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Abstract
This paper deals with the existence and multiplicity of symmetric solutions for a class
of singular quasilinear elliptic systems involving multiple critical Hardy-Sobolev
exponents in a bounded symmetric domain. Based upon the symmetric criticality
principle of Palais and variational methods, we establish several existence and
multiplicity results of G-symmetric solutions under certain appropriate hypotheses on
the weighted functions and the parameters.
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1 Introduction
The purpose of this paper is to investigate the existence and multiplicity of nontrivial so-
lutions for the following singular quasilinear elliptic system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lμ
a,pu = K (x)

|x|bp∗
b

(|u|p∗
b–u +

∑m
i=

ςiαi
p∗

b
|u|αi–u|v|βi ) + λ

q|u|q–u|v|q

(q+q)|x|dp∗
d

, in �,

Lμ
a,pv = K (x)

|x|bp∗
b

(|v|p∗
b–v +

∑m
i=

ςiβi
p∗

b
|u|αi |v|βi–v) + λ

q|u|q |v|q–v

(q+q)|x|dp∗
d

, in �,

u = v = , on ∂�,

(.)

where � ⊂ R
N (N ≥ ) is a smooth bounded domain,  ∈ � and � is G-symmetric with

respect to a closed subgroup G of O(N) (see Section  for details), Lμ
a,p � – div(|x|–ap ×

|∇ · |p–∇·) – μ
|·|p–·

|x|p(a+) is a quasilinear elliptic operator,  < p < N ,  ≤ a < N–p
p , a ≤ b ≤ d <

a + ,  ≤ μ < μ with μ � ( N–p(a+)
p )p, λ ≥ ,  < ςi < +∞ and αi, βi >  satisfy αi + βi = p∗

b
(i = , . . . , m;  ≤ m ∈N), q, q ≥  and p < q + q < p∗

d , p∗
b �

Np
N–p(a+–b) and p∗

d �
Np

N–p(a+–d)
are the critical Hardy-Sobolev exponents, and p∗

a = p∗ � Np
N–p is the critical Sobolev expo-

nent, K ∈ C(�) ∩ L∞(�) satisfies some symmetry conditions which will be specified later.
Singular critical elliptic boundary value problems have been of great interest recently.

This is because of both the intensive development of the theory of singular calculus itself
and the applications of such constructions in various physical fields such as fluid mechan-
ics, glaciology, molecular physics, quantum cosmology and linearization of combustion
models (see [] for example). The existence and multiplicity of solutions of scalar singu-
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lar elliptic equations involving critical exponents have been studied in the literature [–]
and the references therein. In a recent paper, Deng and Jin [] considered the existence of
nontrivial solutions for the following singular semilinear elliptic problem:

–�u = μ
u

|x| + K(x)
u∗(s)–

|x|s , and u >  in R
N , (.)

where N > ,  ≤ μ < ( N–
 ),  ≤ s < , ∗(s) � (N–s)

N– and ∗() = ∗ � N
N– , and K fulfills

some symmetry conditions with respect to a subgroup G of O(N). Applying variational
methods and analytic techniques, the authors obtained the existence and multiplicity of
G-symmetric solutions to (.) under some assumptions on K . Very recently, Deng and
Huang [, ] extended the results in [] to the scalar weighted elliptic problems in a
bounded symmetric domain. Besides, we also remark that when μ = s =  and the right-
hand side term |x|–su∗(s)– is replaced by a term f (u) of the pure power, such as f (u) = ur–

with  < r < ∗ or r = ∗, there are some elegant results on the existence and multiplicity of
G-symmetric solutions of (.), which can be found in Refs. [–].

On the other hand, there have been many papers concerned with the existence and mul-
tiplicity of solutions for singular elliptic systems in recent years. Many results were ob-
tained in these publications and these results give us a good insight into the corresponding
problems. As an example, Huang and Kang [] discussed the following singular semilin-
ear elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

Lμ,a u = |u|∗–u + ςα

α+β
|u|α–u|v|β + λ|u|q–u, in �,

Lμ,a v = |v|∗–v + ςβ

α+β
|u|α|v|β–v + λ|v|q–v, in �,

u = v = , on ∂�,

(.)

where Lμi ,ai = –� – μi|x – ai|–, ς > , ai ∈ �, λi > , μi < ( N–
 ),  ≤ qi < ∗ (i = , ), and

α,β >  satisfy α + β = ∗. Note that |u|α–u|v|β and |u|α|v|β–v in (.) are called strongly-
coupled terms, and |u|∗–u, |v|∗–v are weakly-coupled terms. By employing variational
methods and the Moser iteration techniques, the authors obtained the existence of pos-
itive solutions and some properties of solutions to (.). Recently, further studies on sin-
gular elliptic systems like (.) were taken up by Kang [] and Nyamoradi [], where the
existence and multiplicity of positive solutions were proved. For more results, we refer the
readers to [–] and the references therein.

However, as far as we know, the existence and multiplicity of G-symmetric solutions
for singular elliptic systems have seldom been studied; we only find some symmetric re-
sults for singular elliptic systems in [, ] and when G = O(N) some radial and nonra-
dial results for nonsingular elliptic systems in []. Inspired by [, , ], in the present
paper, we are concerned with the existence and multiplicity of G-symmetric solutions
for system (.). The main difficulties lie in the fact that there are not only the singular
perturbations |x|–dp∗

d |u|q–u|v|q and |x|–dp∗
d |u|q |v|q–v in (.), but also the nonlinear

strong-coupled terms
∑m

i=
ςiαi
p∗

b
|u|αi–u|v|βi ,

∑m
i=

ςiβi
p∗

b
|u|αi |v|βi–v and weak-coupled terms

|u|p∗
b–u, |v|p∗

b–v. Compared with problems (.) and (.), the singular quasilinear ellip-
tic problem (.) becomes more complicated to deal with and thus we have to face more
difficulties. To our knowledge, even in the particular cases μ = a = b = , p = , λ ≥ 
and ςi >  (i = , . . . , m), there are few results on the existence of G-symmetric solutions
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for (.). Many attractive and challenging topics on singular elliptic systems remain un-
solved. Consequently, it makes sense for us to investigate system (.) thoroughly. Let
K >  be a constant. Note that here we will try to treat both the cases of λ = , K(x) 
≡ K

and λ > , K(x) ≡ K.
This paper is divided into four sections, schemed as follows. In Section , we will set

up the variational framework which is applicable to the discussion of problem (.), and
we will state the main results of this paper. In Section , we present the proofs of several
existence and multiplicity results for the cases λ =  and K(x) 
≡ K in (.). In Section ,
we detail the proofs of existence results for the cases λ >  and K(x) 
≡ K in (.). Our
methods in this paper are mainly based upon the symmetric criticality principle of Palais
(see []) and variational arguments.

2 Preliminaries and main results
Let O(N) be the group of orthogonal linear transformations of RN with natural action, and
let G ⊂ O(N) be a closed subgroup. For x 
=  we denote the cardinality of Gx = {gx; g ∈ G}
by |Gx| and set |G| = inf
=x∈RN |Gx|. Note that here |G| may be +∞. We call � a G-
symmetric subset of RN , if x ∈ �, then gx ∈ � for all g ∈ G. For any function f : RN → R,
we call f (x) a G-symmetric function if for all g ∈ G and x ∈ R

N , f (gx) = f (x) holds. In par-
ticular, if f is radially symmetric, then the corresponding group G is O(N) and |G| = +∞.
Other further examples of G-symmetric functions can be found in Ref. [].

