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Abstract
In this study, we consider reconstruction and stability issues of an inverse nodal
problem for a p-Laplacian Schrödinger equation with energy dependent potential.
We solve Lipschitz stability of the inverse nodal problem for this p-Laplacian operator.
Furthermore, we show that the space of all potential functions q is homeomorphic to
the partition set of all asymptotically equivalent nodal sequences induced by an
equivalence relation.
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1 Introduction
Let us consider the following p-Laplacian eigenvalue problem:

–
(
u′(p–))′ = (p – )

(
λ – q(x) – λr(x)

)
u(p–),  < x < , (.)

with the Dirichlet conditions

u() = u() = , (.)

where p >  is a constant, λ is a spectral parameter; q ∈ L(, ), r ∈ W 
 (, ) are real-valued

functions and u(p–) = |u|(p–) sgn u (see []).
Uniqueness and reconstruction problems of the p-Laplacian Schrödinger equation with

energy dependent potential have been studied in some works (for example, see []), just
left stability problem is worth considering and undone for the (.)-(.) eigenvalue prob-
lem. In a complete solution of inverse problems, the questions of existence, uniqueness,
stability and construction are to be considered. The question of existence and uniqueness
is of great importance in testing the assumption behind any mathematical model. If the
answer to the uniqueness question is no, then we know that even perfect data do not con-
tain enough information to recover the physical quantity to be estimated. In the question
of stability we have to decide whether the solution depends continuously on the data. Sta-
bility is necessary if we want to be sure that a variation of the given data in a sufficiently
small range leads to an arbitrarily small change in the solution. This concept was intro-
duced by Hadamard in  in connection with the study of boundary value problems for
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partial differential equations (see []). Because of this important reason, we want to deal
with a stability issue for problem (.)-(.).

Notice that equation (.) becomes

–u′′ + [q + λr]u = λu (.)

for p =  and this equation is known as Schrödinger equation with energy dependent po-
tential (or diffusion equation, quadratic of differential pencil). Equation (.) is very im-
portant in both classical and quantum mechanics. For example, such problems arise in
solving Klein-Gordon equations which describe the motion of massless particles such as
photons. Sturm-Liouville energy dependent equations are also used for modeling vibra-
tions of mechanical systems in viscous media (see []). We note that in this type of prob-
lems, the spectral parameter λ is related to the energy of the system, and this motivates
the terminology ‘energy dependent’ used for the spectral problem of the form (.).

The theory of inverse problems for differential operators occupies an important position
in the current development of the spectral theory of linear operators. Inverse problems of
spectral analysis consist in the recovery of operators from their spectral data. One takes
for the main spectral data, for instance, one, two, or more spectra, the spectral function,
the spectrum and the normalizing constants, the Weyl function. Some aspects of spectral
problems for the Schrödinger equation with energy dependent potential have been studied
by many authors (see [–]).

In , McLaughlin [] posed a new technique to recover the operators. This tech-
nique is called inverse nodal problem. Inverse nodal problems consist in recovering op-
erators from given nodes (zeros) of their eigenfunctions. From the physical point of view,
this corresponds to finding, e.g., the density of a string or a beam from the zero-amplitude
positions of their eigenvibrations. She seems to be the first to consider this sort of in-
verse problem. Later on, the inverse nodal problem has been studied by many authors
(see [–]).

Suppose that {xn
j }n–

j= are the zeros of the eigenfunction un(x) which is expressed by
(.), and denote the nodal set Xn = {xn

j }n–
j= . Define the nodal length ln

j = xn
j+ – xn

j for
j = , , . . . , n – . Using these nodal data, some uniqueness, reconstruction results of the
potential function of the Schrödinger equation with energy dependent potential have been
solved by many authors (see [–]).

In (.), we can get the following one-dimensional p-Laplacian Sturm-Liouville eigen-
value problem for the special case r(x) = :

–
(
u′(p–))′ = (p – )

(
λ – q(x)

)
u(p–),

u() = u() = ,
(.)

where the eigenvalues of problem (.) associated eigenfunctions un(x) are countably in-
finite real and simple []. Inverse and stability problems for (.) one-dimensional p-
Laplacian Sturm-Liouville eigenvalue problem were solved by several authors (see [–
]).

To say something about the stability of the inverse nodal problem for the given (.)-
(.) eigenvalue problem, we need to introduce a generalized sine function Sp which is the
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solution of the initial value problem

–
(
S′(p–)

p
)′ = (p – )S(p–)

p , (.)

Sp() = , S′
p() = 

(see [, , ]). Sp and S′
p are periodic functions which satisfy the identity

∣∣Sp(x)
∣∣p +

∣∣S′
p(x)

∣∣p = 

for any x ∈R. These functions are p-analogues of classical sine and cosine functions in the
classical case. It is well known that

πp =
π

p sin( π
p )

is the first zero of Sp (see [–]). Now, we will give some further properties of Sp by the
following lemma.

