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Abstract

Purpose: In this paper, we study the existence and multiplicity of nontrivial solutions
for a new nonlocal problem.

Methods: Variational method, mountain pass lemma.

Results: Some existence and multiplicity results of nontrivial solutions are obtained.
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1 Introduction and main results
In this paper, we study the existence and multiplicity of nontrivial solutions for a new
nonlocal Dirichlet boundary value problem

{
–(a – b

∫
�

|∇u| dx)�u = |u|p–u, x ∈ �,
u = , x ∈ ∂�,

()

by using the mountain pass lemma, where � is a smooth bounded domain in R
N and

N ≥ , a, b >  are constants and

 < p < ∗ =

{
N

N– , N ≥ ,
∞, N = , .

()

Recently, the Kirchhoff type problem on a bounded domain

{
–(a + b

∫
�

|∇u| dx)�u = f (x, u), x ∈ �,
u = , x ∈ ∂�,

()

has been studied by many authors, for example [–]. Many solvability conditions of prob-
lem () have been considered. Moreover, some scholars have studied the existence of non-
trivial solutions for the more general Kirchhoff type problems

{
–M(

∫
�

|∇u| dx)�u = f (x, u), x ∈ �,
u = , x ∈ ∂�,

()
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where M is a certain continuous function, for example [–]. However, such problems
cannot contain problem () because the function M is assumed to be bounded from be-
low. For more results, please refer to [, ] and the references therein. Using a stan-
dard method, we can prove that the energy functional J (see Section  below) of problem
() possesses a mountain pass energy c. To deal with the difficulty caused by the non-
compactness due to the nonlocal term, we should estimate precisely the value of c and
give a threshold value (see Lemma . below) under which the (PS)c condition for J is
satisfied. Therefore, the study of the existence and multiplicity of a nontrivial solution for
problem () presents different difficulties from those in problem (). Our main results are
as follows.

Theorem . Problem () possesses at least a nontrivial weak solution.

Theorem . Problem () possesses at least a nontrivial non-negative solution and a non-
trivial non-positive solution.

The novelty of our results lies in two aspects. Firstly, differently from [–], where the
nonlocal term is a + b

∫
�

|∇u| dx, we put forward a new nonlocal term a – b
∫
�

|∇u| dx
which presents interesting difficulties. Secondly, we obtain the precise threshold value
under which the (PS) condition for J is satisfied.

2 The proof of main results
Let X be the usual Sobolev space H

(�) equipped with the inner product (u, v) =
∫
�

∇u ·
∇v dx and the norm ‖u‖ =

√
(u, u). We denote by |u|r ,  ≤ r ≤ ∗, the norm of the space

Lr(�). It is well known that X ↪→ Lr(�) continuously for r ∈ [, ∗], compactly for r ∈
[, ∗). Hence, there exists γr >  such that

|u|r ≤ γr‖u‖, ∀u ∈ X, r ∈ [
, ∗]. ()

A function u ∈ X is called a weak solution of problem () if

a
∫

�

∇u · ∇v dx – b‖u‖
∫

�

∇u · ∇v dx =
∫

�

|u|p–uv dx, ∀v ∈ X.

Define a functional by

J(u) :=
a

‖u‖ –

b


‖u‖ –

p

∫
�

|u|p dx, ∀u ∈ X.

From () we know that J ∈ C(X,R) and

〈
J ′(u), v

〉
= a

∫
�

∇u · ∇v dx – b‖u‖
∫

�

∇u · ∇v dx –
∫

�

|u|p–uv dx, ∀u, v ∈ X.

Thus u is a weak solution of problem () if and only if u is a critical point of the functional
J on X.

Firstly, we give two preliminary results.
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Lemma . There exists a sequence {un} ⊂ X satisfying J(un) → c, J ′(un) → , where  <
c < a

b .

Proof From inequality () we have

J(u) =
a

‖u‖ –

b


‖u‖ –

p

∫
�

|u|p dx

≥ a

‖u‖ –

b


‖u‖ –

p
γ p

p ‖u‖p.