Let W ,p
a (�) denote the closure of C∞

 (�) functions with respect to the norm (
∫

�
|x|–ap ×

|∇u|p dx)/p. We recall that the well-known Caffarelli-Kohn-Nirenberg inequality [] as-
serts that for all u ∈ W ,p

a (�), there is a constant C = C(N , p, a, b) >  such that

(∫

�

|u|q
|x|bp∗

b
dx

)p/q

≤ C
∫

�

|x|–ap|∇u|p dx, p ≤ q ≤ p∗
b, (.)

where –∞ < a < N–p
p , a ≤ b ≤ a +  and p∗

b = Np
N–p(a+–b) . If b = a +  and q = p, then p∗

b = p
and the following weighted Hardy inequality holds (see []):

∫

�

|u|p
|x|p(a+) dx ≤ 

μ

∫

�

|x|–ap|∇u|p dx, ∀u ∈ W ,p
a (�), (.)

where μ = ( N–p(a+)
p )p. Now we employ the following norm in W ,p

a (�):

‖u‖μ �
[∫

�

(

|x|–ap|∇u|p – μ
|u|p

|x|p(a+)

)

dx
]/p

,  ≤ μ < μ.

By the weighted Hardy inequality (.), we find that the above norm is equivalent to the
usual norm (

∫

�
|x|–ap|∇u|p dx)/p. Moreover, we define the product space (W ,p

a (�)) en-
dowed with the norm

∥
∥(u, v)

∥
∥

μ
=

(‖u‖p
μ + ‖v‖p

μ

)/p, ∀(u, v) ∈ (
W ,p

a (�)
).

For a bounded and G-symmetric domain  ∈ � ⊂ R
N , the natural functional space to

study problem (.) is the Banach space (W ,p
a,G(�)), which is the subspace of (W ,p

a (�))
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consisting of all G-symmetric functions. In this paper we are concerned with the following
problems:

(
P K

λ

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lμ
a,pu = K (x)

|x|bp∗
b

(|u|p∗
b–u +

∑m
i=

ςiαi
p∗

b
|u|αi–u|v|βi ) + λ

q|u|q–u|v|q

(q+q)|x|dp∗
d

, in �,

Lμ
a,pv = K (x)

|x|bp∗
b

(|v|p∗
b–v +

∑m
i=

ςiβi
p∗

b
|u|αi |v|βi–v) + λ

q|u|q |v|q–v

(q+q)|x|dp∗
d

, in �,

(u, v) ∈ (W ,p
a,G(�)), and u > , v > , in �.

To mention our main results, we need to introduce two notations Aμ and yε(x), which are,
respectively, defined by

Aμ � inf
u∈W ,p

a (�)\{}

∫

�
(|x|–ap|∇u|p – μ

|u|p
|x|p(a+) ) dx

(
∫

�
|x|–bp∗

b |u|p∗
b dx)

p
p∗

b

(.)

and

yε(x) = Cε–ξ Uμ

( |x|
ε

)

, (.)

where ε > , ξ � N–p(a+)
p and the constant C = C(N , p, a, b,μ) > , depending only on N , p,

a, b and μ. From [], we find that Aμ is independent of � and yε(x) satisfies the equations

∫

RN

(

|x|–ap|∇yε |p – μ
|yε |p

|x|p(a+)

)

dx =  (.)

and

∫

RN

y
p∗

b–
ε ϕ

|x|bp∗
b

dx = A
–

p∗
b
p

μ

∫

RN

(

|x|–ap|∇yε |p–∇yε∇ϕ – μ
|yε |p–yεϕ

|x|p(a+)

)

dx

for all ϕ ∈ D
,p
a (RN ), where D

,p
a (RN ) is the closure of C∞

 (RN ) functions with respect to
the norm (

∫

RN |x|–ap|∇ · |p dx)/p. In particular, we have (let ϕ = yε )

∫

RN
|x|–bp∗

b y
p∗

b
ε dx = A

–
p∗

b
p

μ . (.)

The function Uμ(x) = Uμ(|x|) in (.) is the unique radial solution of the following limiting
problem (see [, Lemma .]):

⎧
⎨

⎩

– div(|x|–ap|∇u|p–∇u) = μ up–

|x|p(a+) + up∗
b–

|x|bp∗
b

, in R
N\{},

u ∈ D
,p
a (RN ), and u > , in R

N\{},

satisfying Uμ() = (p∗
b(μ – μ)/p)/(p∗

b–p). Moreover, the following asymptotic properties at
the origin and infinity for Uμ(r) and U ′

μ(r) hold:

lim
r→

rl Uμ(r) = C̃ > , lim
r→

rl+∣∣U ′
μ(r)

∣
∣ = C̃l ≥ , (.)

lim
r→+∞ rl Uμ(r) = C̃ > , lim

r→+∞ rl+∣∣U ′
μ(r)

∣
∣ = C̃l > , (.)
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where C̃, C̃ are positive constants and l = l(N , a, p,μ), l = l(N , a, p,μ) are the zeros of
the function

L(t) = (p – )tp –
(
N – p(a + )

)
tp– + μ, t ≥ ,  ≤ μ < μ,

which satisfy

 ≤ l < ξ < l ≤ N – p(a + )
p – 

. (.)

Furthermore, there exist the positive constants C̃ = C̃(p,μ, a, b) and C̃ = C̃(p,μ, a, b)
such that

C̃ ≤ Uμ(x)
(|x| l

ξ + |x| l
ξ
)ξ ≤ C̃, ξ =

N – p(a + )
p

. (.)

We suppose that the function K(x) verifies the following hypotheses.
(K.) K ∈ C(�) ∩ L∞(�), and K is G-symmetric.
(K.) K+ 
≡ , where K+ = max{, K}.

Since  ∈ �, we can choose � >  small enough such that B�() ⊂ � and define a function
φ ∈ C

(�) such that φ(x) =  on B�(), φ(x) =  on �\B�(). Setting Vε = φyε/‖φyε‖μ, we
get (see (.) for details)

‖Vε‖μ =  and
∫

�

|x|–bp∗
b |Vε |p∗

b dx = A
–

p∗
b
p

μ + O
(
εp(l+a+)–N)

.

The main results of this paper are summarized in the following.

Theorem . Suppose that (K.) and (K.) hold. If

∫

�

K(x)
|Vε |p∗

b

|x|bp∗
b

dx ≥ A
–

p∗
b
p

μ max
{

K+(), |G|
p–p∗

b
p (A/Aμ)–

p∗
b
p ‖K+‖∞

}
>  (.)

for some ε > , then problem (P K
 ) has at least one positive solution in (W ,p

a,G(�)).

Corollary . Suppose that (K.) and (K.) hold. Then problem (P K
 ) has at least one

positive solution in (W ,p
a,G(�)) if

K() > , K() ≥ |G|
p–p∗

b
p (A/Aμ)–

p∗
b
p ‖K+‖∞ (.)

and K(x) ≥ K() + γ|x|ϑ for some γ > , ϑ ∈ (, p(l + a + ) – N) and |x| small.

Theorem . Suppose that K+() =  and |G| = +∞. Then problem (P K
 ) has infinitely

many G-symmetric solutions.

