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Abstract
In this paper, we consider the initial boundary value problem of the double
dispersive-dissipative wave equation with nonlinear damping and source terms. By
the combination of the Galerkin method and the monotonicity-compactness
method, the existence of global solutions is obtained with the least amount of a priori
estimates. Moreover, the asymptotic behavior of global solutions is investigated
under some assumptions on the initial data.
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1 Introduction
This paper deals with the initial boundary value problem of the double dispersive-
dissipative wave equation with nonlinear damping and source terms

utt – �u – β�ut + γ�u – δ�utt + g(ut) = f (u), x ∈ �, t > , (.)

where � ⊂ Rn is a suitably smooth bounded domain, β , γ , and δ are some physical pa-
rameters. g(s), f (s) are given nonlinear functions.

Equation (.) includes many important physical models. For example, in the absence of
a dissipative term, double dispersive terms (β = γ = δ = ), and a damping term g(ut) = ,
the model reduces to the common semilinear wave equation

utt – �u = f (u), x ∈ �, t > . (.)

In , Sattinger [] studied the existence of global weak solutions of (.) by using the
potential well method. From then on, the potential well theory has become one of the
most important methods for studying nonlinear evolution equations. In , Payne and
Sattinger [] made the most important and typical work on the potential well method.
They proved the finite time blow up of solutions of (.). In , Liu [] studied the
initial boundary value problem of (.), where f (u) = |u|p–u. He gave some results on the
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properties of the family of potential wells. Then, by using them, he obtained some results
of the existence and nonexistence of global solutions. In a subsequent article [], Liu gave
a threshold result of the global existence and nonexistence of solutions and proved the
global existence of solutions with critical initial conditions J(u) = d. For the semilinear
wave equation (.) with nonlinear boundary velocity feedback, it is important to cite [–
] and the references therein. In , Lasiecka and Tataru [] obtained the uniform decay
rates of the energy for (.) under the assumption that the boundary velocity feedback is
dissipative. In , Vitillaro [] studied the local existence, blow up, and global existence
of the solutions for (.) with nonlinear boundary velocity feedback. In , Cavalcanti
et al. [] proved the existence and uniform decay rates of the energy even if the nonlinear
boundary velocity feedback has a polynomial growth near the origin.

In the absence of a dissipative term, double dispersive terms (β = γ = δ = ), taking the
nonlinear damping term g(ut) = a|ut|m–ut and the nonlinear source term f (u) = b|u|p–u,
the model (.) reduces to the wave equation with nonlinear damping and source terms

utt – �u + a|ut|m–ut = b|u|p–u, x ∈ �, t > . (.)

In , Georgiev and Todorova [] investigated the initial boundary value problem of
(.), where a = b = , p, m > . They proved the existence of global solutions under the
condition  < p ≤ m. When p ≥ m > , they obtained the finite time blow up of solutions
for sufficiently large initial data. In , Ikehata [] investigated the initial boundary value
problem of (.), where b =  and any a = δ > . He proved that  ≤ m < p < ∞ if n = , ,
and  ≤ m < p ≤ n

n– if n ≥ , the problem (.) had a global solution for sufficiently small
initial data. In , Vitillaro [] proved the global nonexistence of the solutions with pos-
itive initial energy. He also gave the application concerning the classical equations of linear
elasticity and the damped clamped plate equation. In , Messaoudi [] changed the
nonlinear term a|ut|m–ut , b|u|p–u into a|ut|m–ut , b|u|p–u. He proved that any strong
solution, with negative initial energy, blows up in finite time under the condition p > m.
Messaoudi [, ] changed the nonlinear term a|ut|m–ut , b|u|p–u into aut( + |ut|m–),
b|u|p–u. He investigated the global nonexistence and exponential decay of solutions, re-
spectively. For the Cauchy problem associated to (.), when � is replaced by the entire
space Rn, Serrin and Todorova [] studied the existence of the solutions for the case p < m.

When taking into account no effects of dispersion caused by transverse shearing and
nonlinear damping, in one dimension, the model (.) reduces to the fourth-order wave
equation

utt – uxx – uxxt – uxxtt = f (u). (.)

