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Abstract
The Cauchy problem for abstract telegraph equations d2u(t)

dt2
+ α du(t)

dt + Au(t) + βu(t) =
f (t) (0≤ t ≤ T ), u(0) = ϕ , u′(0) =ψ in a Hilbert space H with the self-adjoint positive
definite operator A is studied. Stability estimates for the solution of this problem are
established. The first and second order of accuracy difference schemes for the
approximate solution of this problem are presented. Stability estimates for the
solution of these difference schemes are established. In applications, two mixed
problems for telegraph partial differential equations are investigated. The methods
are illustrated by numerical examples.

Keywords: telegraph equations; Cauchy problem; Hilbert space; difference
schemes; stability

1 Introduction
Hyperbolic partial differential equations arise in many branches of science and engineer-
ing, e.g., electromagnetic, electrodynamics, thermodynamics, hydrodynamics, elasticity,
fluid dynamics, wave propagation, materials science. In numerical methods for solving
these equations, the problem of stability has received a great deal of importance and at-
tention. Specially, a suitable model for analyzing the stability is provided by a proper un-
conditionally absolutely stable difference scheme with an unbounded operator. The role
played by the positivity property of differential and difference operators in Hilbert and
Banach spaces in the study of various properties of boundary value problems for partial
differential equations, of stability of difference schemes for partial differential equations,
and of summation Fourier series is well known (see [–]).

The method of operators as a tool for the investigation of the solution of local and non-
local problems to hyperbolic differential equations in Hilbert and Banach spaces, has been
systematically developed by several authors (see, e.g., [–, , ]).

The telegraph hyperbolic partial differential equation is important for modeling several
relevant problems such as signal analysis, wave propagation, random walk theory [–].
To deal with the equation, various mathematical methods have been proposed for ob-
taining exact and approximate analytic solutions. For instances, Dehghan and Shokri pro-
posed a new numerical scheme based on radial based function method (Kansa’s method)
[]. Gao and Chi developed a numerical algorithm for the solution of nonlinear tele-
graph equations []. Biazar et al. applied the variational iteration method to obtain an ap-
proximate of the telegraph equations []. Saadatmandi and Dehghan used the Chebyshev
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tau method in numerically solving the telegraph equation []. Koksal computed numer-
ical solutions the telegraph equations arising in transmission lines []. Twizell used the
explicit difference method for the wave equation with extended stability range []. Fi-
nally, Ashyralyev and Akat applied the difference method for the approximate solution of
stochastic hyperbolic and stochastic telegraph equations [–].

In the present paper, we consider a Cauchy problem for telegraph equations

{
du(t)

dt + α du(t)
dt + Au(t) + βu(t) = f (t) ( ≤ t ≤ T),

u() = ϕ, u′() = ψ
()

in a Hilbert space H with a self-adjoint positive definite operator A and A ≥ δI . Here δ > ,
α >  and

β + δ ≥ α


. ()

A function u(t) is called a solution of the problem () if the following conditions are
satisfied:

i. u(t) is twice continuously differentiable on the segment [, T]. The derivatives at the
endpoints of the segment are understood as the appropriate unilateral derivatives.

ii. The element u(t) belongs to D(A) for all t ∈ [, T] and the function Au(t) is
continuous on the segment [, T].

iii. u(t) satisfies the equation and initial conditions ().
The paper is organized as follows. Section  is an introduction where we provide the

definition of the solution of the Cauchy problem (). In Section , stability estimates for
the solution of this problem are established. In applications, two mixed problems for tele-
graph partial differential equations are investigated. In Section , the difference schemes
of the first and second order of accuracy for the approximate solution of problem ()
are presented. Stability estimates for the solution of these difference schemes are estab-
lished. In applications, stability estimates for the solution of difference schemes for the two
mixed problems for telegraph partial differential equations are established. In Section ,
the methods are illustrated by numerical examples. Section  is for our conclusion.

2 The main theorem on stability
Let {c(t), t ≥ } be a strongly continuous cosine operator-function defined by the formula

c(t) =
eitB/ + e–itB/


.

Then, from the definition of the sine operator-function s(t),

s(t)u =
∫ t


c(s)u ds

it follows that

s(t) = B–/ eitB/ – e–itB/

i
.