Corollary . If K is a radially symmetric function such that K+() = , then problem
(P K

 ) has infinitely many solutions which are radially symmetric.
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Theorem . Let λ >  and K(x) ≡ K >  be a constant. If q, q ≥  satisfy

max

{

p,
N – dp∗

d
l

, p∗
d + p –

pl

N – p(a + )

}

< q + q < p∗
d, (.)

then (P K
λ ) possesses at least one positive solution in (W ,p

a,G(�)).

In what follows, we denote by (W ,p
a,G(�)) the subspace of (W ,p

a (�)) consisting of all
G-symmetric functions. The dual space of (W ,p

a,G(�)) ((W ,p
a (�)), resp.) is denoted by

(W –,p′
a,G (�)) ((W –,p′

a (�)), resp.), where 
p + 

p′ = . The ball of center x and radius r is
denoted by Br(x). We employ C, Ci (i = , , . . .) to denote the positive constants, and de-
note by ‘→’ convergence in norm in a given Banach space X and by ‘⇀’ weak conver-
gence. A functional F ∈ C(X,R) is said to satisfy the (PS)c condition if each sequence
{wn} in X satisfying F (wn) → c, F ′(wn) →  in X∗ has a subsequence which strongly con-
verges to some element in X. Hereafter, on() denotes a datum which tends to  as n → ∞.
Lq(�, |x|–ς ) denotes the weighted Lq(�) space with the norm (

∫

�
|x|–ς |u|q dx)/q.

3 Existence and multiplicity results for problem (P K
0 )

The energy functional corresponding to problem (P K
 ) is defined on (W ,p

a,G(�)) by

E (u, v) =

p
∥
∥(u, v)

∥
∥p

μ
–


p∗

b

∫

�

K(x)|x|–bp∗
b

(

|u|p∗
b + |v|p∗

b +
m∑

i=

ςi|u|αi |v|βi

)

dx. (.)

By (K.), (.) and the Young inequality, we easily verify that E ∈ C((W ,p
a,G(�)),R). It is

well known that there exists a one-to-one correspondence between the weak solutions
of problem (P K

 ) and the critical points of E . More precisely, the weak solutions of (P K
 )

are exactly the critical points of E by the following principle of symmetric criticality due
to Palais (see Lemma .), namely (u, v) ∈ (W ,p

a,G(�)) satisfies (P K
 ) if and only if for all

(ϕ,ϕ) ∈ (W ,p
a (�)), there holds

 =
∫

�

{

|x|–ap|∇u|p–∇u∇ϕ + |x|–ap|∇v|p–∇v∇ϕ – μ
|u|p–uϕ + |v|p–vϕ

|x|p(a+)

–
K(x)
|x|bp∗

b

[

|u|p∗
b–uϕ + |v|p∗

b–vϕ

+
m∑

i=

ςi(αi|u|αi–u|v|βiϕ + βi|u|αi |v|βi–vϕ)
p∗

b

]}

dx. (.)

Lemma . Let K (x) be a G-symmetric function; E ′(u, v) =  in (W –,p′
a,G (�)) implies

E ′(u, v) =  in (W –,p′
a (�)).

Proof Similar to the proof of [, Lemma ] (see also [, Proposition .]). �

For all μ ∈ [,μ),  < ςi < +∞, αi, βi >  and αi + βi = p∗
b (i = , . . . , m), we define

Aμ,ςi � inf
(u,v)∈(W ,p

a (�)\{})

∫

�
(|x|–ap|∇u|p + |x|–ap|∇v|p – μ

|u|p+|v|p
|x|p(a+) ) dx

[
∫

�
|x|–bp∗

b (|u|p∗
b + |v|p∗

b +
∑m

i= ςi|u|αi |v|βi ) dx]
p

p∗
b

, (.)
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h(τ ) �  + τ p

( + τ p∗
b +

∑m
i= ςiτβi )

p
p∗

b

, τ ≥ , (.)

h(τmin) � min
τ≥

h(τ ) > , (.)

where τmin >  is a minimal point of h(τ ) and therefore a root of the equation

τ p∗
b–p +

m∑

i=

ςiβi

p∗
b

τβi–p –
m∑

i=

ςiαi

p∗
b

τβi –  = , τ ≥ . (.)

Lemma . Let yε(x) be the extremal function of Aμ defined in (.),  < ςi < +∞, αi, βi > 
and αi + βi = p∗

b (i = , . . . , m). Then we have the following statements:
(i) Aμ,ςi = h(τmin)Aμ;

(ii) Aμ,ςi has the minimizer (yε(x), τminyε(x)), ∀ε > .

Proof The proof is similar to that of [, Theorem ] and is omitted here. �

Lemma . Let {(un, vn)} be a weakly convergent sequence to (u, v) in (W ,p
a,G(�)) such

that |x|–ap|∇un|p ⇀ η(), |x|–ap|∇vn|p ⇀ η(), |x|–bp∗
b |un|p∗

b ⇀ σ (), |x|–bp∗
b |vn|p∗

b ⇀ σ (),
|x|–bp∗

b |un|αi |vn|βi ⇀ ν(i) (i = , . . . , m), |x|–p(a+)|un|p ⇀ γ (), |x|–p(a+)|vn|p ⇀ γ () in the
sense of measures. Then there exists some at most countable set J, {η()

j ≥ }j∈J∪{},
{η()

j ≥ }j∈J∪{}, {σ ()
j ≥ }j∈J∪{}, {σ ()

j ≥ }j∈J∪{}, {ν(i)
j ≥ }j∈J∪{}, γ

()
 ≥ , γ

()
 ≥ ,

{xj}j∈J ⊂ �\{} such that
(a) η() ≥ |∇u|p

|x|ap +
∑

j∈J η
()
j δxj + η

()
 δ, η() ≥ |∇v|p

|x|ap +
∑

j∈J η
()
j δxj + η

()
 δ,

(b) σ () = |u|p∗
b

|x|bp∗
b

+
∑

j∈J σ
()
j δxj + σ

()
 δ, σ () = |v|p∗

b

|x|bp∗
b

+
∑

j∈J σ
()
j δxj + σ

()
 δ, ν(i) = |u|αi |v|βi

|x|bp∗
b

+
∑

j∈J ν
(i)
j δxj + ν

(i)
 δ, i = , . . . , m,

(c) γ () = |x|–p(a+)|u|p + γ
()
 δ, γ () = |x|–p(a+)|v|p + γ

()
 δ,

(d) A,ςi (σ
()
j + σ

()
j +

∑m
i= ςiν

(i)
j )p/p∗

b ≤ η
()
j + η

()
j , A(σ ()

j )p/p∗
b ≤ η

()
j , A(σ ()

j )p/p∗
b ≤ η

()
j ,

(e) Aμ,ςi (σ
()
 + σ

()
 +

∑m
i= ςiν

(i)
 )p/p∗

b ≤ η
()
 + η

()
 – μ(γ ()

 + γ
()
 ), Aμ(σ ()

 )p/p∗
b ≤

η
()
 – μγ

()
 , Aμ(σ ()

 )p/p∗
b ≤ η

()
 – μγ

()
 ,

where δxj , j ∈ J ∪ {}, is the Dirac mass of  concentrated at xj ∈ �.

Proof The proof is similar to that of the concentration compactness principle in Refs. [,
] (see also [, Lemma .]) and is omitted here. �

In order to find critical points of E , we need the following local (PS)c condition.