This type of equation was derived by Hayes and Saccomandi [] in studying the propa-
gation of transverse homogeneous waves in special incompressible viscoelastic solids. In
, Shang [] studied the initial boundary value problem of the fourth-order nonlinear
wave equation (.). The existence and uniqueness of a global strong solution for the prob-
lem were obtained by means of the Galerkin method. The asymptotic behavior and blow
up phenomenon of the solution for the problem were discussed under certain conditions.

In the absence of a dispersive term and dissipation (β = γ = ), and when the damp-
ing term is linear, that is, g(ut) = ut , the model (.) becomes the D fourth-order wave
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equation

utt – uxx + ut – uxxtt = f (u). (.)

This type of equation was derived in the study of a longitudinal vibration of a bar. The
weak damping term of (.) is introduced to model the contacting of the bar with a rough
substrate or a viscous external medium. The dispersive term of the above equation is used
to explain the lateral inertia of a bar [].

In the absence of the dispersive term and the damping term, that is, g(ut) =  and γ = ,
the model (.) reduces to the fourth-order wave equation (n ≥ )

utt – �u – �ut – �utt = f (u), x ∈ �, t > . (.)

In , Shang [] investigated the existence, uniqueness, asymptotic behavior, and the
blow up phenomenon of the solutions under some specific assumptions on f and for n =
, , . In , Zhang and Hu [] proved the existence and the stability of global weak
solutions. In , Xie and Zhong [] studied the initial boundary value problem of (.).
They established the existence of global attractors in H

(�) × H
(�), where the nonlinear

term f satisfies a critical exponential growth condition. In , Xu et al. [] investigated
the asymptotic behavior of solutions for (.) by using the multiplier method. For more
results on the long-time behaviors of global strong solutions of the initial boundary value
problem of (.), the reader is referred to [–].

If γ = , β = δ = , g(ut) = ut and f (u) = |u|p–u, the model (.) reduces to the fourth-
order dispersive-dissipative wave equation

utt – �u + �ut – �utt + ut = |u|p–u, x ∈ �, t > , (.)

In , Xu and Yang [] investigated the initial boundary value problem of (.), where
 < p < ∞ if n = , , and  < p ≤ n+

n– if n ≥ . A blow up result for certain solutions with
arbitrary positive initial energy was established.

As far as we know, there have been no results up till now on the initial boundary value
problem for a nonlinear wave equation with double dispersive terms �u, �utt , the strong
dissipation term �ut , the nonlinear damping term g(ut), and the nonlinear source term
f (u). So the aim of the present paper is to solve this open problem.

In this work, we investigate the initial boundary value problem for the double dispersive
wave equation with a strong dissipation term, a nonlinear damping and source terms:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u – �ut + �u – �utt + a|ut|m–ut = b|u|p–u, x ∈ �, t > ,

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,

u = , ∂u
∂ν

= , x ∈ ∂�, t > ,

(.)

where a, b > , p, m > , ν represents the unit outward normal to ∂�, and � is a bounded
domain of Rn (n ≥ ) with a smooth boundary ∂�. First of all, by the combination of the
Galerkin method and the monotonicity-compactness method, the existence of global so-
lutions is obtained with the least amount of a priori estimates. Moreover, the asymptotic
behavior of global solutions is investigated under some assumptions on the initial data.
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This paper is organized as follows. In Section , we introduce some notation, basic
definitions, and important lemmas for proving the main theorem. In Section , the ex-
istence of global weak solutions is proved by the Galerkin method and the monotonicity-
compactness method. In Section , we consider the asymptotic behavior of global solu-
tions under some assumptions on the initial data.

2 Preliminaries
In this section, we introduce some notation, basic definitions, and important lemmas
which will be needed in this paper.

For functions u(x, t), v(x, t) defined on �, we introduce

(u, v) =
∫

�

uv dx, ‖u‖ =
(∫

�

|u| dx
) 


,

‖u‖p =
(∫

�

|u|p dx
) 

p
, ‖u‖Hm =

( ∑

|α|≤m

∥
∥Dαu

∥
∥



) 


,

‖u‖∞ = ess sup
x∈�

∣
∣u(x)

∣
∣.

To obtain the results of this paper, we will introduce the energy function

E(t) =


‖ut‖

 +


‖∇u‖

 +


‖�u‖

 +


‖∇ut‖

 –
b
p
‖u‖p

p. (.)

For simplicity, we define the weak solutions of (.) over the interval [, T), but it is to be
understood throughout that T is either infinity or the limit of the existence interval.

