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Abstract
This article aims to organize positive solutions to discrete fractional boundary value
problems for continuous Gâteaux differentiable functions. A generalized Gâteaux
derivative is introduced using a fractional discrete operator for a Jumarie fractional
operator. The method of finding solutions is based on critical point theorems of finite
dimensional Banach spaces.

1 Introduction
In , Diaz and Osler [] imposed a discrete fractional difference operator based on an
infinite series. In , Gray and Zhang [] presented a class of fractional difference oper-
ators and introduced the Leibniz formula. In , Atici and Eloe [] introduced methods
for composing fractional sums and differences. Mathematicians, physicists, and engineers
have recently employed fractional calculus to solve varieties of models of applied problems
in different fields. In a previous work, we developed various classes of discrete fractional
operators with one or two parameters for image and signal processing [–].

Researchers in the fields of computer science, neural networks, control systems, food
processing, and economics rely on mathematical modeling because it naturally entails
nonlinear difference equations. Therefore, many authors have widely developed various
procedures and patterns, such as upper and lower solutions, fixed point theorems, and
the Brouwer degree, to study discrete models [–]. Critical point theory has recently
attracted the attention of many researchers. The theory guarantees the outcomes of both
ordinary and partial differential problems. Hence, critical point theory is the main tool for
finding solutions to fractional discrete nonlinear equations.

This study aims to establish positive solutions to discrete fractional boundary value
problems for continuous Gâteaux differentiable functions. A generalized Gâteaux deriva-
tive is introduced using a fractional discrete operator. Some results are refined in this di-
rection. The method for finding solutions is based on critical point theorems of finite di-
mensional Banach spaces. The applications are illustrated to study the abstract outcomes.

2 Main methods
This section deals with preliminaries and some concepts.
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Definition . [] For a continuous function g : R →R and a constant � > , the forward
operator FW (�) is defined by the equality

FW (�)g(x) := g(x + �).

The fractional difference on the right and of the order ℘ ,  < ℘ <  of g(x) is defined by the
formula

�℘g(x) :=
(
FW (�) – 

)℘g(x)

with its fractional derivative on the right

g(℘)
+ (x) = lim

�→

�℘[g(x) – g()]
�℘

.

Definition . [] Let (�,‖ ·‖) be a real Banach space with the dual space �∗. A function
ϕ : � → R is called Gâteaux differentiable at x ∈ � if χ := ϕ′(x) ∈ �∗ satisfies

lim
�→+

ϕ(x + �y) – ϕ(x)
�

= ϕ′(x)(y), ∀y ∈ �.

Definition . [] A function ϕ : � → R is called Gâteaux differentiable and ver-
ifies the Palais-Smale condition ((PS)-condition) if any bounded sequence {xn} with
limn→∞ ‖ϕ′(xn)‖�∗ =  has a convergent subsequence.

Combining Definitions . and ., we obtain a fractional Gâteaux derivative.

Definition . Let (�,‖ · ‖) be a real Banach space with the dual space �∗. A function
ϕ : � → R has a fractional Gâteaux derivative, of the order  < ℘ <  at x ∈ � if ϕ(℘)(x) ∈ �∗

exists such that for a constant � > , the forward operator FWy(�), y ∈ � is defined by the
equality

FWy(�)ϕ(x) := ϕ(x + �y),

with the fractional difference on the right

�℘
y ϕ(x) :=

(
FWy(�) – 

)℘
ϕ(x),

and its fractional derivative on the right

lim
�→+

�℘
y [ϕ(x) – ϕ()]

�℘
= ϕ(℘)(x)(y), ∀y ∈ �.

The next results show some properties of the fractional Gâteaux derivative, which basi-
cally are generalizations of some results given in []. Therefore, we skip the proofs.

Theorem . Suppose that � is a real Banach space and F , G : � → R are two continu-
ously fractional Gâteaux differentiable functions. Assume that

T := F – G
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and that x ∈ � and ρ,ρ ∈R exist, with ρ < F(x) < ρ, thereby obtaining

sup
y∈F– ]ρ,ρ[

G(y) < G(x) + ρ – F(x), ()

sup
y∈F– ]–∞,ρ]

G(y) < G(x) + ρ – F(x). ()

Presume that T satisfies the (PS)-condition. Then y ∈ F– ]ρ,ρ[ such that T(y) < T(y),
y ∈ F– ]ρ,ρ[, and T ′(y) = .

