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Abstract
This paper is concerned with nonautonomous second-order Hamiltonian systems
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1 Introduction and main results
In this paper we consider the following second-order differential inclusions systems:

{
ü(t) + A(t)u(t) ∈ ∂F(t, u(t)) a.e. t ∈ [, T],
u() – u(T) = u̇() – u̇(T) = ,

()

where T > , A(t) is a continuous symmetric matrix of order N and F : [, T] ×R
N →R is

locally Lipschitz continuous in x and ∂F(t, x) denotes the Clarke subdifferential of F for x.
There have been a lot of contributions on problem (); see, for example, [–] and the
references therein.

When F(t, x) is continuously differentiable in x, problem () becomes the second-order
Hamiltonian system

{
ü(t) + A(t)u(t) = ∇F(t, u(t)) a.e. t ∈ [, T],
u() – u(T) = u̇() – u̇(T) = .

()

The smooth system () has also been studied in the past decades and many excellent results
appeared; see [, ]. In those works, the following assumption is necessary:

(A) F(t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x for a.e.

t ∈ [, T], and there exist a ∈ C(R+,R+), b ∈ L(, T ;R+) such that

∣∣F(t, x)
∣∣ ≤ a

(|x|)b(t),
∣∣∇F(t, x)

∣∣ ≤ a
(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [, T], where R

+ is the set of all nonnegative real number.
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Throughout this paper, we always suppose that F : [, T] ×R
N →R satisfies the follow-

ing assumption:

(A′) F(t, x) is integrable in t over [, T] for each x ∈R
N and locally Lipschitz continuous in

x for each t ∈ [, T].

Let H
T be the usual Sobolev space with norm

‖u‖ =
(∫ T



∣∣u(t)
∣∣ dt +

∫ T



∣∣u̇(t)
∣∣ dt

)/

.

Definition . We call u ∈ H
T a weak solution of () if the following inequality holds:

–
∫ T



(
u̇(t), v̇(t)

)
dt +

∫ T



(
A(t)u(t), v(t)

)
dt ≤

∫ T


F(t, u(t); v(t)

)
dt, ∀v ∈ H

T , ()

where F(t, x; y) denotes the generalized directional derivative of F at x along the direc-
tion y.

The main results of this paper are as follows.

Theorem . Suppose F(t, x) satisfies (A′) and the following conditions:

(i) There exist f , g ∈ L(, T ;R+) and α ∈ [, ) such that for all x ∈R
N and a.e. t ∈ [, T],

ξ ∈ ∂F(t, x) ⇒ |ξ | ≤ f (t)|x|α + g(t). ()

(i) There exists a γ ∈ L(, T ;R+) such that for all x ∈R
N and a.e. t ∈ [, T],

F(t, x)
|x|α

≤ γ (t). ()

(i) There exists a subset E of [, T] with meas(E) >  such that for a.e. t ∈ E,

F(t, x)
|x|α

→ –∞ as |x| → ∞. ()

Then problem () possesses at least one weak solution.

Theorem . Suppose F(t, x) satisfies (A′), (i) above and the following conditions:

(i′) There exists γ ∈ L(, T ;R+) such that

F(t, x)
|x|α

≥ –γ (t) (a)

for all x ∈R
N and a.e. t ∈ [, T].

(i′) There exists a subset E of [, T] with meas(E) >  such that

F(t, x)
|x|α

→ +∞ as |x| → ∞ (a)

for a.e. t ∈ E.

Then problem () possesses at least one weak solution.
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The method in our paper is based on the nonsmooth least action principle and saddle
point theorem initiated by Chang [], different from [] and [] based on the nonsmooth
mountain pass theorem. Moreover, we consider the case that the growth of the subdiffer-
ential ∂F(t, x) in x is sublinear (α ∈ [, )), while in [] and [] the authors considered the
case α ≥ .

Barletta and Papageorgiou [, Theorem .] proved the existence of solutions for prob-
lem (), where they assumed that

• F(t, x) ≥ –γ (t), ∀x ∈R
N , t ∈ [, T],

• F(t, x) → +∞ as |x| → ∞ and t ∈ E,
• dim(span{u ∈ H

T | – ü – A(t)u = λu for some λ < }) = .
By comparison, the first two assumptions are strengthened to (i′) and (i′), but the third
one is not necessarily needed in the present paper.