Lemma . Suppose that (K.) and (K.) hold. Then the (PS)c condition in (W ,p
a,G(�))

holds for E if

c < c∗
 �

a +  – b
N

min
{
A

p∗
b

p∗
b–p

μ,ςi K+()
–p

p∗
b–p , |G|A

p∗
b

p∗
b–p

,ςi
‖K+‖

–p
p∗

b–p
∞

}
. (.)

Proof The proof is similar to that in [, Proposition ]. We sketch the argument here
for completeness. Let {(un, vn)} ⊂ (W ,p

a,G(�)) be a (PS)c sequence for E with c < c∗
. Then

we easily see from (.) and (.) that {(un, vn)} is bounded in (W ,p
a,G(�)), and we may

assume that (un, vn) ⇀ (u, v) in (W ,p
a,G(�)). In view of Lemma ., there exist measures
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η(), η(), σ (), σ (), ν(i) (i = , . . . , m), γ () and γ () such that relations (a)-(e) of this lemma
hold. Let xj 
=  be a singular point of measures η(), η(), σ (), σ () and ν(i) (i = , . . . , m).
We define two functions φ,φ ∈ C∞

 (�) such that φ = φ =  in Bε(xj), φ = φ =  on
�\Bε(xj) and |∇φ| ≤ /ε, |∇φ| ≤ /ε. By Lemma ., limn→∞〈E ′(un, vn), (unφ, vnφ)〉 =
, and consequently, combining (.) and the Hölder inequality, we have

∫

�

(
φdη() + φdη()) –

∫

�

K(x)

{

φ dσ () + φ dσ () +
m∑

i=

ςi

p∗
b

(αiφ + βiφ) dν

}

–
∫

�

μ
(
φ dγ () + φ dγ ())

≤ lim sup
n→∞

∫

�

|un||∇un|p–|∇φ| + |vn||∇vn|p–|∇φ|
|x|ap dx

≤ sup
n≥

(∫

�

|x|–ap|∇un|p dx
) p–

p
lim sup

n→∞

(∫

�

|x|–ap|un|p|∇φ|p dx
) 

p

+ sup
n≥

(∫

�

|x|–ap|∇vn|p dx
) p–

p
lim sup

n→∞

(∫

�

|x|–ap|vn|p|∇φ|p dx
) 

p

≤ C
{(∫

�

|x|–ap|u|p|∇φ|p dx
) 

p
+
(∫

�

|x|–ap|v|p|∇φ|p dx
) 

p
}

≤ C
{(∫

Bε (xj)

|u|p∗

|x|ap∗ dx
) 

p∗ (∫

�

|∇φ|N
) 

N

+
(∫

Bε (xj)

|v|p∗

|x|ap∗ dx
) 

p∗ (∫

�

|∇φ|N
) 

N
}

≤ C
{(∫

Bε (xj)
|x|–ap|∇u|p dx

) 
p

+
(∫

Bε (xj)
|x|–ap|∇v|p dx

) 
p
}

. (.)

Taking limits as ε → , we conclude from (.) and the relations (a)-(c) of Lemma . that

K(xj)

(

σ
()
j + σ

()
j +

m∑

i=

ςiν
(i)
j

)

≥ η
()
j + η

()
j . (.)

The above inequality means that the concentration of the measures σ (), σ () and ν(i) can-
not occur at points where K(xj) ≤ . More exactly, if K(xj) ≤  then η

()
j = η

()
j = σ

()
j = σ

()
j =

∑m
i= ςiν

(i)
j = . Consequently, we deduce from (.) and (d) of Lemma . that either

(i) σ
()
j = σ

()
j =

∑m
i= ςiν

(i)
j =  or

(ii) σ
()
j + σ

()
j +

∑m
i= ςiν

(i)
j ≥ (A,ςi /K(xj))

p∗
b

p∗
b–p ≥ (A,ςi /‖K+‖∞)

p∗
b

p∗
b–p .

For the point x = , similarly to the case xj 
= , we get

η
()
 + η

()
 – μ

(
γ

()
 + γ

()


)
– K()

(

σ
()
 + σ

()
 +

m∑

i=

ςiν
(i)


)

≤ .

This, combined with (e) of Lemma ., implies that either
(iii) σ

()
 = σ

()
 =

∑m
i= ςiν

(i)
 =  or

(iv) σ
()
 + σ

()
 +

∑m
i= ςiν

(i)
 ≥ (Aμ,ςi /K+())

p∗
b

p∗
b–p .
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We now rule out cases (ii) and (iv). For every continuous nonnegative function ψ such
that  ≤ ψ(x) ≤  on �, we obtain from (.) and (.) that

c = lim
n→∞

(

E (un, vn) –


p∗
b

〈
E ′(un, vn), (un, vn)

〉
)

=
(


p

–


p∗
b

)

lim
n→∞

∫

�

(

|x|–ap|∇un|p + |x|–ap|∇vn|p – μ
|un|p + |vn|p

|x|p(a+)

)

dx

≥ a +  – b
N

lim sup
n→∞

∫

�

(

|x|–ap|∇un|p + |x|–ap|∇vn|p – μ
|un|p + |vn|p

|x|p(a+)

)

ψ(x) dx.

If (ii) occurs, then the set J must be finite because the measures σ (), σ () and ν(i)

(i = , . . . , m) are bounded. Since functions (un, vn) are G-symmetric, the measures σ (),
σ () and ν(i) (i = , . . . , m) must be G-invariant. This implies that if xj 
=  is a singular point
of σ (), σ () and ν(i) (i = , . . . , m), so is gxj for each g ∈ G, and the mass of σ (), σ () and
ν(i) (i = , . . . , m) concentrated at gxj is the same for each g ∈ G. If we assume the existence
of j ∈ J with xj 
=  such that (ii) holds, then we choose ψ with compact support so that
ψ(gxj) =  for each g ∈ G and we get

c ≥ a +  – b
N

|G|(η()
j + η

()
j

) ≥ a +  – b
N

|G|A,ςi

(

σ
()
j + σ

()
j +

m∑

i=

ςiν
(i)
j

) p
p∗

b

≥ a +  – b
N

|G|A
p∗

b
p∗

b–p
,ςi

‖K+‖
–p

p∗
b–p

∞ ,

a contradiction with (.). Similarly, if (iv) holds for x = , we choose ψ with compact
support so that ψ() =  and we find

c ≥ a +  – b
N

(
η

()
 + η

()
 – μγ

()
 – μγ

()


) ≥ a +  – b
N

Aμ,ςi

(

σ
()
 + σ

()
 +

m∑

i=

ςiν
(i)


) p
p∗

b

≥ a +  – b
N

A

p∗
b

p∗
b–p

μ,ςi K+()
–p

p∗
b–p ,

which contradicts (.). Thus σ
()
j = σ

()
j = ν

(i)
j =  (i = , . . . , m) for all j ∈ J ∪ {}, and

therefore we get

lim
n→∞

∫

�

|un|p∗
b + |vn|p∗

b +
∑m

i= ςi|un|αi |vn|βi

|x|bp∗
b

dx =
∫

�

|u|p∗
b + |v|p∗

b +
∑m

i= ςi|u|αi |v|βi

|x|bp∗
b

dx.

Finally, since limn→∞〈E ′(un, vn) – E ′(u, v), (un – u, vn – v)〉 = , we naturally deduce that
(un, vn) → (u, v) in (W ,p

a (�)). �

As an immediate consequence of Lemma . we have the following result.