Noting that  < p < ∗, we can choose small  < ρ ≤ min{[ a
b ] 

 , [ ap
γ

p
p

]


p– }. Then for all

u ∈ X, ‖u‖ = ρ , it holds that J(u) ≥ a
ρ = γ > . On the other hand, for τ ∈ R

, and fixed
u �= , with

∫
�

|u|p dx > ,

J(τu) =
a

‖u‖τ  –

b


‖u‖τ  – |τ |p 
p

∫
�

|u|p dx,

then J(τu) → –∞ (|τ | → ∞). So there exists τ >  such that u = τu ∈ X, ‖u‖ > ρ ,
J(u) < . Hence, by the mountain pass lemma without (PS) condition (see []), we obtain
a sequence {un} ⊂ X such that J(un) → c, J ′(un) →  for

c = inf
g∈�

max
u∈g([,])

J(u) ≥ γ > ,

where

� =
{

g ∈ C
(
[, ], X

)
: g() = , g() = u

}
.

Due to

max
t∈[,]

J(tu) = max
t∈[,]

{
a

‖u‖t –

b


‖u‖t – |t|p 
p

∫
�

|u|p dx
}

< max
t∈[,]

{
a

‖u‖t –

b


‖u‖t
}

≤ a

b
,

and from the definition of c we have  < c < a

b . �

Lemma . Under the condition c < a

b , J satisfies the (PS)c condition, i.e., any (PS)c se-
quence of J has a convergent subsequence.

Proof Let {un} ⊂ X be such that J(un) → c, J ′(un) → . Since

J(un) –
〈
J ′(un), un

〉
=

b

‖un‖ +

(
 –


p

)∫
�

|un|p dx

≥ b

‖un‖,
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J(un) → c, J ′(un) → , {un} is bounded in X. By passing to a subsequence if necessary, we
may assume that there exists u ∈ X such that

un ⇀ u in X,

un → u in Lr(�), for r ∈ [
, ∗),

un(x) → u(x) for a.e. x ∈ �.

Noting that

∣∣∣∣
∫

�

|un|p–un(u – un) dx
∣∣∣∣ ≤

(∫
�

(|un|p–) p
p– dx

) p–
p

(∫
�

|u – un|p dx
) 

p

= |un|p–
p |u – un|p

≤ γ p–
p ‖un‖p–|u – un|p →  (n → ∞),

using the previous conditions and the fact that

(
a – b‖un‖)∫

�

∇un · ∇(u – un) dx –
∫

�

|un|p–un(u – un) dx =
〈
J ′(un), (u – un)

〉 → ,

it follows

(
a – b‖un‖)∫

�

∇un · ∇(u – un) dx →  (n → ∞). ()

If there exists a subsequence of {un} (still denoted by {un}) satisfying ‖un‖ → a
b , define a

functional by

ϕ(u) :=

p

∫
�

|u|p dx, u ∈ X,

then

〈
ϕ′(u), v

〉
=

∫
�

|u|p–uv dx, u, v ∈ X.

Since un → u in Lp(�), then |un|p–un → |u|p–u in L
p

p– (�), and yet

〈
ϕ′(un) – ϕ′(u), v

〉
=

∫
�

[|un|p–un – |u|p–u
]
v dx.

Due to Hölder’s inequality, we have

∣∣∣∣〈ϕ′(un) – ϕ′(u), v
〉∣∣∣∣ ≤

∫
�

∣∣|un|p–un – |u|p–u
∣∣|v|dx

≤ ∣∣|un|p–un – |u|p–u
∣∣ p

p–
|v|p

≤ ∣∣|un|p–un – |u|p–u
∣∣ p

p–
γp‖v‖.
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Thus

∥∥ϕ′(un) – ϕ′(u)
∥∥

X′ ≤ ∣∣|un|p–un – |u|p–u
∣∣ p

p–
γp → ,

and ϕ′(un) → ϕ′(u). While 〈J ′(un), v〉 = (a – b‖un‖)〈un, v〉 – 〈ϕ′(un), v〉, 〈J ′(un), v〉 → , and
(a – b‖un‖) → , hence ϕ′(un) →  (n → ∞), i.e.,

〈
ϕ′(u), v

〉
=

∫
�

|u|p–uv dx = , ∀v ∈ X.

Then we have

∣∣u(x)
∣∣p–u(x) = , a.e. x ∈ �

by the variational method fundamental lemma (see []). It follows from that u = . So

ϕ(un) =

p

∫
�

|un|p dx → 
p

∫
�

|u|p dx = .