Remark . If F(t, x) is measurable in t for every x ∈ R
N and continuously differentiable

in x for a.e. t ∈ [, T], the inequality () becomes

∣∣∇F(t, x)
∣∣ ≤ f (t)|x|α + g(t).

Meanwhile, the above inequality () takes the form

–
∫ T



(
u̇(t), v̇(t)

)
dt +

∫ T



(
A(t)u(t), v(t)

)
dt =

∫ T



(∇F
(
t, u(t)

)
; v(t)

)
dt, ∀v ∈ H

T .

Then Theorem . and Theorem . generalize Theorem  and Theorem  of [], respec-
tively, without assuming the linear second-order system ü(t) + A(t)u(t) =  a.e. t ∈ [, T]
has a nonzero solution, which is necessary in [].

Example . Let

F(t, x) = –| sinωt|(|x|+r + |x|)
for all (t, x) ∈ [, T] ×R

N , where r ∈ [, ), ω = π
T . Then F satisfies the conditions of The-

orem ., but it is not covered by the results of [, , , ].

2 Basic definitions and preliminary results
Let (X,‖ · ‖) be a real Banach space. We denote by X∗ the dual space of X, while 〈·, ·〉
stands for the duality pairing between X and X∗. A functional h : X → R is called locally
Lipschitz continuous if for every u ∈ X there correspond a neighborhood Vu of u and a
constant Lu ≥  such that

∣∣h(z) – h(w)
∣∣ ≤ Lu‖z – w‖, ∀z, w ∈ Vu.

If u, v ∈ X, we write h(u; v) for the generalized directional derivative of h at the point u
along the direction v, i.e.,

h(u; v) := lim sup
w→u,t→+

h(w + tv) – h(w)
t

.

It is well known that h is upper semicontinuous on X × X (see [], Proposition ..).
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For locally Lipschitz continuous functionals h, h : X →R, we have

(h + h)(x; z) ≤ h
 (x; z) + h

(x; z), ∀x, z ∈ X.

The generalized gradient of the function h in u, denoted by ∂h(u), is the set defined by

∂h(u) :=
{

u∗ ∈ X∗ :
〈
u∗, v

〉 ≤ h(u; v),∀v ∈ X
}

.

Proposition .. of [] ensures that ∂h(u) turns out nonempty, convex, weak∗ com-
pact, thus the function λ(x) = minw∈∂h(x) ‖w‖X∗ exists and is lower semicontinuous, i.e.,
lim infx→x λ(x) ≥ λ(x).

If f , g : X → X be locally Lipschitz continuous, then

∂(f + g)(x) ⊂ ∂f (x) + ∂g(x).

A point u ∈ X is said to be a critical point of h if

h(u; v) ≥ , ∀v ∈ X.

We say the locally Lipschitz functional h satisfies the nonsmooth (PS) condition if any
sequence {xn} in X such that {h(xn)} is bounded and λ(xn) →  possesses a convergent
subsequence.

For more details, we can refer to [–]. To prove Theorem . and Theorem . in the
next section, first we state the following well-known results.

Lemma . ([], Theorem ..) Let x and y be points in X, and suppose that f is Lipschitz
on open set containing the line segment [x, y]. Then there exists a point u in (x, y) such that

f (y) – f (x) ∈ 〈
∂f (u), y – x

〉
.

Lemma . ([], Theorem .) Let X be a real Banach space, and let f be a locally Lips-
chitz function defined on X satisfying the nonsmooth (PS) condition. Suppose X = X ⊕ X

with a finite-dimensional subspace X, and there exist constants b < b and a bounded
neighborhood N of θ in X such that

f |X ≥ b, f |∂N ≤ b.

Then f has a critical point.

Lemma . ([], Lemma ) Suppose that E is a measurable subset of [, T] and G(t, x) is
continuous in x for a.e. t ∈ E. Assume that

G(t, x) → –∞ as |x| → ∞

for a.e. t ∈ E. Then for every δ >  there exists a subset Eδ of E with meas(E/Eδ) < δ such that

G(t, x) → –∞ as |x| → ∞

uniformly for all t ∈ Eδ .
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Lemma . ([], Theorem .) Suppose a locally Lipschitz functional f , defined on a re-
flexive Banach space X, satisfies the nonsmooth (PS) condition and is bounded from below.
Then c = infX f (x) is a critical value of f .