Corollary . If K+() =  and |G| = +∞, then the functional E satisfies (PS)c condition
for every c ∈R.
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Proof of Theorem . Firstly, we choose ε >  such that assumption (.) holds, where
Vε = φyε/‖φyε‖μ fulfills (.)-(.). In view of (K.), we find from (.) and (.) that

E (u, v) ≥ 
p
∥
∥(u, v)

∥
∥p

μ
–


p∗

b
‖K‖∞A

–
p∗

b
p

μ,ςi

∥
∥(u, v)

∥
∥p∗

b
μ

.

Therefore there exist constants α >  and ρ >  such that E (u, v) ≥ α for all ‖(u, v)‖μ = ρ .
Furthermore, if we set u = Vε , v = τminVε and

�(t) = E (tVε , tτminVε)

=
tp

p
(
 + τ

p
min

)
∫

�

(

|x|–ap|∇Vε |p – μ
|Vε |p

|x|p(a+)

)

dx

–
tp∗

b

p∗
b

(

 + τ
p∗

b
min +

m∑

i=

ςiτ
βi
min

)∫

�

K(x)|x|–bp∗
b |Vε |p∗

b dx

with t ≥ , then we easily deduce that �(t) has a unique maximum in positive t at some t
at which d�(t)/dt becomes zero. A simple computation gives us this value

t =
{ ( + τ

p
min)

∫

�
(|x|–ap|∇Vε |p – μ

|Vε |p
|x|p(a+) ) dx

( + τ
p∗

b
min +

∑m
i= ςiτ

βi
min)

∫

�
K(x)|x|–bp∗

b |Vε |p∗
b dx

} 
p∗

b–p
.

Consequently, we obtain from (.) and (.) that

max
t≥

�(t) = E (tVε , tτminVε)

=
a +  – b

N

{ ( + τ
p
min)

∫

�
(|x|–ap|∇Vε |p – μ

|Vε |p
|x|p(a+) ) dx

[( + τ
p∗

b
min +

∑m
i= ςiτ

βi
min)

∫

�
K(x)|x|–bp∗

b |Vε |p∗
b dx]

p
p∗

b

} p∗
b

p∗
b–p

=
a +  – b

N

{h(τmin)
∫

�
(|x|–ap|∇Vε |p – μ

|Vε |p
|x|p(a+) ) dx

(
∫

�
K(x)|x|–bp∗

b |Vε |p∗
b dx)

p
p∗

b

} p∗
b

p∗
b–p

. (.)

On the other hand, since E (tVε , tτminVε) → –∞ as t → ∞, there exists t >  such that
‖(tVε , tτminVε)‖μ > ρ and E (tVε , tτminVε) < . Now we define

c = inf
γ∈�

max
t∈[,]

E
(
γ (t)

)
, (.)

where � = {γ ∈ C([, ], (W ,p
a,G(�)));γ () = (, ),E (γ ()) < ,‖γ ()‖μ > ρ}. In view of

Lemma ., we obtain from (.), (.), (.) and (.) that

c ≤ E (tVε , tτminVε)

=
a +  – b

N

{h(τmin)
∫

�
(|x|–ap|∇Vε |p – μ

|Vε |p
|x|p(a+) ) dx

(
∫

�
K(x)|x|–bp∗

b |Vε |p∗
b dx)

p
p∗

b

} p∗
b

p∗
b–p
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≤ a +  – b
N

{ h(τmin)
∫

�
(|x|–ap|∇Vε |p – μ

|Vε |p
|x|p(a+) ) dx

(A
–

p∗
b
p

μ max{K+(), |G|
p–p∗

b
p (A/Aμ)–

p∗
b
p ‖K+‖∞})

p
p∗

b

} p∗
b

p∗
b–p

=
a +  – b

N
min

{
A

p∗
b

p∗
b–p

μ,ςi K+()
–p

p∗
b–p , |G|A

p∗
b

p∗
b–p

,ςi
‖K+‖

–p
p∗

b–p
∞

}
= c∗

.

If c < c∗
, then by Lemma . the (PS)c condition holds and the conclusion follows by the

mountain pass theorem in Ref. [] (see also []). If c = c∗
, then γ (t) = (ttVε , ttτminVε),

with  ≤ t ≤ , is a path in � such that maxt∈[,] E (γ (t)) = c. Consequently, either
�′(t) = E ′(tVε , tτminVε) =  and we are done, or γ can be deformed to a path γ̃ ∈ �

with maxt∈[,] E (γ̃ (t)) < c, which is impossible. Hence we obtain a nontrivial solution
(u, v) ∈ (W ,p

a,G(�)) of problem (P K
 ). In the following, we have just to show that the

solution (u, v) can be chosen to be positive on �. Since E (u, v) = E (|u|, |v|) and

 =
〈
E ′(u, v), (u, v)

〉

=
∥
∥(u, v)

∥
∥p

μ
–

∫

�

K(x)
|x|bp∗

b

(

|u|p∗
b + |v|p∗

b +
m∑

i=

ςi|u|αi |v|βi

)

dx,

we find that
∫

�
K(x)|x|–bp∗

b (|u|p∗
b + |v|p∗

b +
∑m

i= ςi|u|αi |v|βi ) dx = ‖(u, v)‖p
μ > . This

means c = E (|u|, |v|) = maxt≥ E (t|u|, t|v|). Consequently, either (|u|, |v|) is a critical
point of E or γ (t) = (tt|u|, tt|v|), with E (t|u|, t|v|) < , can be deformed, as the first
part of the proof, to a path γ̃ (t) with maxt∈[,] E (γ̃ (t)) < c, which is impossible. Therefore,
we may assume that u ≥ , v ≥  on � and the fact that u > , v >  on � follows by
the strong maximum principle. �

Proof of Corollary . Let yε(x) be the extremal function satisfying (.)-(.). Choose
φ ∈ C

(�) so that φ ≥  on � and φ(x) =  on B�(), with � >  to be determined. Applying
the methods in Refs. [, ], we get from (.)-(.) that

‖φyε‖p
μ =

∫

�

(

|x|–ap∣∣∇(φyε)
∣
∣p – μ

|φyε |p
|x|p(a+)

)

dx =  + O
(
εp(l+a+)–N)

, (.)

∫

�

|x|–bp∗
b |φyε |p∗

b dx = A
–

p∗
b
p

μ + O
(
εp∗

b(l+b)–N)
, (.)

∫

�

|x|–dp∗
d |φyε |q dx =

⎧
⎪⎪⎨

⎪⎪⎩

O(εq(l+a+– N
p )),  ≤ q < N–dp∗

d
l

,

O(εq(l+a+– N
p )| ln ε|), q = N–dp∗

d
l

,

O(ε(p∗
d–q)( N

p –a–)), N–dp∗
d

l
< q < p∗

d.

(.)

Set Vε = φyε/‖φyε‖μ; then by (.) and (.) we derive

∫

�

|Vε |p∗
b

|x|bp∗
b

dx =
∫

�

|φyε |p∗
b

|x|bp∗
b‖φyε‖p∗

b
μ

dx = A
–

p∗
b
p

μ + O
(
εp(l+a+)–N)

. (.)
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Let us now choose � >  so that K(x) ≥ K() + γ|x|ϑ for |x| ≤ �. Then we obtain from
(.) that

∫

�

K(x)
|Vε |p∗

b

|x|bp∗
b

dx =
∫

�

(
K(x) – K()

)|x|–bp∗
b |Vε |p∗

b dx + K()A
–

p∗
b
p

μ + O
(
εp(l+a+)–N)

.