Theorem . Let � be a real Banach space, and let F , G : � →R be two continuous frac-
tional Gâteaux differentiable functions. Assume that

T = F – G

and that x ∈ � and ρ ∈R such that ρ > F(x)

sup
y∈F– ]–∞,ρ[

G(y) < G(x) + ρ – F(x). ()

We infer that T satisfies the (PS)-condition. Then y ∈ F– ]–∞,ρ[ such that T(y) < T(y),
y ∈ F– ]–∞,ρ[, and T ′(y) = .

Theorem . Let � be a real Banach space and let F , G : � → R be two continuous frac-
tional Gâteaux differentiable functions. Assume that

T = F – G,

where T is bounded from below, and x ∈ � and ρ ∈R with ρ < F(x) such that

sup
y∈F– ]–∞,ρ]

G(y) < G(x) + ρ – F(x). ()

We deduce that T satisfies the (PS)-condition. Then y ∈ F– ]ρ, +∞[ such that T(y) ≤
T(y), y ∈ F– ]ρ, +∞[, and T ′(y) = .

We apply the above critical point theorems to find solutions to the fractional difference
equation, taking the type

– �℘
y

(
ψp

(�℘
y μk–

))
+ σkψp(μk) = h(k,μk), k ∈ [, N], ()

μ = μN+ = ,

where h : [, N] × R → R is a continuous function, σk ≥ , and ψp(ς ) := |ς |p–ς ,
 < p < +∞.

Define the Banach space as

B :=
{
μ : [, N + ] →R : μ = μn+ = 

}
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endowed with a discrete norm

‖μ‖ :=

(N+∑

k=

∣∣�℘

y,k–μ
∣∣p + σk|μ|p

)/p

such that (see [, Lemma .])

max
k∈[,N]

|μk| ≤ (N + )(p–)/p


‖μ‖, ∀μ ∈ B.

Let

F(μ) :=
‖μ‖p

p
, G(μ) :=

N∑

k=

H(k,μk), T(μ) := F(μ) – G(μ), ∀μ ∈ B,

where

H(k, t) :=
∫ t


h(k, u) du, ∀(k, t) ∈ [, N] ×R.

Note that T ∈ C(B,R), T() = , and that all the critical points of T are the solutions
of ().

3 Main findings
In this section, we introduce at least one solution to problem () with the following results.

Theorem . Consider three positive constants C, C, and C such that

C <
( + σ )/p(N + )(p–)/pC


< C, ()

where σ :=
∑N

k= σk . If

β :=
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(C)p – ( + σ )(N + )p–Cp ≤ 

p(N + )p–

and

β :=
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(C)p – ( + σ )(N + )p–Cp ≤ 

p(N + )p– ,

where (Ci)p �= ( + σ )(N + )p–Cp, i = , , then () has at least one non-trivial solution μ∗

such that

C

(N + )(p–)/p <
∥
∥μ∗∥∥ <

C

(N + )(p–)/p .

Proof We aim to apply Theorem . on T , because the critical points of T are solutions
to (). Choose ω ∈ B and define

ωk :=

{
C, k ∈ [, N],
, k = , k = N + .
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Thus, we obtain

F(ω) =
 + σ

p
Cp.

According to condition (), a computation implies that

ρ :=
(C)p

p(N + )p– < F(ω) <
(C)p

p(N + )p– := ρ.

We proceed to consider conditions () and ():

sup
y∈F– ]–∞,ρ]

(
G(y) – G(ω)
ρ – F(ω)

)
≤

∑N
k= maxt H(k, t) –

∑N
k= H(k, C)

(C)p

p(N+)p– – +σCp
p

= p(N + )p–
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(C)p – ( + σ )(N + )p–Cp

:= p(N + )p–β ≤ .