3 Proof of theorems
For every u ∈ H

T , let ū = 
T

∫ T
 u(t) dt, ũ(t) = u(t) – ū. Then the following inequalities hold:

‖ũ‖
∞ ≤ T



∫ T



∣∣u̇(t)
∣∣ dt (Sobolev’s inequality),

∫ T



∣∣ũ(t)
∣∣ dt ≤ T

π

∫ T



∣∣u̇(t)
∣∣ dt (Wirtinger’s inequality), ()

‖u‖∞ ≤ C‖u‖,

where C >  is a constant and ‖u‖∞ = maxt∈[,T] |u(t)|.
Define two functionals ϕ : H

T →R and ψ : H
T →R as follows:

ϕ(u) =



∫ T



∣∣u̇(t)
∣∣ dt –




∫ T



(
A(t)u(t), u(t)

)
dt +

∫ T


F
(
t, u(t)

)
dt,

ψ(u) =
∫ T


F
(
t, u(t)

)
dt.

It is easy to verify that they are locally Lipschitz continuous on H
T , so it makes sense to

consider their generalized directional derivatives ϕ and ψ:

ϕ(u; v) =
∫ T



(
u̇(t), v̇(t)

)
dt –

∫ T



(
A(t)u(t), v(t)

)
dt + ψ(u; v), ∀v ∈ H

T .

Equation () at p. of [] gives

ψ(u; v) ≤
∫ T


F(t, u(t); v(t)

)
dt, ∀u, v ∈ H

T .

Moreover, by [], Theorem .., one has

∂ψ(u) ⊂
∫ T


∂F

(
t, u(t)

)
dt,

i.e., to every ξ ∈ ∂ψ(u) there corresponds a mapping t → q(t) from [, T] to (H
T )∗ with

q(t) ∈ ∂F(t, u(t)) a.e. t ∈ [, T] such that for every v ∈ H
T ,

〈ξ , v〉 =
∫ T



(
q(t), v(t)

)
dt.

If u ∈ H
T is a critical point of ϕ, i.e., θ ∈ ∂ϕ(u), then

∫ T



(
u̇(t), v̇(t)

)
dt –

∫ T



(
A(t)u(t), v(t)

)
dt +

∫ T


F(t, u(t); v(t)

)
dt

≥ ϕ(u; v) ≥ , ∀v ∈ H
T .

Thus, the critical points of ϕ correspond to the solutions of problem ().
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In the same time, there exists q(t) ∈ ∂F(t, u) such that for all v ∈ H
T ,

 = 〈θ , v〉 =
∫ T



(
u̇(t), v̇(t)

)
dt –

∫ T



(
A(t)u(t), v(t)

)
dt +

∫ T



(
q(t), v(t)

)
dt,

it follows easily that q(t) = ü(t) a.e. t ∈ [, T], thus

ü(t) + A(t)u(t) ∈ ∂F
(
t, u(t)

)
a.e. on [, T],

so that u satisfies the system () too.
Define the subspaces of H

T by

W – � span
{

u ∈ H
T | – ü – A(t)u = λu for some λ < 

}
,

V � span
{

u ∈ H
T | – ü – A(t)u = 

}
,

W + � span
{

u ∈ H
T | – ü – A(t)u = λu for some λ > 

}
.

It is easy to verify that W – is finite-dimensional and there exists δ >  such that

∫ T



∣∣u̇(t)
∣∣ dt –

∫ T



(
A(t)u(t), u(t)

)
dt ≥ δ‖u‖, ∀u ∈ W +,

∫ T



∣∣u̇(t)
∣∣ dt –

∫ T



(
A(t)u(t), u(t)

)
dt ≤ –δ‖u‖, ∀u ∈ W –.

Decompose H
T as H

T = W – ⊕ V ⊕ W +, and denote W = W + + W –.

Lemma . Suppose that () and () hold. Assume that un = vn + wn, vn ∈ V , wn ∈ W
satisfying ‖un‖ → ∞ (n → ∞) and lim supn→∞

‖wn‖
‖un‖α < +∞. Then

‖un‖–α

∫ T


F
(
t, un(t)

)
dt → –∞ as n → ∞.