It is sufficient to show that
∫

�

(
K(x) – K()

)|x|–bp∗
b |Vε |p∗

b dx + O
(
εp(l+a+)–N) ≥  (.)

for sufficiently small ε > . We find that

∫

�

(
K(x) – K()

)|x|–bp∗
b |Vε |p∗

b dx

=
∫

|x|≤�

(
K(x) – K()

)|x|–bp∗
b |Vε |p∗

b dx +
∫

|x|≥�

(
K(x) – K()

)|x|–bp∗
b |Vε |p∗

b dx

≥ γ

∫

|x|≤�

|x|ϑ–bp∗
b |yε |p∗

b

‖φyε‖p∗
b

μ

dx +
∫

|x|≥�

(K(x) – K())|φyε |p∗
b

|x|bp∗
b‖φyε‖p∗

b
μ

dx = J + J.

For ε >  small enough, we deduce from (.)-(.), (.) and the fact N –  + ϑ – (b +
l)p∗

b > –, N –  + ϑ – (b + l)p∗
b < – that

J = γ

∫

|x|≤�

|x|ϑ–bp∗
b |yε |p∗

b

‖φyε‖p∗
b

μ

dx

=
γCp∗

bε–ξp∗
b

( + O(εp(l+a+)–N ))
p∗

b
p

∫

|x|≤�

|x|ϑ–bp∗
b

[

Uμ

( |x|
ε

)]p∗
b

dx

=
Cεϑ

( + O(εp(l+a+)–N ))
p∗

b
p

∫

|x|
ε ≤ �

ε

( |x|
ε

)ϑ–(b+l)p∗
b
[( |x|

ε

)l
Uμ

( |x|
ε

)]p∗
b

d
(

x
ε

)

≥ Cεϑ

{∫

|x|≤

(|x|l Uμ(|x|))p∗
b

|x|–ϑ+(b+l)p∗
b

dx +
∫

<|x|≤ �
ε

(|x|l Uμ(|x|))p∗
b

|x|–ϑ+(b+l)p∗
b

dx
}

≥ Cε
ϑ , ϑ ∈ (

, p(l + a + ) – N
)

and

|J| ≤
∫

|x|≥�

|K(x) – K()||φyε |p∗
b

|x|bp∗
b‖φyε‖p∗

b
μ

dx

≤ C
∫

|x|
ε ≥ �

ε

( |x|
ε

)–(b+l)p∗
b
[( |x|

ε

)l
Uμ

( |x|
ε

)]p∗
b

d
(

x
ε

)

≤ C
∫ +∞

�ε–
rN––(b+l)p∗

b dr ≤ Cε
p∗

b(l+a+– N
p ),

where C >  and C >  are constants independent of ε. In view of  < ϑ < p(l +a+)–N <
p∗

b(l + a +  – N
p ), we find that inequality (.) holds as ε >  sufficiently small. Therefore,
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we conclude from (.), (.) and (.) that

∫

�

K(x)
|Vε |p∗

b

|x|bp∗
b

dx =
∫

�

(
K(x) – K()

) |Vε |p∗
b

|x|bp∗
b

dx + K()A
–

p∗
b
p

μ + O
(
εp(l+a+)–N)

≥ K()A
–

p∗
b
p

μ ≥ A
–

p∗
b
p

μ max
{

K+(), |G|
p–p∗

b
p (A/Aμ)–

p∗
b
p ‖K+‖∞

}
> .

This, combined with Theorem ., implies the conclusion. �

To prove Theorem . we need the following version of the symmetric mountain pass
theorem (see [, Theorem .]).

Lemma . Let X be an infinite dimensional Banach space, and let E ∈ C(X,R) be an
even functional satisfying (PS)c condition for each c and E () = . Furthermore, we suppose
that:

(i) there exist constants α >  and ρ >  such that E (w) ≥ α for all ‖w‖ = ρ ;
(ii) there exists an increasing sequence of subspaces {Xk} of X , with dim Xk = k, such that

for every k one can find a constant Rk >  such that E (w) ≤  for all w ∈ Xk with
‖w‖ ≥ Rk .

Then E possesses a sequence of critical values {ck} tending to ∞ as k → ∞.

Proof of Theorem . Applying Lemma . with X = (W ,p
a,G(�)) and (u, v) = w ∈ X, we see

from (K.), (.) and (.) that

E (u, v) ≥ 
p
∥
∥(u, v)

∥
∥p

μ
–


p∗

b
‖K‖∞A

–
p∗

b
p

μ,ςi

∥
∥(u, v)

∥
∥p∗

b
μ

.

Since p∗
b > p > , there exist constants α >  and ρ >  such that E (u, v) ≥ α for all

(u, v) with ‖(u, v)‖μ = ρ . To find a suitable sequence of finite dimensional subspaces of
(W ,p

a,G(�)), we set �+ = {x ∈ �; K(x) > }. Since the set �+ is G-symmetric, we can de-
fine (W ,p

a,G(�+)), which is the subspace of G-symmetric functions of (W ,p
a (�+)) (see

Section ). By extending functions in (W ,p
a,G(�+)) by  outside �+ we can assume that

(W ,p
a,G(�+)) ⊂ (W ,p

a,G(�)). Let {Xk} be an increasing sequence of subspaces of (W ,p
a,G(�+))

with dim Xk = k for each k. Then there exists a constant ι(k) >  such that


p∗

b

∫

�+

K(x)
|x|bp∗

b

(

|ũ|p∗
b + |ṽ|p∗

b +
m∑

i=

ςi|ũ|αi |ṽ|βi

)

dx ≥ ι(k)

for all (ũ, ṽ) ∈ Xk , with ‖(ũ, ṽ)‖μ = . Hence, if (u, v) ∈ Xk\{(, )} then we write (u, v) =
t(ũ, ṽ) with t = ‖(u, v)‖μ and ‖(ũ, ṽ)‖μ = . Thus we obtain

E (u, v) =
tp

p
–

tp∗
b

p∗
b

∫

�+

K(x)
|x|bp∗

b

(

|ũ|p∗
b + |ṽ|p∗

b +
m∑

i=

ςi|ũ|αi |ṽ|βi

)

dx ≤ tp

p
– ι(k)tp∗

b ≤ 

for t large enough. By Lemma . and Corollary . we conclude that there exists a se-
quence of critical values ck → ∞ as k → ∞ and the results follow. �
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Proof of Corollary . Since K(x) is radially symmetric, namely K(x) = K(|x|), we find that
the corresponding group G = O(N) and |G| = +∞. According to Corollary ., E satisfies
the (PS)c condition for every c ∈ R. Consequently, by Theorem . we obtain the conclu-
sion. �

4 Existence results for problem (P K0
λ )

Throughout this section we assume that λ >  and K(x) ≡ K >  is a constant. Since we
are interested in positive G-symmetric solutions of problem (P K

λ ), we define a functional
Fλ : (W ,p

a,G(�)) →R given by

Fλ(u, v) =

p

∫

�

( |∇u|p + |∇v|p
|x|ap – μ

|u|p + |v|p
|x|p(a+)

)

dx –
λ

q + q

∫

�

|u+|q |v+|q

|x|dp∗
d

dx

–
K

p∗
b

∫

�

|x|–bp∗
b

(
∣
∣u+∣∣p∗

b +
∣
∣v+∣∣p∗

b +
m∑

i=

ςi
∣
∣u+∣∣αi

∣
∣v+∣∣βi

)

dx, (.)

where q, q ≥ ,  < p < q + q < p∗
d , u+ = max{, u} and v+ = max{, v}. By (.) and the

Young inequality, we obtain
∫

�

|u+|q |v+|q

|x|dp∗
d

dx ≤ q

q + q

∫

�

|u|q+q

|x|dp∗
d

dx +
q

q + q

∫

�

|v|q+q

|x|dp∗
d

dx

≤ C
[(∫

�

|x|–ap|∇u|p dx
) q+q

p
+
(∫

�

|x|–ap|∇v|p dx
) q+q

p
]

≤ C
∥
∥(u, v)

∥
∥q+q

μ
. (.)

