⎧
⎪⎨

⎪⎩

b̂l(ul(x, t)) k ≤ l, l = , . . . , n,
b̃l(ul(x, t)) k > l, l = , . . . , n,
bl(ul(x, t)) l = n + , . . . , N ,

and

gl(x, t) := gl
k
(
u(x, t)

)
.
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Then for any subdomains Q′ and Q′′ satisfying Q̄ ⊂ Q′′ and Q̄′′ ⊂ Qk,T , we have bl(x, t),
gl(x, t) ∈ Cα,α/(Q̄′′). The parabolic regularity theory shows that ul ∈ C+α,+α/(Q̄′).
Hence u satisfies pointwise the equations in (.a) and (.b) for (x, t) ∈ Qk,T . Consequently,
u is a solution in S of problem (.a)-(.) and estimates (.)-(.) hold.

Step . In what follows, we will show that the solution in S for problem (.a)-(.) is
unique and estimates (.) and (.) hold.

Let u, u be the solutions in S corresponding to ϕ and ϕ, respectively. Set w = u –u.
Then w ∈ ◦

W,
 (QT ). We choose η = w in (.) to find

∫∫

Qτ

ul
itw

l dx dt +
∫ τ



{∫ ϕl
i (t)



[
âlul

ixwl
x – b̂l(ul

i
)
ul

ixwl]dx

+
∫ d

ϕl
i (t)

[
ãlul

ixwl
x – b̃l(ul

i
)
ul

ixwl]dx
}

–
n+∑

k=

∫ τ



∫ ϕk
i (t)

ϕk–
i (t)

gl
k(ui)wl dx dt

= , i = , , l = , . . . , n,

and

∫∫

Qτ

[
ul

itw
l + alul

ixwl
x – bl(ul

i
)
ul

ixwl]dx dt –
n+∑

k=

∫ τ



∫ ϕk
i (t)

ϕk–
i (t)

gl
k(ui)wl dx dt

= , i = , , l = n + , . . . , N .

For each l = , . . . , N , by a subtraction of the above equations for i = , , we conclude that




∫ d



(
wl(x, τ )

) dx +
∫ τ



{∫ ϕl




[
âl(wl

x
) –

(
b̂l(ul


)
ul

x – b̂l(ul

)
ul

x
)
wl]dx

+
∫ d

ϕl


[
ãl(wl

x
) –

(
b̃l(ul


)
ul

x – b̃l(ul

)
ul

x
)
wl]dx

+
∫ ϕl



ϕl


(
b̂l(ul


)

– b̃l(ul

))

ul
xwl dx

}

dt

=
n+∑

k=

∫ τ



{∫ ϕk
 (t)

ϕk–
 (t)

[
gl

k(u) – gl
k(u)

]
wl dx

+
(∫ ϕk–

 (t)

ϕk–
 (t)

+
∫ ϕk

 (t)

ϕk
 (t)

)

gl
k(u)wl dx

}

dt, l ∈ {, . . . , n},

and




∫ d



(
wl(x, τ )

) dx +
∫∫

Qτ

[
al(wl

x
) +

(
bl(ul


)
ul

x – bl(ul

)
ul

x
)
wl]dx

=
n+∑

k=

∫ τ



{∫ ϕk
 (t)

ϕk–
 (t)

[
gl

k(u) – gl
k(u)

]
wl dx

+
(∫ ϕk–

 (t)

ϕk–
 (t)

+
∫ ϕk

 (t)

ϕk
 (t)

)

gl
k(u)wl dx

}

dt, l ∈ {n + , . . . , N}.
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Then

∫ d



(
wl(x, τ )

) dx +
∫∫

Qτ

(
wl

x
) dx dt

≤ C
∫∫

Qτ

[∣
∣wl

xwl∣∣ +
∣
∣ul

x
∣
∣
(
wl)]dx dt

+ C
∣
∣
∣
∣

∫ τ



∫ ϕl
(t)

ϕl
(t)

∣
∣ul

x
∣
∣
∣
∣wl∣∣dx dt

∣
∣
∣
∣ +

n+∑

k=

∫∫

Qτ

∣
∣gl

k(u) – gl
k(u)

∣
∣
∣
∣wl∣∣dx dt

+ C
n∑

k=

∫ τ



∫ ϕk
 (t)

ϕk
 (t)

∣
∣wl∣∣dx dt

≤ ε

∫∫

Qτ

∣
∣wl

x
∣
∣ dx dt + C(ε)

∫∫

Qτ

[

 +
∑

j=

(
ul

jx
)

]

|w| dx dt

+ C
n∑

k=

∫ τ



∣
∣ϕk

 (t) – ϕk
 (t)

∣
∣dt, l = , . . . , N .