Hence we see that J(un) = a
 ‖un‖ – b

‖un‖ – 
p
∫
�

|un|p dx → a

b from ‖un‖ → a
b . This is

a contradiction with J(un) → c < a

b . Then (a – b‖un‖) →  (n → ∞) is not true and any
subsequence of {a – b‖un‖} does not converge to zero. Therefore there exists δ >  such
that |a – b‖un‖| > δ when n is large enough. It is clear that {a – b‖un‖} is bounded. It
follows from () that

∫
�

∇un · ∇(u – un) dx →  (n → ∞). So ‖un‖ → ‖u‖. Hence un → u
(n → ∞) in X due to the uniform convexity of X. �

Remark . The (PS)c condition is not satisfied for c ≥ a

b .
() The case c > a

b . It follows from

J(u) ≤ a

‖u‖ –

b


‖u‖ ≤ a

b
()

that if {un} is a (PS)c sequence of J , then we have c ≤ a

b . This is a contradiction and the
claim is proved.

() The case c = a

b . Now we suppose that J satisfies the (PS) a
b

condition on the contrary,

that is to say, if {un} ⊂ X is such that J(un) → a

b , J ′(un) → , then {un} possesses a con-
vergent subsequence (still denoted by {un}) and converges to u. Hence un → u in Lr(�),
r ∈ [, ∗). It follows from J(un) → a

b and () that ( a
 ‖un‖ – b

‖un‖) → a

b . And then

p
∫
�

|un|p dx →  by the definition of energy functional J . Noting that un → u in Lp(�),
we obtain 

p
∫
�

|u|p dx = . Hence u =  a.e. and J(u) = . However, J(un) → J(u) = a

b . This
is a contradiction and the claim is proved.

Now, we prove our main result Theorem . by using Lemma . and Lemma ..

Proof of Theorem . According to Lemma ., there exists {un} ⊂ X satisfying J(un) →
c > , J ′(un) →  (n → ∞). By Lemma ., {un}, which is the sequence obtained by
Lemma ., possesses a convergent subsequence (still denoted by {un}) and converges to u.
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So it follows from the continuity of J and J ′ that J(u) = c > , J ′(u) = . But J() = , there-
fore u �= , namely u is a nontrivial solution of problem (). �

Proof of Theorem . We only establish the existence of a nontrivial non-negative solution
for problem (), and the existence of a nontrivial non-positive solution for problem () can
obtained similarly.

Define a functional by

J(u) :=
a

‖u‖ –

b


‖u‖ –

p

∫
�

∣∣u+∣∣p dx, ∀u ∈ X.

Then J ∈ C(X,R) and

〈
J ′(u), v

〉
= a

∫
�

∇u · ∇v dx – b‖u‖
∫

�

∇u · ∇v dx –
∫

�

(
u+)p–v dx, ∀u, v ∈ X.

From inequality () we have

J(u) ≥ J(u) ≥ a

‖u‖ –

b


‖u‖ –

p
γ p

p ‖u‖p.

So we can choose small  < ρ ≤ min{[ a
b ] 

 , [ ap
γ

p
p

]


p– } such that for all u ∈ X, ‖u‖ = ρ , J(u) ≥
a
ρ = γ >  holds. On the other hand, for τ >  and fixed u ≥ , with

∫
�

|u+|p dx > ,

J(τu) =
a

‖u‖τ  –

b


‖u‖τ  – |τ |p 
p

∫
�

∣∣u+∣∣p dx.

Then J(τu) → –∞ (τ → ∞). So there exists τ >  such that u = τu ∈ X, ‖u‖ > ρ ,
J(u) < . Hence, by the mountain pass lemma without (PS) condition (see []), we obtain
a sequence {un} ⊂ X such that J(un) → c, J ′(un) →  for

c = inf
g∈�

max
u∈g([,])

J(u) ≥ γ > ,

where

� =
{

g ∈ C
(
[, ], X

)
: g() = , g() = u

}
.

Due to

max
t∈[,]

J(tu) = max
t∈[,]

J(tu) <
a

b
,

and from the definition of c, we have  < c < a

b . Similarly to the arguments of Lemma .,
we can show that under the condition c < a

b , J satisfies the (PS)c condition, i.e., {un}
possesses a convergent subsequence (still denoted by {un}) and converges to u. So it follows
from the continuity of J and J ′ that J(u) = c > , J ′(u) = . But J() = , therefore u �= .

By the mountain pass theorem, J has a positive critical value and the problem

{
–(a – b

∫
�

|∇u| dx)�u = |u+|p–u+, x ∈ �,
u = , x ∈ ∂�,

()
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has a nontrivial solution u. Multiplying the equation by u– and integrating over �, we find

(
a – b‖u‖)∥∥u–∥∥ = .

Noting un → u and ‖un‖
�

a
b , we obtain ‖u–‖ = . Hence u– =  and u(x) ≥ , x ∈ �.

Therefore, u is a nontrivial non-negative solution of (). �
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