Proof As the proof of Lemma  in [], for every β > , there exists mβ >  such that

meas
{

t ∈ (, T)|∣∣v(t)
∣∣ < mβ‖v‖} < β

for all v ∈ V .
Let B = {t ∈ (, T)||v(t)| ≥ mβ‖v‖} for all v ∈ V , then we have meas((, T) \ B) < β . By ()

and Lemma ., there exists subset Eδ of E with meas(E \ Eδ) < δ such that

F(t, x)
|x|α

→ –∞ as |x| → ∞ ()

uniformly for all t ∈ Eδ . Hence,

meas(B ∩ Eδ) ≥ meas(Eδ) – meas
(
(, T) \ B

) ≥ meas E – δ – β >  ()

for δ and β small enough.
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By (), for every η > , there exists an M >  such that

F(t, x)
|x|α

≤ –η

for all |x| ≥ M and a.e. t ∈ Eδ . Furthermore, it follows from () that

F(t, x) ≤ –η|x|α + γ(t)

for all x ∈R
N , a.e. t ∈ Eδ and some γ(t) = Mα(η + γ (t)).

From () we obtain

∫
B∩Eδ

F(t, v) dt ≤ –ηmα
β ‖v‖α meas(B ∩ Eδ) +

∫ T


γ(t) dt.

By () and () we have

∫
[,T]\(B∩Eδ )

F(t, v) dt ≤ Cα‖v‖α

∫ T


γ (t) dt.

Since ‖un‖ → ∞ (n → ∞) and lim supn→∞
‖wn‖
‖un‖α < +∞, by a simple computation we ob-

tain ‖vn‖ → ∞ as n → ∞, and V �= {}.
Hence, one has

lim sup
v∈V ,‖v‖→∞

‖v‖–α

∫ T


F(t, v) dt ≤ –ηmα

β meas(B ∩ Eδ) + Cα

∫ T


γ (t) dt,

which implies that

lim sup
n→∞

‖vn‖–α

∫ T


F(t, vn) dt → –∞ ()

by the arbitrariness of η.
By (), (), and Lemma ., there exist s ∈ [, ] and ξn ∈ ∂F(t, vn + swn) such that

∣∣∣∣
∫ T


F(t, un) dt –

∫ T


F(t, vn) dt

∣∣∣∣
=

∣∣∣∣
∫ T


〈ξn, un – vn〉dt

∣∣∣∣ ≤
∫ T


|ξn||wn|dt ≤

∫ T



(
f (t)|vn + swn|α + g(t)

)|wn|dt

≤
∫ T


f (t)

(|vn|α + |wn|α
)|wn|dt +

∫ T


g(t)|wn|dt

≤ ‖f ‖L
(‖vn‖α

∞ + ‖wn‖α
∞

)‖wn‖∞ + ‖g‖L‖wn‖∞

≤ Cα+‖f ‖L
(‖vn‖α + ‖wn‖α

)‖wn‖ + C‖g‖L‖wn‖ ()

for all n. Since lim supn→∞
‖wn‖
‖un‖α < +∞, one has

C � lim sup
n→∞

∣∣∣∣‖un‖–α

∫ T


F(t, un) dt – ‖un‖–α

∫ T


F(t, vn) dt

∣∣∣∣ < +∞.
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It follows from () that

lim sup
n→∞

‖un‖–α

∫ T


F(t, un) dt ≤ lim sup

n→∞
‖un‖–α

∫ T


F(t, vn) dt + C

≤ lim sup
n→∞

‖vn‖–α

∫ T


F(t, vn) dt + C = –∞.

Hence we obtain

‖un‖–α

∫ T


F(t, un) dt → –∞

as n → ∞, which completes the proof. �

Lemma . Under the conditions (), () and (), ϕ satisfies the nonsmooth (PS) condition.

Proof Let {un} be a sequence in H
T such that {ϕ(un)} is bounded and λ(un) =

minx∗∈∂ϕ(un) ‖x∗‖ →  as n → ∞. Put u∗
n ∈ ∂ϕ(un) such that ‖u∗

n‖ = λ(un) = o(), then there
exists some integer n such that for each n ≥ n, we have

∣∣〈u∗
n, h

〉∣∣ ≤ ‖h‖ for all h ∈ H
T .

Let qn(t) ∈ ∂(F(t, un(t))) such that

〈
u∗

n, h
〉

=
∫ T



(
u̇n(t), ḣ(t)

)
dt –

∫ T



(
A(t)un(t), h(t)

)
dt +

∫ T



(
qn(t), h(t)

)
dt, ∀h ∈ H

T .