Setting ε = / and summing the above inequalities with respect to l from l =  to l = N ,
we have

∫ d



∣
∣w(x, τ )

∣
∣ dx +

∫∫

Qτ

|wx| dx dt

≤ C
∫∫

Qτ

[

 +
∑

j=

|ujx|
]

|w| dx dt + C‖ϕ – ϕ‖L(,T)

≤ C
∫ τ



[(

 +
∑

j=

‖uεjx‖
L∞(,d)

)∫ d


|w| dx

]

dt + C‖ϕ – ϕ‖L(,T).

Again by Gronwall?s inequality we deduce (.), which, together with [, Chapter , for-
mula (.)], gives (.). Therefore the solution in S for problem (.a)-(.) associated
with ϕ(t) is unique.

Step . For ϕ ∈ C((, T]), we discuss the regularity of u.
For any fixed l ∈ {, . . . , n}, let

y = x – ϕl(t), t′ = t (denoted by t still),

v(y, t) = ul(y + ϕl(t), t
)
.

Then v satisfies

vt = H(y, t, v)

:=

{
âlvyy + vyϕ

l
t + b̂l(v)vy + gl

l (u(y + ϕl(t), t)) ((x, t) ∈ (–δ, ) × (, T]),
ãlvyy + vyϕ

l
t + b̃l(v)vy + gl

l+(u(y + ϕl(t), t)) ((x, t) ∈ (, δ) × (, T]),

v–(, t) = v+(, t), âlv–
y (, t) = ãlv+

y (, t)
(
t ∈ [, T]

)
.
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We will use the result of [] to obtain the regularity of v. To do this, we need the estimate of
ess supt≤t≤T

∫ δ/
–δ/(vt) dy for any fixed t ∈ (, T). Let ξ = ξ (y, t) be a smooth function with

values between  and  such that ξ =  for |y| ≥ δ or t ≤ t/, ξ =  for (y, t) ∈ [–δ/, δ/] ×
[t, T] and |ξy| + |ξt| ≤ C(/δ, /t), and let

v(t) =
[
v(x, t + �t) – v(x, t)

]
/�t.

For any small enough �t, consider the equality
∫ τ

t/
∫ δ

–δ
[vt – H(y, t, v)](t)v(t)(ξ ) dx dt. By

employing the formula of integration by parts and [, Chapter II, formula (.)], we get

 =



∫ δ

–δ

(
v(t)(y, τ )ξ (y, τ )

) dy –
∫ τ

t/

∫ δ

–δ

(v(t))ξξt dy dt

+
∫ τ

t/

{∫ 

–δ

[(
âl(vy(t)ξ ) + âlvy(t)v(t)ξξy

)
+

((
ϕl

t
)

(t)vy + ϕt(t + �t)vy(t)
)
v(t)(ξ )

+
((

b̂l(v)
)

(t)vy + b̂l(v(y, t + �t)
)
vy(t)

)
v(t)(ξ ) +

(
gl

l
(
u
(
y + ϕl(t), t

)))

(t)v(t)(ξ )]dy

+
∫ δ



[(
ãl(vy(t)ξ ) + ãlvy(t)v(t)ξξy

)
+

((
ϕl

t
)

(t)vy + ϕt(t + �t)vy(t)
)
v(t)(ξ )

+
((

b̃l(v)
)

(t)vy + b̃l(v(y, t + �t)
)
vy(t)

)
v(t)(ξ )

+
(
gl

l+
(
u
(
y + ϕl(t), t

)))

(t)v(t)(ξ )]dy
}

dt,

where vy(t) = (vy)(t). Some tedious computation and Cauchy?s inequality yield




∫ δ

–δ

(
v(t)(y, τ )ξ (y, τ )

) dy + ν

∫ τ

t/

∫ δ

–δ

(vy(t)ξ ) dy dt

≤ ε

∫ τ

t/

∫ δ

–δ

(vy(t)ξ ) dy dt

+ C
(
ε, /δ, /t,

∥
∥ϕl∥∥

C([t/,T])

)
∫ τ

t/

∫ δ

–δ

[
 + (vy) + (v(t)) + (v(t)ξ )vy

]
dy dt

+ C
(∥
∥ϕl∥∥

C([t/,T])

)
N∑

i=

∫∫

QT

[(
ui

x(x, t)
) +

(
ui

t(x, t)
)]dx dt.