Definition . We say that u(x, t) is a weak solution of the problem (.) on the inter-
val � × [, T), if u ∈ L∞(, T ; H

(�) ∩ Lp(�)), ut ∈ L∞(, T ; H
(�)) ∩ Lm(QT ) satisfy the

following conditions:
(i) For any v ∈ H

(�) ∩ Lm(�) and a.e.  ≤ t < T , such that

(utt , v) + (∇u,∇v) + (∇ut ,∇v) + (�u,�v) + (∇utt ,∇v)

+
(
a|ut|m–ut , v

)
=

(
b|u|p–u, v

)
; (.)

(ii) u(x, ) = u(x) in H
(�) ∩ Lp(�), ut(x, ) = u in H

(�) ∩ Lm(�).

Lemma . Let p, m > , a, b > , and u be a solution of (.). Then E(t) is a non-increasing
function, that is,

E′(t) ≤ . (.)

Moreover, the following energy inequality holds:

E(t) +
∫ t



∥
∥∇ut(τ )

∥
∥

 dτ ≤ E(). (.)



Di and Shang Boundary Value Problems  (2015) 2015:29 Page 5 of 15

Proof Multiplying (.) by ut , and integrating over �, using integration by parts and some
manipulation as in [], we obtain (.), (.) for any regular solutions. These results re-
main valid for weak solutions by a simple density argument. We also refer the reader to [,
] as regards the method of density arguments.

The following lemma is similar to Lemma . of Chapter ii of [] with a slight modifi-
cation. �

Lemma . Assume that the function u satisfies u ∈ L∞(, T ; H
(�)), ut ∈ L∞(, T ;

H
(�)) ∩ Lm(QT ), u(x, ) = u, ut(x, ) = u, and further assume that

utt – �u – �ut + �u – �utt = g,

g ∈ L(, T ; H–(�)
)

+ Lm′
(QT ), (.)

then for any t ∈ (, T), the following inequality holds:

‖∇u‖
 + ‖ut‖

 + ‖�u‖
 + ‖∇ut‖

 + 
∫ t


‖∇ut‖

 dτ

≥ ‖∇u‖
 + ‖u‖

 + ‖�u‖
 + ‖∇u‖

 + 
∫ t


(g, ut) dτ . (.)

Proof By choosing the continuous piecewise linear function θm(t) and the regular se-
quence ρn(t), we construct the smooth function v(t) = ((θmu′) ∗ ρn ∗ ρn)θm. Then, mul-
tiplying (.) by v(t) and integrating over Q = � × (, T), using integration by parts and
some manipulation as in Chapter  of [] as m, n → ∞, we can obtain the inequality (.).
This method of smooth approximations is called the method of mollifiers. We also refer
reader to [, ] about the method of mollifiers.

We construct an approximate weak solution of the problem (.) by the Galerkin
method. Let {wj} be the system of base functions of H

(�) ∩ Lm(�).
Now suppose that the approximate weak solutions of the problem (.) can be written

ul(x, t) =
l∑

j=

dj
l(t)wj(x), l = , , . . . . (.)

According to the Galerkin method, these coefficients dj
l(t) need to satisfy the following

initial value problem of the nonlinear ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ultt , wj) + (∇ul,∇wj) + (∇ult ,∇wj) + (�ul,�wj) + (∇ultt ,∇wj)

+ (a|ult|m–ult , wj) = (b|ul|p–ul, wj), x ∈ �, t > ,

ul(x, ) =
∑l

j= dj
l()wj(x) −→ u(x), in H

(�) ∩ Lp(�),

ult(x, ) =
∑l

j= dj
l()′wj(x) −→ u(x), in H

(�) ∩ Lm(�).

(.)

Under some assumption for the nonlinear terms and a priori estimates in Section , we
prove that the initial value problem (.) of the nonlinear ordinary differential equations
has global solutions in the interval [, T]. Furthermore, we show that the solutions of the
problem (.) can be approximated by the functions ul(x, t). �
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3 The existence of global weak solutions
In this section, we establish the existence of global weak solutions for the problem (.).

Theorem . Suppose that a, b > ,  < p ≤ m < ∞, u(x) ∈ H
(�) ∩ Lp(�), u(x) ∈

H
(�) ∩ Lm(�), Then for any T > , the problem (.) admits a global weak solution

u ∈ L∞(, T ; H
(�) ∩ Lp(�)), ut ∈ L∞(, T ; H

(�)) ∩ Lm(QT ).