Firstly, we show that {un} is bounded. If {un} is unbounded, without loss of generality we
may assume that ‖un‖ → ∞ as n → ∞. Split un = vn + wn = vn + w+

n + w–
n ⊂ V ⊕ W + ⊕ W –.

It follows from () and () that

∣∣∣∣
∫ T



〈
qn(t), w+

n
〉
dt

∣∣∣∣ ≤ ‖f ‖L‖un‖α
∞

∥∥w+
n
∥∥∞ + ‖g‖L

∥∥w+
n
∥∥∞

≤ Cα+‖f ‖L‖un‖α
∥∥w+

n
∥∥ + C‖g‖L

∥∥w+
n
∥∥

for all n. Hence,

∥∥w+
n
∥∥ ≥ ∥∥u∗

n
∥∥∥∥w+

n
∥∥ ≥ 〈

u∗
n, w+

n
〉

=
∫ T



∣∣ẇ+
n
∣∣ dt –

∫ T



(
A(t)w+

n , w+
n
)

dt +
∫ T



(
qn(t), w+

n(t)
)

dt

≥ δ
∥∥w+

n
∥∥ – Cα+‖f ‖L‖un‖α

∥∥w+
n
∥∥ – C‖g‖L

∥∥w+
n
∥∥,

which implies that lim supn→∞
‖w+

n‖
‖un‖α < +∞. In a similar way

∣∣∣∣
∫ T



(
qn(t), w–

n(t)
)

dt
∣∣∣∣ ≤ Cα+‖f ‖L‖un‖α

∥∥w–
n
∥∥ + C‖g‖L

∥∥w–
n
∥∥
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for all n. Thus one obtains

–
∥∥u∗

n
∥∥∥∥w–

n
∥∥ ≤ 〈

u∗
n, w–

n
〉

=
∫ T



∣∣ẇ–
n
∣∣ dt –

∫ T



(
A(t)w–

n , w–
n
)

dt +
∫ T



(
qn(t), w–

n(t)
)

dt

≤ –δ
∥∥w–

n
∥∥ + Cα+‖f ‖L‖un‖α

∥∥w–
n
∥∥ + C‖g‖L

∥∥w–
n
∥∥.

This means lim supn→∞
‖w–

n‖
‖un‖α < +∞. Hence we have

lim sup
n→∞

‖wn‖
‖un‖α

< +∞. ()

By the boundedness of ϕ(un) and the continuity of A(·), there exists a constant C ≥  such
that

∫ T


F(t, un) dt = ϕ(un) –




∫ T


|ẇn| dt +




∫ T



(
A(t)wn, wn

)
dt

≥ –C –



∫ T


|ẇn| dt –




C

∫ T


|wn| dt

≥ –C –



C‖wn‖

for all n. Furthermore, it follows from () that

lim inf
n→∞ ‖un‖–α

∫ T


F(t, un) dt > –∞,

which contradicts Lemma .. Hence {un} is bounded in H
T , thus there exists an u ∈ H

T

such that un ⇀ u in H
T and un → u in C([, T],RN ), where a subsequence is considered

when necessary.
Since H

T is reflexive while ∂ϕ(u) is weak∗ compact, and the set-valued mapping u →
∂ϕ(u) is upper semicontinuous, we can find an u∗ ∈ ∂ϕ(u) such that

〈
u∗

n – u∗, un – u
〉 →  as n → ∞.

On the other hand,

〈
u∗

n – u∗, un – u
〉

=
∫ T



∣∣u̇n(t) – u̇(t)
∣∣ dt

–
∫ T



(
A(t)

(
un(t) – u(t)

)
, un(t) – u(t)

)
dt

+
∫ T



(
qn(t) – q(t), un(t) – u(t)

)
dt,

where qn(t) ∈ ∂F(t, un(t)) and q(t) ∈ ∂F(t, u(t)). From a simple computation we obtain∫ T
 |u̇n – u̇| dt →  as n → ∞, and hence un → u in H

T . Therefore, ϕ satisfies the nons-
mooth (PS) condition. �
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Proof of Theorem . We verify that ϕ satisfies the other conditions of Lemma .. Firstly
we prove that

ϕ(u) → +∞ as ‖u‖ → ∞ in W +. ()