We choose ε = ν/ and employ (.) to find

∫ δ

–δ

(
v(t)(y, τ )ξ (y, τ )

) dy +
∫ τ

t/

∫ δ

–δ

(vy(t)ξ ) dy dt

≤ C
(
/δ, /t,

∥
∥ϕl∥∥

C([,T])

)
{

 +
∫ τ

t/

∫ δ

–δ

(v(t)ξ )vy dy dt
}

≤ C
(
/δ, /t,

∥
∥ϕl∥∥

C([t/,T])

)
{

 +
∫ τ

t/
‖vy‖L∞(–δ,δ)

∫ δ

–δ

(v(t)ξ ) dy dt
}

.

As we have done in the derivation of (.), by Gronwall?s inequality we get

∫ δ

–δ

(
v(t)(y, τ )ξ (y, τ )

) dy +
∫ τ

t/

∫ δ

–δ

(vy(t)ξ ) dy dt ≤ C
(
/δ, /t,

∥
∥ϕl∥∥

C([,T])

)
.
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Consequently,

∫ δ/

–δ/
(v(t)) dy +

∫ τ

t

∫ δ/

–δ/
(vy(t)) dy dt ≤ C

(
/δ, /t,

∥
∥ϕl∥∥

C([t/,T])

)
.

By [, Chapter II, Lemma .], this inequality implies that

ess sup
t≤t≤T

∫ δ/

–δ/
(vt) dy +

∫ T

t

∫ δ/

–δ/
(vyt) dy dt ≤ C

(
/δ, /t,

∥
∥ϕl∥∥

C([t/,T])

)
. (.)

Hence ul
xt ∈ Ł(Ql(δ, t)). Using (.), hypothesis (H)(iii) and [, Theorem .], we de-

duce that vy(y, t) is continuous with respect to y in [–δ/, ] and in [, δ/] for almost all
t ∈ [t, T], and vt is continuous in [–δ/, δ/] × [t, T]. Since ul

x(x, t) = vy(x – ϕl(t), t) and
ul

t(x, t) = vt(x–ϕl(t), t)–vy(x–ϕl(t), t)ϕl
t(t), then for almost all t ∈ [t, T], ul

x(x, t) and ul
t(x, t)

are continuous with respect to x in [ϕl(t) – δ/,ϕl(t)] and in [ϕl(t),ϕl(t) + δ/]. �

The following corollary follows directly from Theorem ..

Corollary . Assume that ϕm(t) ∈ C([, T]), m = , , . . . , satisfy (.) and the sequence
{ϕm(t)} converges in W

(, T) to ϕ(t). If um, u are the solutions in S of (.a)-(.) cor-
responding to ϕm and ϕ, respectively, then there exists a subsequence (we retain the same
notation for it) {um} such that

um → u in C(Q̄T ), umt ⇀ ut weakly in L(QT ), um → u in V,
 (QT ).

4 The free boundary problem
The goal of this section is to prove the local existence of solutions for problem (.a)-(.).

In this section, let

T := min

{(
δ



)/

,

[

C

(

δ

,
(

δ



)/) n∑

i=

âi

mi

]–}

,  < T ≤ T,

B :=
{

r(t) =
(
r(t), . . . , rn(t)

)
:
∥
∥r(t)

∥
∥

L(,T) ≤ 
}

.

Then, for r(t) ∈ B, we have

∫ T



∣
∣ri(t)

∣
∣dt ≤ T/∥∥ri(t)

∥
∥

L(,T) ≤ T/ ≤ δ/,

∫ T



∣
∣ri(t) – ri–(t)

∣
∣dt ≤ T/ ≤ δ/, i = , . . . , n.