Proof Multiplying (.) by dj
l(t)′ and summing for j = , . . . , l, we have

d
dt

[


‖ult‖

 +


‖∇ul‖

 +


‖�ul‖

 +


‖∇ult‖

 –
b
p
‖ul‖p

p

]

+ ‖∇ult‖
 + a‖ult‖m

m = . (.)

Integrating (.) with respect to t from  to t, we find



‖ult‖

 +


‖∇ul‖

 +


‖�ul‖

 +


‖∇ult‖



–
b
p
‖ul‖p

p +
∫ t


‖∇ult‖

 dτ + a
∫ t


‖ult‖m

m dτ

=


∥
∥ult()

∥
∥

 +


∥
∥∇ul()

∥
∥

 +


∥
∥�ul()

∥
∥

 +


∥
∥∇ult()

∥
∥

 –
b
p
∥
∥ul()

∥
∥p

p,

since

ul(t) = ul() +
∫ t


ult dτ .

By the Minkowski inequality, we have

∥
∥ul(t)

∥
∥

p ≤ ∥
∥ul()

∥
∥

p +
∫ t


‖ult‖p dτ ,

∥
∥ul(t)

∥
∥p

p ≤ p
[
∥
∥ul()

∥
∥p

p +
(∫ t


‖ult‖p dτ

)p]

.
(.)

Taking q = p
p– and considering the Hölder inequality, we get

(∫ t


‖ult‖p dτ

)p

≤
(∫ t


q dτ

) p
q
∫ t


‖ult‖p

p dτ = tp–
∫ t


‖ult‖p

p dτ . (.)

Using the Young inequality, we see that

tp–|ult|p ≤ ε
p
m

|ult|m + c(ε)
m – p

m
tβ , m ≥ p, (.)

where β = (p – ) m
m–p , c(ε) = ε

p
p–m . Hence, we have

tp–
∫ t


‖ult‖p

p dτ ≤ ε
p
m

‖ult‖m + c(ε)
m – p

m
tβ+|�|. (.)
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From (.)-(.), we get

b
p
∥
∥ul(t)

∥
∥p

p ≤ b
p

p
[
∥
∥ul()

∥
∥p

p +
(∫ t


‖ult‖p dτ

)p]

=
b
p

p∥∥ul()
∥
∥p

p +
b
p

p
(∫ t


‖ult‖p dτ

)p

≤ b
p

p∥∥ul()
∥
∥p

p + ε
b
m

p‖ult‖m + c(ε)
m – p

pm
bptβ+|�|. (.)

Choosing ε such that ε b
m p = a

 , we see that



‖ult‖

H +


‖∇ul‖

 +


‖�ul‖

 +
∫ t


‖∇ult‖

 dτ +
a


∫ t


‖ult‖m

m dτ

≤ 

∥
∥ult()

∥
∥

H +


∥
∥∇ul()

∥
∥

 +


∥
∥�ul()

∥
∥



–
(p – )b

p
∥
∥ul()

∥
∥p

p + c(ε)
m – p

pm
bptβ+|�|

≤ M(T). (.)

Thus, we find that

‖ult‖
H , ‖∇ul‖

, ‖�ul‖
,

∫ t


‖∇ult‖

 dτ ,
∫ t


‖ult‖m

m dτ

are finite and can be controlled by a constant depending on T . Together with (.), we find
that

‖ul‖p
p ≤ M(T),  ≤ t ≤ T .

Hence, ul ∈ L∞(, T ; H
(�) ∩ Lp(�)), ult ∈ L∞(, T ; H

(�)) ∩ Lm(QT ). We see that

(
a|ult|m–ult , ult

)
= a‖ult‖m

m,
(
b|ul|p–ul, ul

)
= b‖u‖p

p,

so we obtain a|ult|m–ult ∈ Lm′ (QT ), b|ul|p–ul ∈ L∞(, T ; Lp′ (�)).
Thus, we can show that there exist a subsequence {uv} from the sequences {ul} and limit

functions u, ξ , η, such that

uv −→ u in L∞(
, T ; H

(�) ∩ Lp(�)
)

weakly star, v −→ ∞,

uv −→ u a.e. in Q = � × [, T), v −→ ∞,

uvt −→ ut in L∞(
, T ; H

(�)
)

weakly star, v −→ ∞,

uvt −→ ut in Lm(QT ) weakly, v −→ ∞,

a|uvt|m–uvt −→ ξ in Lm′
(QT ) weakly, v −→ ∞,

b|uv|p–uv −→ η in L∞(
, T ; Lp′

(�)
)

weakly star, v −→ ∞.