By (), (), and Lemma ., there exist s ∈ [, ] and ξ ∈ ∂F(t, su) such that

∣∣∣∣
∫ T


F(t, u) dt –

∫ T


F(t, ) dt

∣∣∣∣
=

∣∣∣∣
∫ T


〈ξ , u〉dt

∣∣∣∣ ≤ ‖f ‖L‖u‖α
∞‖u‖∞ + ‖g‖L‖u‖∞

≤ Cα+‖f ‖L‖u‖α+ + C‖g‖L‖u‖

for all n. Hence we obtain

ϕ(u) =



∫ T



∣∣u̇(t)
∣∣ dt –




∫ T



(
A(t)u(t), u(t)

)
dt +

∫ T


F
(
t, u(t)

)
dt

≥ 


∫ T



∣∣u̇(t)
∣∣ dt –




∫ T



(
A(t)u(t), u(t)

)
dt +

∫ T


F(t, ) dt

–
∣∣∣∣
∫ T


F
(
t, u(t)

)
dt –

∫ T


F(t, ) dt

∣∣∣∣
≥ 


δ‖u‖ – Cα+‖f ‖L‖u‖α+ – C‖g‖L‖u‖ +

∫ T


F(t, ) dt

for all u ∈ W +. Since α ∈ [, ), it is clear that () holds.
Secondly we show that

ϕ(u) → –∞ as ‖u‖ → ∞ in W – ⊕ V . ()

Arguing by contradiction, assume that there exist M ∈ R and a sequence {un} ⊂ W – ⊕ V
such that ‖un‖ → ∞ as n → ∞ and

ϕ(un) ≥ M ()

for all n. Write un = vn + w–
n , vn ∈ V , w–

n ∈ W –. We consider the case that {un} has a subse-
quence, say {un}, such that lim supn→∞

‖w–
n‖

‖un‖α < +∞. By Lemma ., one has

lim sup
n→∞

‖un‖–α

∫ T


F(t, un) dt = –∞.

Hence

lim sup
n→∞

‖un‖–αϕ(un) ≤ lim sup
n→∞

‖un‖–α

∫ T


F(t, un) dt = –∞,

which contradicts ().
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Now we consider the case that ‖w–
n‖

‖un‖α → +∞ as n → ∞, in this case, W – �= {} and
‖w–

n‖ → ∞ as n → ∞. From (), one obtains that

ϕ(u) =



∫ T



∣∣ẇ–
n
∣∣ dt –




∫ T



(
A(t)w–

n , w–
n
)

dt +
∫ T


F(t, un) dt

≤ –


δ
∥∥w–

n
∥∥ +

∫ T


F(t, vn) dt +

∣∣∣∣
∫ T


F(t, un) dt –

∫ T


F(t, vn) dt

∣∣∣∣
≤ –



δ
∥∥w–

n
∥∥ + Cα+‖f ‖L

(‖vn‖α +
∥∥w–

n
∥∥α)∥∥w–

n
∥∥

+ C‖g‖L
∥∥w–

n
∥∥ +

∫ T


F(t, vn) dt

for all n. It follows from () and () that

∫ T


F(t, vn) dt ≤ Cα‖vn‖α

∫ T


γ (t) dt ≤ Cα‖un‖α

∫ T


γ (t) dt,

which implies that

lim sup
n→∞

‖un‖–α
∥∥w–

n
∥∥–

∫ T


F(t, vn) dt ≤ lim sup

n→∞
Cα ‖un‖α

‖w–
n‖

∫ T


γ (t) dt = ,

hence we obtain

lim sup
n→∞

‖un‖–α
∥∥w–

n
∥∥–

ϕ(un) ≤ –


δ lim inf

n→∞
‖w–

n‖
‖un‖α

+ Cα+‖f ‖L = –∞,

which contradicts () too.
By Lemma ., ϕ(u) has a critical point u ∈ H

T . The proof is completed.
If W – ⊕ V = {}, the solution of system () can be obtained according to Lemma ..

�

Proof of Theorem . Similar to the proof of Lemma . and Theorem ., we can prove
that ϕ satisfies the nonsmooth (PS) condition, and

ϕ(u) → +∞ as ‖u‖ → ∞ in W + ⊕ V .

If W – = {}, ϕ has a minimum by Lemma .. In the case of W – �= {}, we have

ϕ(u) → –∞ as ‖u‖ → ∞ in W –.

According to Lemma ., ϕ has a critical point. �
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