Lemma . [, ]
(a) For S′

p �= ,

(
S′

p
)′ = –

∣∣
∣∣
Sp

S′
p

∣∣
∣∣

p–

Sp.

(b)

(
SpS′(p–)

p
)′ =

∣∣S′
p
∣∣p – (p – )Sp

p =  – p|Sp|p = ( – p) + p
∣∣S′

p
∣∣p.

This paper is organized as follows. In Section , we mention some asymptotic formu-
las for eigenvalues, nodal parameters and potential function for the (.)-(.) eigenvalue
problem by using the modified Prüfer substitution which were solved in the reference [].
In Section , we define a metric to solve the Lipschitz stability problem for a p-Laplacian
Schrödinger equation with energy dependent potential. Eventually, we give some conclu-
sions in Section .

2 Asymptotic estimates for eigenvalues, nodal parameters and potential
function

In this section, we recall some properties of (.) p-Laplacian operator with (.) Dirichlet
conditions which were solved by Koyunbakan []. For this purpose, we can introduce a
modified Prüfer substitution as

u(x) = c(x)Sp
(
λ/pθ (x)

)
, (.)

u′(x) = λ/pc(x)S′
p
(
λ/pθ (x)

)
,

or

u′(x)
u(x)

= λ/p S′
p(λ/pθ (x))

Sp(λ/pθ (x))
, (.)
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where c(x) and θ (x) are Prüfer variables. Differentiating both sides of the above equation
with respect to x and applying Lemma ., we obtain [, ]

θ ′(x) =  –
q
λ Sp

p –

λ

rSp
p . (.)

Now, we can establish the estimations of nodal parameters and a reconstruction formula
of a potential function for problem (.), (.).

Theorem . [] The eigenvalues λn of the Dirichlet eigenvalue problem given in (.), (.)
have the form

λ/p
n = nπp +


p(nπp)p–

∫ 


q(t) dt +



p(nπp)
p–



∫ 


r(t) dt + O

(


np/

)

as n → ∞.

Theorem . [] The nodal points and nodal length expansions for problem (.), (.)
satisfy

xn
j =

j
n

+


(nπp)p/

∫ xn
j


r(x)Sp

p dx +


(nπp)p

∫ xn
j


q(x)Sp

p dx + O
(


np/+

)
,

ln
j =

πp

λ
/p
n

+


pλn

∫ xn
j+

xn
j

r(t) dt +


pλ
n

∫ xn
j+

xn
j

q(t) dt + O
(



λ
+p

p
n

)
,

respectively, as n → ∞.

Theorem . [] Let q ∈ L(, ), r ∈ W 
 (, ) and assume that r is given a priori on the

interval [, ]. Then

q(x) = lim
n→∞ pλ

n

(
λ

/p
n ln

j

πp
–

r(x)
pλn

– 
)

for x ∈ (, ), j = jn(x) = max{j : xn
j < x}.

3 Lipschitz stability of an inverse nodal problem
In this section, we study Lipschitz stability of an inverse nodal problem for (.) p-
Laplacian operator. Lipschitz stability is about a continuity between two metric spaces.
To show this continuity, we will use a homeomorphism between these two metric spaces.
Stability problems were studied by many authors (see [–]). The method that we have
used in the proof of the Lipschitz stability of an inverse nodal problem is similar to the
classical Sturm-Liouville problem (see []).

Let us define �dif and �dif by

�dif =
{

q ∈ C[, ]
}

,

�dif =
{

X =
{

xn
k
}

: X is the nodal set associated with some q ∈ �dif
}

.
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We will show that �dif and �dif are homeomorphic to each other. Hence, when X is the
nodal set associated with q and X is close to X in �dif , then q is close to q in �dif , where r
is so close to r. That is, the inverse nodal problem is Lipschitz stable. Here, we use Lm(, )
(m ≥ ) for �dif . For m ≥ , let

Sm
n (X, X) = πp

p np+– 
m

[ n–∑

k=

∣∣ln
k – ln

k
∣∣m

] 
m

+

p

(nπp)
p


[∫ 


|r – r|m dx

] 
m

, (.)

where ln
k = xn

k+ – xn
k and ln

k = xn
k+ – xn

k . Define the metric and a pseudometric on �dif

dm
 (X, X) = lim

n→∞ Sm
n (X, X),

and

dm
�dif

(X, X) = lim
n→∞

Sm
n (X, X)

 + Sm
n (X, X)

,

respectively. If we define X ∼m X iff dm
�dif

(X, X) = , then ∼m is an equivalence relation on
�dif and dm

�dif
would be a metric for the partition set �∗

dif = �dif / ∼m.

Lemma . The function dm
�dif

(·, ·) is a pseudometric on �dif .