Making use of the Lions lemma in [], it follows that b|ul|p–ul −→ b|u|p–u = η.
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Integrating (.) with respect to t, we get

(ult , wj) + (∇ult ,∇wj) +
∫ t


(∇ul,∇wj) dτ

+ (∇ul,∇wj) +
∫ t


(�ul,�wj) dτ + a

∫ t



(|ult|m–ult , wj
)

dτ

= b
∫ t



(|ul|p–ul, wj
)

dτ +
(
ult(), wj

)
+

(∇ult(),∇wj
)

+
(∇ul(),∇wj

)
. (.)

Taking l = v → ∞ in (.), we have

(ut , wj) + (∇ut ,∇wj) +
∫ t


(∇u,∇wj) dτ

+ (∇u,∇wj) +
∫ t


(�u,�wj) dτ +

∫ t


(ξ , wj) dτ

= b
∫ t



(|u|p–u, wj
)

dτ + (u, wj) + (∇u,∇wj) + (∇u,∇wj), (.)

and consequently, differentiating (.) with respect to t, we deduce

(utt , wj) + (∇u,∇wj) + (∇ut ,∇wj) + (�u,�wj)

+ (∇utt ,∇wj) + (ξ , wj) =
(
b|u|p–u, wj

)
. (.)

Considering that the basis {wj(x)}∞j= is dense in H
(�) ∩ Lm(�), we choose a function

v ∈ H
(�) ∩ Lm(�) having the form v =

∑∞
j= djwj(x), where {dj}∞ are given functions.

Multiplying (.) by dj, summing for j = , . . . , then we deduce

(utt , v) + (∇u,∇v) + (∇ut ,∇v) + (�u,�v) + (∇utt ,∇v) + (ξ , v)

=
(
b|u|p–u, v

)
, ∀v ∈ H

(�) ∩ Lm(�).

Next, we need to prove that

ξ = a|ut|m–ut . (.)

In fact, from (.) we obtain



‖ult‖

H +


‖∇ul‖

 +


‖�ul‖

 +
∫ t


‖∇ult‖

 dτ +
∫ t



(
γ (ult), ult

)
dτ

=


∥
∥ult()

∥
∥

H +


∥
∥∇ul()

∥
∥

 +


∥
∥�ul()

∥
∥

 +
∫ t



(
b|ul|p–ul, ult

)
dτ ,

where γ (ult) = a|ult|m–ult . From what has been discussed above, taking l −→ ∞, we have



‖ut‖

H +


‖∇u‖

 +


‖�u‖

 +
∫ t


‖∇ut‖

 dτ + lim inf
∫ t



(
γ (ult), ult

)
dτ

≤ 

‖u‖

H +


‖∇u‖

 +


‖�u‖

 +
∫ t



(
b|u|p–u, ut

)
dτ . (.)
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Combining (.) and Lemma ., we deduce

∫ t


(g, ut) dτ ≤

∫ t



(
b|u|p–u, ut

)
dτ – lim inf

∫ t



(
γ (ult), ult

)
dτ . (.)

Noting that m′ = m
m– < p

p– = p′, it follows that b|u|p–u ∈ L∞(, T ; Lp′ (�)) ⊂ Lm′ (QT ).
From Lemma ., we know that the function g ∈ L(, T ; H–(�)) + Lm′ (QT ). Hence, we
can choose g = b|u|p–u – ξ such that

lim inf
∫ t



(
γ (ult), ult

)
dτ ≤

∫ t


(ξ , ut) dτ . (.)

Considering uvt → ut weakly in Lm(QT ) and a|uvt|m–uvt → ξ weakly in Lm′ (QT ), ∀ϕ ∈
Lm(QT ), we have

lim
∫ t



(
γ (ult), –ϕ

)
dτ =

∫ t


(ξ , –ϕ) dτ , (.)

lim
∫ t



(
–γ (ϕ), ult – ϕ

)
dτ =

∫ t



(
–γ (ϕ), ut – ϕ

)
dτ . (.)