Hence we find from (.) that Fλ is well defined, Fλ ∈ C((W ,p
a,G(�)),R) and there exists

a one-to-one correspondence between the weak solutions of (P K
λ ) and the critical points

of Fλ. Furthermore, an analogously symmetric criticality principle of Lemma . clearly
holds; thus the weak solutions of problem (P K

λ ) are exactly the critical points of the func-
tional Fλ.

Lemma . Suppose that λ > , q, q ≥ , q + q ∈ (p, p∗
d),  < ςi < +∞, and αi,βi > 

satisfy αi + βi = p∗
b (i = , . . . , m). Then the (PS)c condition in (W ,p

a,G(�)) holds for Fλ if

c <
a +  – b

N
K

p
p–p∗

b
 A

p∗
b

p∗
b–p

μ,ςi . (.)

Proof Let {(un, vn)} ⊂ (W ,p
a,G(�)) be a (PS)c sequence for Fλ with c satisfying (.). Note

that p < q + q < p∗
d ≤ p∗

b . Then by (.), there exists n ≥  such that for n ≥ n, we obtain

c +  ≥ Fλ(un, vn) –


q + q

〈
F ′

λ(un, vn), (un, vn)
〉
+


q + q

〈
F ′

λ(un, vn), (un, vn)
〉

=
(


p

–


q + q

)
∥
∥(un, vn)

∥
∥p

μ
+ on()

∥
∥(un, vn)

∥
∥

μ

+
(


q + q

–


p∗
b

)

K

∫

�

|x|–bp∗
b

(
∣
∣u+

n
∣
∣p∗

b +
∣
∣v+

n
∣
∣p∗

b +
m∑

i=

ςi
∣
∣u+

n
∣
∣αi

∣
∣v+

n
∣
∣βi

)

dx

≥
(


p

–


q + q

)
∥
∥(un, vn)

∥
∥p

μ
+ on()

∥
∥(un, vn)

∥
∥

μ
.
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This implies that {(un, vn)} is bounded in (W ,p
a,G(�)). Therefore, just as in Lemma ., we

may assume that un ⇀ u, vn ⇀ v in W ,p
a,G(�) and in Lp∗

b (�, |x|–bp∗
b ); moreover, un → u,

vn → v in Lq+q (�, |x|–dp∗
d ) for all p < q + q < p∗

d (see [, Theorem .]) and a.e. on �.
This means

∫

�

|u+
n|q |v+

n|q

|x|dp∗
d

dx =
∫

�

|u+|q |v+|q

|x|dp∗
d

dx + on(). (.)

A standard argument shows that (u, v) is a critical point of Fλ, and hence

Fλ(u, v) =
(


p

–


p∗
b

)

K

∫

�

|x|–bp∗
b

(
∣
∣u+∣∣p∗

b +
∣
∣v+∣∣p∗

b +
m∑

i=

ςi
∣
∣u+∣∣αi

∣
∣v+∣∣βi

)

dx

+
(


p

–


q + q

)

λ

∫

�

|u+|q |v+|q

|x|dp∗
d

dx ≥ . (.)

Now we set ũn = un – u and ṽn = vn – v. Then, by the Brezis-Lieb lemma [] and arguing
as in [, Lemma .], we get

∥
∥(ũn, ṽn)

∥
∥p

μ
=

∥
∥(un, vn)

∥
∥p

μ
–

∥
∥(u, v)

∥
∥p

μ
+ on(), (.)

∫

�

|x|–bp∗
b
∣
∣ũ+

n
∣
∣p∗

b dx =
∫

�

|x|–bp∗
b
∣
∣u+

n
∣
∣p∗

b dx –
∫

�

|x|–bp∗
b
∣
∣u+∣∣p∗

b dx + on(), (.)
∫

�

|x|–bp∗
b
∣
∣ṽ+

n
∣
∣p∗

b dx =
∫

�

|x|–bp∗
b
∣
∣v+

n
∣
∣p∗

b dx –
∫

�

|x|–bp∗
b
∣
∣v+∣∣p∗

b dx + on(), (.)

∫

�

|ũ+
n|α|ṽ+

n|β
|x|bp∗

b
dx =

∫

�

|u+
n|α|v+

n|β
|x|bp∗

b
dx –

∫

�

|u+|α|v+|β
|x|bp∗

b
dx + on(). (.)

In view of Fλ(un, vn) = c + on() and F ′
λ(un, vn) = on(), we get from (.), (.) and (.)-

(.) that

c + on() = Fλ(un, vn)

= Fλ(u, v) +

p
∥
∥(ũn, ṽn)

∥
∥p

μ

–
K

p∗
b

∫

�

|x|–bp∗
b

(
∣
∣ũ+

n
∣
∣p∗

b +
∣
∣ṽ+

n
∣
∣p∗

b +
m∑

i=

ςi
∣
∣ũ+

n
∣
∣αi

∣
∣ṽ+

n
∣
∣βi

)

dx + on() (.)

and

∥
∥(ũn, ṽn)

∥
∥p

μ
– K

∫

�

|x|–bp∗
b

(
∣
∣ũ+

n
∣
∣p∗

b +
∣
∣ṽ+

n
∣
∣p∗

b +
m∑

i=

ςi
∣
∣ũ+

n
∣
∣αi

∣
∣ṽ+

n
∣
∣βi

)

dx = on(). (.)

Hence, for a subsequence {(ũn, ṽn)}, we have

∥
∥(ũn, ṽn)

∥
∥p

μ
→ l̃ ≥  and

K

∫

�

|x|–bp∗
b

(
∣
∣ũ+

n
∣
∣p∗

b +
∣
∣ṽ+

n
∣
∣p∗

b +
m∑

i=

ςi
∣
∣ũ+

n
∣
∣αi

∣
∣ṽ+

n
∣
∣βi

)

dx → l̃
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as n → ∞. It follows from (.) that Aμ,ςi (̃l/K)
p

p∗
b ≤ l̃, which means either l̃ =  or l̃ ≥

K
p

p–p∗
b

 A

p∗
b

p∗
b–p

μ,ςi . If l̃ ≥ K
p

p–p∗
b

 A

p∗
b

p∗
b–p

μ,ςi , then we deduce from (.), (.) and (.) that

c = Fλ(u, v) +
(


p

–


p∗
b

)

l̃ ≥ a +  – b
N

K
p

p–p∗
b

 A

p∗
b

p∗
b–p

μ,ςi ,

which contradicts (.). Consequently, we obtain ‖(ũn, ṽn)‖p
μ →  as n → ∞, and hence

(un, vn) → (u, v) in (W ,p
a,G(�)). The conclusion of this lemma follows. �

Lemma . Suppose that λ > ,  < ςi < +∞, αi, βi > , αi + βi = p∗
b (i = , . . . , m), and

q, q ≥  satisfy (.). Then there exists a pair of functions (u, v) ∈ (W ,p
a,G(�)\{}) such

that

sup
t≥

Fλ(tu, tv) <
a +  – b

N
K

p
p–p∗

b
 A

p∗
b

p∗
b–p

μ,ςi . (.)