Similarly, we have

sup
y∈F–]ρ,ρ[

(
G(y) – G(ω)
ρ – F(ω)

)
≤

∑N
k= maxt H(k, t) –

∑N
k= H(k, C)

(C)p

p(N+)p– – +σCp
p

= p(N + )p–
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(C)p – ( + σ )(N + )p–Cp

:= p(N + )p–β ≤ .

Thus, in virtue of Theorem ., we conclude that T has at least one critical point μ∗ such
that

ρ < F
(
μ∗) < ρ,

and we obtain

C

(N + )(p–)/p <
∥
∥μ∗∥∥ <

C

(N + )(p–)/p . �

By letting C = , C = C, we obtain the following result.

Corollary . Consider two positive constants C and C with

( + σ )/p(N + )(p–)/p < . ()

If

β :=
∑N

k= H(k, C) –
∑N

k= maxt H(k, t)
( + σ )(N + )p– ≤ Cp

p(N + )p–
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and

β :=
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
p – ( + σ )(N + )p– ≤ Cp

p(N + )p– ,

where p �= ( + σ )(N + )p– �= , then () has at least one non-trivial solution μ∗ such that

∥
∥μ∗∥∥ <

C
(N + )(p–)/p .

Theorem . Consider two positive constants C and ε such that

( + σ )/p(N + )(p–)/pC


< ε. ()

If

β :=
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(ε)p – ( + σ )(N + )p–Cp ≤ 

p(N + )p– ,

where (ε)p �= ( + σ )(N + )p–Cp, then () has at least one non-trivial solution μ∗ such
that

∥
∥μ∗∥∥ ≤ ε

(N + )(p–)/p .

Proof We aim to employ Theorem . on T , where all critical points of T are solutions
to (). Choose ω ∈ B as in Theorem .. We have

F(ω) =
 + σ

p
Cp.

According to condition (), a calculation yields

F(ω) <
(ε)p

p(N + )p– := ρ.

We proceed to consider condition ():

sup
y∈F– ]–∞,ρ[

(
G(y) – G(ω)

ρ – F(ω)

)
≤

∑N
k= maxt H(k, t) –

∑N
k= H(k, C)

(ε)p

p(N+)p– – +σCp
p

= p(N + )p–
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(ε)p – ( + σ )(N + )p–Cp

:= p(N + )p–β ≤ .

Thus, in view of Theorem ., we observe that T has at least one critical point μ∗ such
that

F
(
μ∗) < ρ,
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and we obtain

∥
∥μ∗∥∥ ≤ ε

(N + )(p–)/p .

This completes the proof. �

Theorem . Consider two positive constants C and γ such that

γ <
( + σ )/p(N + )(p–)/pC


. ()

If

η :=
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(γ )p – ( + σ )(N + )p–Cp ≤ 

p(N + )p– ,

where (γ )p �= ( + σ )(N + )p–Cp, then () has at least one non-trivial solution.

Proof Our aim is to employ Theorem . on T , because the critical points of T are solu-
tions to (). We put ω ∈ B as in Theorem . such that

F(ω) =
 + σ

p
Cp.

According to condition (), a manipulation leads to

ρ :=
(γ )p

p(N + )p– < F(ω).

Thus, we consider condition ():

sup
y∈F– ]–∞,ρ]

(
G(y) – G(ω)

ρ – F(ω)

)
≤

∑N
k= maxt H(k, t) –

∑N
k= H(k, C)

(γ )p

p(N+)p– – +σCp
p

= p(N + )p–
∑N

k= maxt H(k, t) –
∑N

k= H(k, C)
(γ )p – ( + σ )(N + )p–Cp

:= p(N + )p–η ≤ .

Therefore, in virtue of Theorem ., we conclude that T has at least one critical point.
The boundedness of the solution is due to the (SP)-condition. The above completes the
proof. �

4 Multiplicity findings
We impose multiplicity solutions in this section.

Theorem . Let the hypothesis of Theorem . hold. Assume that h(k, ) �= , k ∈ [, N].
Consider two constants κ > p and κ >  such that for |χ | ≥ κ, one has

 < κH(k,χ ) ≤ χh(k,χ ). ()

If T ′ is a Lipschitz continuous functional in B, then () admits at least two solutions.
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Proof In view of Theorem ., () has at least one solution, say μ. We use the mountain
pass theorem to identify the second solution. The functional T = F – G is obviously in
class C(B,R) with T() = . Assume that μ is a strict local minimum for T in B. Thus a
constant � >  satisfies

inf‖μ–μ‖=�
T(μ) > T(μ), ∀μ ∈ B.