By the combination of (.), (.), and (.), it follows that

lim inf
∫ t



(
γ (ult) – γ (ϕ), ult – ϕ

)
dτ ≤

∫ t



(
ξ – γ (ϕ), ut – ϕ

)
dτ . (.)

Utilizing the monotonicity of the function γ (s) = a|s|m–s, it means that

(
γ (ult) – γ (ϕ), ult – ϕ

)
= a(m – )

∫

�

|ult + θϕ|m–|ult – ϕ| dx ≥ , (.)

where  < θ < . Thus, from (.) and (.), we have

∫ t



(
ξ – γ (ϕ), ut – ϕ

)
dτ ≥ .

Taking t −→ T , we obtain

∫ T



(
ξ – γ (ϕ), ut – ϕ

)
dτ ≥ . (.)

In order to prove (.) from (.), we use the semi-continuity of the function γ (s) (s ∈ R).
Let ϕ = ut – λwt , λ > , and ∀wt ∈ L∞(, T ; H

(�)) ∩ Lm(QT ), then

λ

∫ T



(
ξ – γ (ut – λwt), wt

)
dτ ≥ ,

and

∫ T



(
ξ – γ (ut – λwt), wt

)
dτ ≥ .
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Passing to the limits as λ −→ , we obtain

∫ T



(
ξ – γ (ut), wt

)
dτ ≥ , ∀wt ∈ L∞(

, T ; H
(�)

) ∩ Lm(QT ). (.)

In a similar way, let ϕ = ut – λwt , λ < , and ∀wt ∈ L∞(, T ; H
(�)) ∩ Lm(QT ), then

∫ T



(
ξ – γ (ut), wt

)
dτ ≤ , ∀wt ∈ L∞(

, T ; H
(�)

) ∩ Lm(QT ). (.)

From (.), (.), we see that ξ = a|ut|m–ut . Thus, the theorem is completed. �

4 The asymptotic behavior of global weak solutions
In this section, we consider the asymptotic behavior of global weak solutions for the prob-
lem (.).

To obtain the results of this section, we now define some functionals as follows:

I
(
u(t)

)
= ‖∇u‖

 + ‖�u‖
 – b‖u‖p

p,

J
(
u(t)

)
=



‖∇u‖

 +


‖�u‖

 –
b
p
‖u‖p

p,

and

E(t) = E
(
u(t)

)
=



‖ut‖

 +


‖∇ut‖

 + J
(
u(t)

)

=


‖ut‖

 +


‖∇ut‖

 +


‖∇u‖

 +


‖�u‖

 –
b
p
‖u‖p

p.

Next, let us introduce the set

W =
{

u ∈ H
(�)|I(u(t)

)
> 

} ∪ {}.

Lemma . Let (u, u) ∈ W × H
(�) be given. Assume that a, b >  and

 < p ≤ m < ∞ if n = ,  and  < p ≤ m ≤ n
n – 

if n ≥ , (.)

α = bCp
∗p

[
p

p – 
E()

] p–


< , (.)

where C∗p is the Sobolev constant of the space H
(�) into Lp(�). Then for any t ≥ , the

global weak solutions of the problem (.) satisfy u(t) ∈ W .

Proof Since I(u) >  and the time continuity of I(u), then there exists t such that I(u(t)) ≥
 for all t ∈ [, t]. Thus, we see that

J
(
u(t)

)
=



‖∇u‖

 +


‖�u‖

 –
b
p
‖u‖p

p

=


[‖∇u‖

 + ‖�u‖

]

–

p
[‖∇u‖

 + ‖�u‖

]

+

p

I
(
u(t)

)

≥ p – 
p

[‖∇u‖
 + ‖�u‖


]
, (.)
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for any t ∈ [, t]. Hence, we obtain

‖∇u‖
 + ‖�u‖

 ≤ p
p – 

J(t) ≤ p
p – 

E(t) ≤ p
p – 

E(), (.)

for any t ∈ [, t]. If ‖∇u‖
 = , we have u =  (since u ∈ H

(�)). Hence, we have from the
definition of the set W : u ∈ W . If ‖∇u‖

 �= , by the Sobolev inequality and (.), (.), we
have

b‖u‖p
p ≤ bCp

∗p‖∇u‖p
 = bCp

∗p‖∇u‖p–
 ‖∇u‖



≤ bCp
∗p

[
p

p – 
E()