Proof It can be proved easily by using a similar method to that in []. �

Lemma . Let X, X ∈ �dif . Then
(a) The interval In,k between the points xn

k and xn
k has length O(n– p

 ).
(b) For all x ∈ (, ), we have the inequality |jn(x) – jn(x)| ≤  when n is sufficiently large.

Proof (a) By the asymptotic estimates of the nodal points, we can easily obtain

|In,k| =
∣∣xn

k – xn
k
∣∣

≤
∣
∣∣
∣x

n
k –

k
n

∣
∣∣
∣ +

∣
∣∣
∣
k
n

– xn
k

∣
∣∣
∣

= O
(
n– p


)

+ O
(
n– p


)

= O
(
n– p


)
,

by a similar method as in [].
(b) We can prove part (b) easily by using a similar method as in []. �

Theorem . For any of m ≥ , dm
�dif

is a metric on the space �dif / ∼m. Additionally, the
metric spaces (�dif ,‖ · ‖m) and (�dif / ∼m, dm

�dif
) are homeomorphic to each other where ∼m

is an equivalence relation induced by dm
�dif

.

Proof It suffices to indicate that

‖q – q‖m = pdm
 (X, X).
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By Theorem ., we get

q(x) – q(x) = lim
n→∞ p(nπp)p

[
n
(
ln
jn(x) – ln

jn(x)
)

+


p(nπp)
p


(r – r)
]

= lim
n→∞

[
pnp+πp

p
(
ln
jn(x) – ln

jn(x)
)

+ (nπp)
p
 (r – r)

]

for each x ∈ (, ). Hence, by Fatou’s lemma and the definition of norm on Lm, we have

‖q – q‖m ≤ pnp+πp
p lim

n→∞

∥∥ln
jn(x) – ln

jn(x)
∥∥

m + (nπp)
p
 lim

n→∞

[∫ 


|r – r|m

] 
m

≤ pπp
p lim

n→∞
[
np+∥∥ln

jn(x) – ln
jn(x)

∥∥
m + np+∥∥ln

jn(x) – ln
jn(x)

∥∥
m

]

+ (nπp)
p
 lim

n→∞

[∫ 


|r – r|m dx

] 
m

. (.)

Here, by Lemma . and Theorem ., we get

np+∥∥ln
jn(x) – ln

jn(x)
∥
∥

m = np+
[∫ 



∣
∣ln

jn(x) – ln
jn(x)

∣
∣m dx

] 
m

= np+

[ n–∑

k=

∣∣ln
k+ – ln

k
∣∣mIn,k

] 
m

= o() (.)

and

np+∥∥ln
jn(x) – ln

jn(x)
∥∥

m = np+
[∫ 



∣∣ln
jn(x) – ln

jn(x)
∣∣m dx

] 
m

= np+

[ n–∑

k=

∣∣ln
k – ln

k
∣∣mln

k

] 
m

= np+– 
m

[ n–∑

k=

∣
∣ln

k – ln
k
∣
∣m

] 
m

. (.)

Considering (.) and (.) in (.), we obtain

‖q – q‖m ≤ pπp
p lim

n→∞ np+– 
m

[ n–∑

k=

∣∣ln
k – ln

k
∣∣m

] 
m

+ (nπp)
p
 lim

n→∞

[∫ 


|r – r|m dx

] 
m

= pdm
 (X, X).

Contrarily, using the above derivations

‖q – q‖m + o()

= pπp
p np+∥∥ln

jn(x) – ln
jn(x)

∥
∥

m + (nπp)
p


[∫ 


|r – r|m dx

] 
m
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≥ pπp
p np+∥∥ln

jn(x) – ln
jn(x)

∥∥
m + (nπp)

p


[∫ 


|r – r|m dx

] 
m

– O
(
n

p
 ++ –p

m
)

= pπp
p np+

[ n–∑

k=

∣∣ln
k – ln

k
∣∣mln

k

] 
m

+ (nπp)
p


[∫ 


|r – r|m dx

] 
m

– O
(
n

p
 ++ –p

m
)

= pπp
p np+– 

m

[ n–∑

k=

∣
∣ln

k – ln
k
∣
∣m

] 
m

+ (nπp)
p


[∫ 


|r – r|m dx

] 
m

– O
(
n

p
 ++ –p

m
)
.

Hereby as n approaches infinity,

‖q – q‖m ≥ pdm
 (X, X).

This completes the proof. �

4 Conclusion
In this study, we have emphasized the importance of the stability (specially Lipschitz type
stability) for inverse problems. Then, some asymptotic estimates for eigenvalues, nodal pa-
rameters and potential function of the (.)-(.) eigenvalue problem have been recalled.
Finally, we have examined the Lipschitz stability of an inverse nodal problem for (.)
p-Laplacian operator.
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