Thus ϕi(t) = di +
∫ t

 ri(t) dt, i = , . . . , n, satisfy

ϕ(t) ≥ d –
∫ T



∣
∣r(t)

∣
∣dt ≥ 


δ, d – ϕn(t) ≥ d – dn –

∫ T



∣
∣rn(t)

∣
∣dt ≥ 


δ, (.)

and

ϕi(t) – ϕi–(t) ≥ di – di– –
∫ T



∣
∣ri(t) – ri–(t)

∣
∣dt ≥ δ


, i = , . . . , n. (.)
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For r(t) ∈ B, define

G(r)(t) =
(

–
âu–

x (ϕ(t), t)
u(ϕ(t), t)

, . . . , –
ânun–

x (ϕn(t), t)
un(ϕn(t), t)

)

for a.e. t ∈ [, T],

where ϕi(t) = di +
∫ t

 ri(τ ) dτ (i = , . . . , n) and u is the solution in S of problem (.a)-(.)
associated with ϕ(t) = (ϕ(t), . . . ,ϕn(t)).

Proof of Theorem . By a slight modification, we use the methods and the framework of
[, ] to prove Theorem .. We only sketch the main steps and omit most of the detailed
proofs.

Step . We will show that G(B) ⊆ B.
Employing (.), (.), (.) and Hölder?s inequality, we get

‖ϕt‖L(,T) ≤ ‖ϕt‖L(,T)T /
 ≤ (δ/)/

and

∥
∥G(r)(t)

∥
∥

L(,T) =
n∑

i=

∥
∥
∥
∥

âiui–
x (ϕi(t), t)

ui(ϕi(t), t)

∥
∥
∥
∥

L(,T)

≤
n∑

i=

âi

mi

(∫ T



∥
∥ui

x
∥
∥

L∞(,ϕi(t)) dt
)/

≤
n∑

i=

âi

mi

∥
∥ui

x
∥
∥

L∞,(QT )T
/

≤ T /
 C

(

δ

,
(

δ



)/) n∑

i=

âi

mi

≤ .

Consequently, G(B) ⊆ B.
Step . By (.) and a slight modification of the proof of [, Proposition .], we can

prove that G : B → B is continuous and G(B) ⊂ B is precompact in L(, T).
Step . It follows from Schauder?s fixed point theorem thatG : B → B has at least one

fixed point r(t). Then the curves ϕi(t) = di +
∫ t

 ri(τ ) dτ , i = , . . . , n, and the vector function
u(x, t) associated with ϕ(t) by Theorem . satisfy (.) for almost all t ∈ [, T]. Moreover,
(.), (.) and (.) imply that ϕ(t) is in W

(, T).
Step . Using the regularity result of Theorem .(iii) and the approximation result

of Corollary ., and calculating
∫ T


d
dt

∫ d
 (Al(x, t))(ul

x) dx dt, we can conclude from the
proof similar to that of [, Lemma .] that

sup
[,T]

∫ d



(
ul

x
) dx ≤ C(/δ, T), l = , . . . , N . (.)

In addition, for each l = n + , . . . , N , ul satisfies the linear equation

ul
t – alul

xx = f l(x, t) := bl(ul)ul
x + Gl(x, t, u)

(
(x, t) ∈ QT

)
.
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Estimate (.) yields f l(x, t) ∈ L(QT ). Thus, according to the local parabolic Lp estimates,
we get ul ∈ W ,

 (Q′) for any interior domain Q′ of QT . This implies that

ul
x ∈ Cα,α/(Q̄′) (.)

for some α ∈ (, ).
Step . By (.), (.) and hypothesis (H)(iii), a similar argument as that for [, Theo-

rem .] shows that for each l = , . . . , n, ϕl(t) ∈ C+α((, T]). Then (.) holds for t ∈ (, T]
and {u(x, t),ϕ(t)} is a local solution of problem (.a)-(.). �

Remark . Theorem . concerns the local existence of solutions for (.a)-(.). For
the case n = , the global existence of solutions of (.a)-(.) can be proved by the same
argument as that in []. For the case n > , the difficulty to prove the global existence of
solutions may be that the free boundaries can intersect with each other.