] p–
 ‖∇u‖

 = α‖∇u‖
 < ‖∇u‖

, (.)

for any t ∈ [, t]. Hence, we obtain ‖∇u‖
 – b‖u‖p

p > , ∀t ∈ [, t]. This shows that u(t) ∈
W , ∀t ∈ [, t]. We see that

lim
t−→t

bCp
∗p

[
p

p – 
E(t)

] p–
 ≤ α < , (.)

so the above argument may be repeated, and the solution can thus be extended to the time
t ≤ t < t. Continuing in this way, the assertion of the lemma is proved. �

Lemma . Assume that (.) and (.) hold. Then the global weak solutions of the prob-
lem (.) satisfy

∥
∥u(t)

∥
∥m

m ≤ LE(t), (.)

for some constant L depending on m, p and E() only.

Proof Using the Sobolev inequality and (.), we have

∥
∥u(t)

∥
∥m

m ≤ Cm
∗m‖∇u‖m

 = Cm
∗m‖∇u‖m–

 ‖∇u‖


≤ Cm
∗m

[
p

p – 
E()

] m–
 p

p – 
E(t) ≤ LE(t), (.)

where L = Cm∗m[ p
p– E()] m–

 p
p– , and C∗m is the Sobolev constant of the space H

(�) into
Lm(�), and the proof of the lemma is completed. �

Theorem . Assume that a, b > , and the conditions (.), (.) hold. Let (u, u) ∈ W ×
H

(�) be given. Then for the global weak solutions of the problem (.), there exist positive
constants M and k such that

E(t) ≤ Me–kt , ∀t ≥ . (.)

Proof From Lemma ., we know that, for any t ≥ , the global weak solutions of the
problem (.) satisfy u(t) ∈ W . Now defining

F(t) = E(t) + ε

∫

�

uut dx + ε

∫

�

∇u∇ut dx +
ε



∫

�

|∇u| dx, (.)
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we can show that for ε small enough, there exist two positive constants C and C such
that

CE(t) ≤ F(t) ≤ CE(t). (.)

In fact,

F(t) ≤ E(t) +
ε


‖ut‖

 +
ε


‖u‖

 +
ε


‖∇ut‖

 + ε‖∇u‖


≤ ( + ε)E(t) + εC(�)‖∇u‖


≤ ( + ε)E(t) + ε
p

p – 
E(t)

≤ CE(t) (.)

and

F(t) ≥ E(t) –
ε

γ
‖ut‖

 – εγ ‖u‖
 +

ε


‖∇u‖

 –
ε

γ
‖∇ut‖

 – εγ ‖∇u‖


≥ E(t) –
ε

γ

[‖ut‖
 + ‖∇ut‖


]

+ ε

(



– γ – γ C∗

)

‖∇u‖
, (.)

where C∗ is the Sobolev constant of the space H
(�) into L(�).

By choosing γ small enough, we have

F(t) ≥ E(t) –
ε

γ

[‖ut‖
 + ‖∇ut‖


]

≥ J
(
u(t)

)
+

(



–
ε

γ

)

‖ut‖
 +

(



–
ε

γ

)

‖∇ut‖
. (.)

Once γ is chosen, we take ε so small that

F(t) ≥ J
(
u(t)

)
+

C


‖ut‖

 +
C


‖∇ut‖

 ≥ CE(t), (.)

where C
 ≤ 

 – ε
γ

. Now differentiating (.) and utilizing (.), Lemma ., and the
Poincaré inequality, we have

F ′(t) = E′(t) + ε

∫

�

uutt dx + ε‖ut‖
 + ε

∫

�

∇u∇utt dx + ε‖∇ut‖
 +

ε


d
dt

‖∇u‖


= –
(
a‖ut‖m

m + ‖∇ut‖

)

+ ε
[‖ut‖

 + ‖∇ut‖
 – ‖∇u‖

 – ‖�u‖

]