Proof Recall that τmin >  in Lemma . and Vε = φyε/‖φyε‖μ, which satisfies (.)-(.).
In the following, we will show that (Vε , τminVε) satisfies (.) for ε >  sufficiently small.
First, we consider the functions

�(t) = Fλ(tVε , tτminVε)

=
tp

p
(
 + τ

p
min

)
–

tp∗
b

p∗
b

(

 +
m∑

i=

ςiτ
βi
min + τ

p∗
b

min

)

K

∫

�

|Vε |p∗
b

|x|bp∗
b

dx

–
λτ

q
min

q + q
tq+q

∫

�

|Vε |q+q

|x|dp∗
d

dx, t ≥  (.)

and

�̃(t) =
tp

p
(
 + τ

p
min

)
–

tp∗
b

p∗
b

(

 +
m∑

i=

ςiτ
βi
min + τ

p∗
b

min

)

K

∫

�

|Vε |p∗
b

|x|bp∗
b

dx, t ≥ . (.)

Note that �() = , �(t) >  for t → +, and limt→+∞ �(t) = –∞. Therefore supt≥ �(t)
can be achieved at some tε >  for which we get

(
 + τ

p
min

)
tp–
ε – K

(

 +
m∑

i=

ςiτ
βi
min + τ

p∗
b

min

)

tp∗
b–

ε

∫

�

|x|–bp∗
b |Vε |p∗

b dx

– λτ
q
mintq+q–

ε

∫

�

|x|–dp∗
d |Vε |q+q dx = . (.)

In view of Vε = φyε/‖φyε‖μ, we find from (.) and (.) that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cε
q(l+a+– N

p ) ≤ ∫

�

|Vε |q
|x|dp∗

d
dx ≤ Cε

q(l+a+– N
p ),  ≤ q < N–dp∗

d
l

,

Cε
q(l+a+– N

p )| ln ε| ≤ ∫

�

|Vε |q
|x|dp∗

d
dx ≤ Cε

q(l+a+– N
p )| ln ε|, q = N–dp∗

d
l

,

Cε
(p∗

d–q)( N
p –a–) ≤ ∫

�

|Vε |q
|x|dp∗

d
dx ≤ Cε

(p∗
d–q)( N

p –a–), N–dp∗
d

l
< q < p∗

d.

(.)
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Therefore, for ε >  small enough, we deduce from (.), (.) and (.) and the fact
λ > , τmin >  that

 < C ≤ tε ≤
{

 + τ
p
min

K( +
∑m

i= ςiτ
βi
min + τ

p∗
b

min)
∫

�
|x|–bp∗

b |Vε |p∗
b dx

} 
p∗

b–p
� t

ε ≤ C, (.)

where C > , C >  are constants independent of ε. On the other hand, the function �̃(t)
defined by (.) attains its maximum at t

ε and is increasing in the interval [, t
ε ], together

with Lemma ., (.) and (.)-(.), we obtain

�(tε) = �̃(tε) –
λτ

q
min

q + q
tq+q
ε

∫

�

|Vε |q+q

|x|dp∗
d

dx ≤ �̃
(
t
ε

)
– C

∫

�

|Vε |q+q

|x|dp∗
d

dx

=
a +  – b

N

{
 + τ

p
min

[K( +
∑m

i= ςiτ
βi
min + τ

p∗
b

min)
∫

�

|Vε |p∗
b

|x|bp∗
b

dx]
p

p∗
b

} p∗
b

p∗
b–p

– C
∫

�

|Vε |q+q

|x|dp∗
d

dx

=
a +  – b

N
K

p
p–p∗

b


{
h(τmin)

[A
–

p∗
b
p

μ + O(εp(l+a+)–N )]
p

p∗
b

} p∗
b

p∗
b–p

– C
∫

�

|Vε |q+q

|x|dp∗
d

dx

=
a +  – b

N
K

p
p–p∗

b
 A

p∗
b

p∗
b–p

μ,ςi + O
(
εp(l+a+)–N)

– C
∫

�

|Vε |q+q

|x|dp∗
d

dx. (.)

Furthermore, we easily check from (.) that

p(l + a + ) – N >
[
p∗

d – (q + q)
]
(

N
p

– a – 
)

. (.)

Choosing ε >  sufficiently small, we deduce from (.), (.) and (.) that

sup
t≥

Fλ(tVε , tτminVε) = �(tε) <
a +  – b

N
K

p
p–p∗

b
 A

p∗
b

p∗
b–p

μ,ςi .

Thus we conclude that (Vε , τminVε) satisfies (.) for ε >  sufficiently small and the results
follow. �

Proof of Theorem . For any (u, v) ∈ (W ,p
a,G(�)\{}), we deduce from (K.), (.), (.)

and (.) that

Fλ(u, v) ≥ 
p
∥
∥(u, v)

∥
∥p

μ
–

K

p∗
b
A

–
p∗

b
p

μ,ςi

∥
∥(u, v)

∥
∥p∗

b
μ

– C
∥
∥(u, v)

∥
∥q+q

μ
.

Since p < q + q < p∗
d ≤ p∗

b, we conclude that there exist constants α̃ >  and ρ >  such
that Fλ(u, v) ≥ α̃ for all ‖(u, v)‖μ = ρ . Moreover, in view of limt→∞ Fλ(tu, tv) = –∞, we find
that there exists t >  such that ‖(tu, tv)‖μ > ρ and Fλ(tu, tv) < . Now we set

c = inf
γ∈�

max
t∈[,]

Fλ

(
γ (t)

)
,
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where � = {γ ∈ C([, ], (W ,p
a,G(�)));γ () = (, ),Fλ(γ ()) < }. By the mountain pass the-

orem (see []), we deduce that there exists a sequence {(un, vn)} ⊂ (W ,p
a,G(�)) such that

Fλ(un, vn) → c ≥ α̃, F ′
λ(un, vn) →  as n → ∞. Let (u, v) be the functions obtained in

Lemma .. Then we get

 < α̃ ≤ c ≤ sup
t∈[,]

Fλ(ttu, ttv) <
a +  – b

N
K

p
p–p∗

b
 A

p∗
b

p∗
b–p

μ,ςi .

According to the above inequality and Lemma ., we obtain a critical point (u, v) of Fλ

satisfying problem (P K
λ ). Taking (u–

 , v–
 ) as the test functions, where u–

 = min{, u} and
v–

 = min{, v}, we have

 =
〈
F ′

λ(u, v),
(
u–

 , v–

)〉

=
∥
∥
(
u–

 , v–

)∥
∥p

μ
.

This means u ≥  and v ≥  on �. Using the strong maximum principle, we find u > 
and v >  on �. Finally, by the symmetric criticality principle, we conclude that (u, v) is
a positive G-symmetric solution of problem (P K

λ ). �
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