5 An example
In this section, we give an example satisfying the conditions in hypothesis (H).

Consider the Lotka-Volterra reaction-diffusion model with two predators u, u, and
one prey u, where each of predators u, u has two groups and the prey u is native and
has only one group. Then the reaction-diffusion functions are defined by

⎧
⎪⎨

⎪⎩

g
k(u) = γ 

k u( – β
ku – ς 

k u + σ 
k u),

g
k (u) = γ 

k u( – β
k u – ς

k u + σ 
k u),

g
k (u) = γ u( – βu – ς

k u – σ 
k u), k = , , ,

(.)

where γ l
k , β l

k , ς l
k , σ l

k (l, k = , ), γ , β, ς
 and σ 

 are all positive constants. For the
mankind?s influence, we assume that

{
b̂(ul) = χ̂ lul, b̃(ul) = –χ̃ lul, l = , ,
b(u) = χu,

(.)

where χ̂ l , χ̃ l (l = , ) and χ are constants. Thus u = (u, u, u) and ϕ = (ϕ,ϕ) are gov-
erned by system (.a)-(.), where n = , N =  and the coefficients are replaced by (.),
(.).

Assume that

max
k=,,

{
 + σ 

k (β)–

β
k

,
 + σ 

k (β)–

β
k

}

< min
k=,,

{

ς 

k
,


ς

k
,


ς

k + σ 
k

}

, (.)

 < ψ l(x, t) < min
k=,,

{

ς 

k
,


ς

k
,


ς

k + σ 
k

}
(
(x, t) ∈ ST ∪ (

[, d] × {})), l = , , (.)

and

 < ψ(x, t) <
(
β)–. (.)
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We will look for M = (M, M, M) and m = (m, m, m) satisfying (.). This requires
that

⎧
⎪⎨

⎪⎩

 – β
kM – ς 

k m + σ 
k M ≤ ,

 – β
k M – ς

k m + σ 
k M ≤ ,

 – βM – ς
k m – σ 

k m ≤ , k = , , ,
(.)

⎧
⎪⎨

⎪⎩

 – β
km – ς 

k M + σ 
k m ≥ ,

 – β
k m – ς

k M + σ 
k m ≥ ,

 – βm – ς
k M – σ 

k M ≥ , k = , , ,
(.)

and

ml < ψ l(x, t) < Ml (
(x, t) ∈ ST ∪ {

� × {}}), l = , , . (.)

Choose m = m = m and M = M. It is obvious that (.) and (.) hold if

⎧
⎪⎨

⎪⎩

 – β
kM + σ 

k M ≤ ,
 – β

k M + σ 
k M ≤ ,

 – βM ≤ , k = , , ,
(.)

and
⎧
⎪⎨

⎪⎩

 – β
km – ς 

k M ≥ ,
 – β

k m – ς
k M ≥ ,

 – βm – ς
k M – σ 

k M ≥ , k = , , .
(.)

By (.)-(.), we can first choose m = m = m small enough such that

 < ml < ψ l(x, t) < min
k=,,

{
 – β

km

ς 
k

,
 – β

k m

ς
k

,
 – β

k m

ς
k + σ 

k

}

(
(x, t) ∈ ST ∪ (

[, d] × {})), l = , ,

and

max
k=,,

{
 + σ 

k (β)–

β
k

,
 + σ 

k (β)–

β
k

}

< min
k=,,

{
 – β

km

ς 
k

,
 – β

k m

ς
k

,
 – β

k m

ς
k + σ 

k

}

.

Furthermore, choose M, M and M such that

M =
(
β)–,

M = M ≥ max
k=,,

{
 + σ 

k (β)–

β
k

,
 + σ 

k (β)–

β
k

}

,

M = M > ψ l(x, t)
(
(x, t) ∈ ST ∪ (

[, d] × {})), l = , ,

and

M = M ≤ min
k=,,

{
 – β

km

ς 
k

,
 – β

k m

ς
k

,
 – β

k m

ς
k + σ 

k

}

.
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The relations (.)-(.) are guaranteed by the above M and m. Hence M and m satisfy
(.)-(.); and consequently, M and m satisfy (.). Moreover, gk(u) = (g

k(u), g
k (u), g

k (u)),
k = , , , are mixed quasimonotone in S with the same index vector ((u); (u); [u]). The
above argument shows that the conditions in hypothesis (H) can be satisfied. Then we get
the following corollary from Theorem ..

Corollary . In problem (.a)-(.), let n = , N = , and let the coefficients be given by
(.), (.). Assume that the conditions in (.)-(.) and hypothesis (H)(i) are satisfied.
Then there exist T >  and a pair of functions u(x, t), ϕ(t) such that {u(x, t),ϕ(t)} is a solu-
tion of (.a)-(.).
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