– aε

∫

�

|ut|m–utu dx + εb‖u‖p
p

≤ –a‖ut‖m
m – [ – C∗ε – ε]‖∇ut‖

 – ε‖∇u‖
 – ε‖�u‖



– aε

∫

�

|ut|m–utu dx + εb‖u‖p
p. (.)
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Using the energy functionals and the Sobolev inequality, we have

b‖u‖p
p = λb‖u‖p

p + ( – λ)b‖u‖p
p

≤ λ

[
p

‖ut‖

 +
p

‖∇ut‖

 +
p

‖∇u‖

 +
p

‖�u‖



]

– pλE(t) + ( – λ)α‖∇u‖
, (.)

where α = bCp
∗p[ p

p– E()]
p–

 < .
Utilizing Lemma . and inserting (.) into (.), we have

F ′(t) ≤ –a‖ut‖m
m – [ – C∗ε – ε]‖∇ut‖

 – ε‖∇u‖
 – ε‖�u‖



+ ελ

[
p

‖ut‖

 +
p

‖∇ut‖

 +
p

‖∇u‖

 +
p

‖�u‖



]

– pελE(t) + ( – λ)α‖∇u‖
 dx + aεδ

∫

�

|u|m dx + C(δ)aε

∫

�

|ut|m dx

≤ –a‖ut‖m
m – [ – C∗ε – ε]‖∇ut‖

 – ε‖∇u‖
 – ε‖�u‖



+ ελ

[
p

‖ut‖

 +
p

‖∇ut‖

 +
p

‖∇u‖

 +
p

‖�u‖



]

– pελE(t)

+ ( – λ)α‖∇u‖
 dx + aεδLE(t) + aεC(δ)

[‖ut‖m
m + ‖∇ut‖


]

≤ –a
[
 – εC(δ)

]‖ut‖m
m – ε[λp – aδL]E(t)

+ ε

[

( – λ)α +
p

λ – 

]

‖∇u‖
 + ε

[
p

λ – 

]

‖�u‖


–
{

 – ε

[

C∗ +  + C(δ)a + λ
p


C∗ + λ
p


]}

‖∇ut‖
, (.)

where L is the constant of Lemma ., δ is any positive constant, and C(δ) is a constant
depending on δ, m only.

Thus, we see that

F ′(t) ≤ –a
[
 – εC(δ)

]‖ut‖m
m – ε[λp – aδL]E(t)

+ ε

[

( – λ)α +
p

λ – 

]

‖�u‖
 + ε

[

( – λ)α +
p

λ – 

]

‖∇u‖


–
{

 – ε

[

C∗ +  + C(δ)a + λ
p


C∗ + λ
p


]}

‖∇ut‖


≤ –
{

 – ε

[

C∗ +  + C(δ)a + λ
p


C∗ + λ
p


]}

‖∇ut‖
 – a

[
 – εC(δ)

]‖ut‖m
m

– ε[λp – aδL]E(t) + ε

[
p – 


λ – ( – α)( – λ)

]

‖�u‖


+ ε

[
p – 


λ – ( – α)( – λ)

]

‖∇u‖
. (.)
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By choosing λ close to zero such that p–
 λ – ( – α)( – λ) ≤ , then (.) becomes

F ′(t) ≤ –
{

 – ε

[

C∗ +  + C(δ)a + λ
p


C∗ + λ
p


]}

‖∇ut‖


– ε(λp – aδL)E(t) – a
[
 – εC(δ)

]‖ut‖m
m. (.)

Once δ is chosen such that λp – aδL > , we can take ε so small that

 – ε

[

C∗ +  + C(δ)a + λ
p


C∗ + λ
p


]

≥ ,  – εC(δ) ≥ .

Thus, we see that

F ′(t) ≤ –ε(λp – aδL)E(t) ≤ –
ε(λp – aδL)

C
F(t). (.)

By the Gronwall inequality, we see that

F(t) ≤ F()e–kt , ∀t ≥ , (.)

where k = ε(λp–aδL)
C

. Combining with (.), we obtain

CE(t) ≤ F(t) ≤ F()e–kt , ∀t ≥ ,

and

E(t) ≤ Me–kt , ∀t ≥ , (.)

where M = F()
C

. Thus, the proof of the theorem is completed. �

Remark . From the (.), (.), (.), (.), we easily obtain

‖ut‖
 + ‖∇u‖

 + ‖�u‖
 + ‖∇ut‖

 + ‖u‖p
p ≤ Ce–kt , (.)

for any t ≥ .
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