After integrating (), we observe that there are two positive constants b and b such that

H(k, t) ≥ b|t|κ – b, ∀k ∈ [, N], t ∈R.

We then proceed to identify the second solution of (). Let ν ∈ B\{}. A calculation then
yields

T(tν) = (F – G)(tν)

=

p
‖tν‖p –

N∑

k=

H(k, tνk)

≤ tp

p
‖ν‖p – tκ b

N∑

k=

|νk|κ + bN .

Given that κ > p, we have

tp

p
‖ν‖p – tκ b

N∑

k=

|νk|κ + bN → –∞, as t → +∞.

This formula implies that the functional T has a critical point μ := infν∈B maxt∈R T(ν(t)),
which is the second solution for (). This condition completes the proof. �

In the same manner as in Theorem ., we have the following results.

Theorem . Let the hypothesis of Theorem . be satisfied. Assume that h(k, ) �= , k ∈
[, N]. Consider the assertion of (). If T ′ is a Lipschitz continuous functional in B, then
() admits at least two solutions.

Theorem . Let the hypothesis of Theorem . hold. Assume that h(k, ) �= , k ∈ [, N].
Consider the inequality (). If T ′ is a Lipschitz continuous functional in B, then () admits
at least two solutions.

5 Positive findings
We focus on the positive results of problem (). For this purpose, we assume

h(k, t) :=

{
λk�(t), t ≥ ,
, t < ,

()

where λ : [, N] → R is a non-negative, non-zero function and � : [, +∞) → R is a con-
tinuous function with �() = . We have the following result.
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Theorem . Let h(k, t) be defined in () and () let be satisfied. Then the problem

– �℘
y

(
ψp

(�℘
y μk–

))
+ σkψp(μk) = λk�(μk), k ∈ [, N], ()

μ = μN+ = 

has at least one positive solution μk .

Proof By Theorem ., we conclude that () has at least one solution μ∗. If σk =  and
μj := mink∈[,N] μk , then we obtain

– �℘
y

(
ψp

(�℘
y μk–

)) ≥ , k ∈ [, N].

However, ψp is strictly monotone, and μj – μj– =  and μj+ – μj = . Consequently, we
have a positive solution. Let σk �= , we attain

ψp
(�℘

y μj
) ≥ ∣

∣�℘
y μj

∣
∣p–(μj+ – μj)℘ –

∣
∣�℘

y μj–
∣
∣p–(μj – μj–)℘

≥ 

and

σjψp(μj) ≥ |μj|p–(μj+ – μj)℘ – |μj–|p–(μj – μj–)℘ ,

≥ 

so μj ≥  and μ ≥ . This completes the proof. �

In the same manner as Theorem ., we have the following.

Theorem . Let h(k, t) be defined in () and let () hold. Then problem () has at least
one positive solution μk .

6 Example
Assume the problem

– �℘
y (μk–) + σkμk =

λ


+ |μk|μk , k ∈ [, N], ()

μ = μN+ = .

Let h(ζ ) := λ
 + |ζ |ζ , ζ ∈ R. It is clear that h() �= , when λ �=  and limζ→+ h(ζ )

ζ
= +∞.

Moreover, we let κ =  > p =  and κ =  ⇒ |ζ | ≥ . Thus, we conclude that

 < H(ζ ) ≤ ζh(ζ ), ∀|ζ | ≥ ,λ > .

Obviously, T ′(μk) = ( ‖μ‖p

p –
∑N

k= H(k,μk))′ is a Lipschitz continuous functional. Hence in
view of Theorem ., problem () has at least two solutions.
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Now let σk =  and λ = . We then have the following problem:

– �℘
y (μk–) = |μk|μk , k ∈ [, N], ()

μ = μN+ = 

such that �(t) := t|t|, t ∈ [,∞). Hence, in view of Theorem ., where inequality () is
satisfied for σ = , problem () has at least one positive solution.
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