Ashyralyev and Modanli Boundary Value Problems  (2015) 2015:41 Page 3 of 17

Here B = A + (β – α

 )I . It is easy to check under the assumption () that the problem ()
for a telegraph equation has a unique mild solution given by the formula

u(t) = e– α
 tc(t)ϕ +

α


e– α

 ts(t)ϕ + e– α
 ts(t)ψ +

∫ t


e– α

 (t–z)s(t – z)f (z) dz. ()

In fact, explicitly () can be rewritten as the equivalent initial-value problem for a system
of first-order differential equations

⎧⎪⎨
⎪⎩

u′(t) + α
 v(t) + iB 

 u(t) = z(t) ( ≤ t ≤ T),
u() = u, u′() = u′

,
z′(t) + α

 z(t) – iB 
 z(t) = f (t).

()

Integrating these, now we get

⎧⎪⎨
⎪⎩

u(t) = e–( α
 +iB


 )tu() +

∫ t
 e–( α

 +iB

 )(t–s)

z(s) ds,

z(t) = e–( α
 –iB


 )tz() +

∫ t
 e–( α

 –iB

 )(t–s)

f (s) ds.

Applying the initial condition z() = u′() + ( α
 + iB 

 )u(), we get

u(t) = e–( α
 +iB


 )tu() +

∫ t


e–( α

 +iB

 )(t–s)

∫ s


e–( α

 –iB

 )(s–p)

f (p) dp ds

+
∫ t


e–( α

 +iB

 )(t–s)

e–( α
 –iB


 )s ds

(
u′() +

(
α


+ iB




)
u()

)
.

By an interchange of the order of integration, we can write

u(t) =
[

e–( α
 +iB


 )t +

(
α


+ iB




)∫ t


e–( α

 +iB

 )(t–s)

e–( α
 –iB


 )s ds

]
u()

+
∫ t


e–( α

 +iB

 )(t–s)e–( α

 –iB

 )s ds u′()

+
∫ t


e– α

 (t–s)B– 


ei(t–s)B

 – e–i(t–s)B




i
f (s) ds

= e– α
 t
[

eitB

 + e–itB





+

α


B– 


etiB


 – e–itB




i

]
u()

+ e– α
 t
[

B– 


eitB

 – e–itB




i

]
u′()

+
∫ t


e– α

 (t–s)B– 


ei(t–s)B

 – e–i(t–s)B




i
f (s) ds.

Thus, by the definitions of B 
 , c(t), and s(t) we obtain (). We will prove the following

main theorem on the continuous dependence of the solution on the given data.
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Theorem . Suppose that ϕ ∈ D(A), ψ ∈ D(A 
 ) and f (t) is a continuously differentiable

function on [, T] and the assumption () holds. Then there is a unique solution of problem
() and the stability inequalities

max
≤t≤T

∥∥u(t)
∥∥

H ≤ M
[
‖ϕ‖H +

∥∥A–/ψ
∥∥

H + max
≤t≤T

∥∥A–/f (t)
∥∥

H

]
, ()

max
≤t≤T

∥∥∥∥du(t)
dt

∥∥∥∥
H

+ max
≤t≤T

∥∥A/u(t)
∥∥

H

≤ M
[∥∥A/ϕ

∥∥
H + ‖ψ‖H + max

≤t≤T

∥∥f (t)
∥∥

H

]
, ()

max
≤t≤T

∥∥∥∥du(t)
dt

∥∥∥∥
H

+ max
≤t≤T

∥∥Au(t)
∥∥

H

≤ M
[
‖Aϕ‖H +

∥∥A/ψ
∥∥

H +
∥∥f ()

∥∥
H + max

≤t≤T

∥∥f ′(t)
∥∥

H

]
()

hold, where M does not depend on ϕ, ψ , and f (t).

Proof Using (), A ≥ δI , and the following estimates:

{
‖c(t)‖H→H ≤ , ‖B 

 s(t)‖H→H ≤ , |e– α
 t| ≤ ,

‖B–/ϕ‖H ≤ √
δ
‖ϕ‖H , ‖A/B– 

 ‖H→H ≤ M(δ),
()

we can write the following inequalities:

∥∥u(t)
∥∥

H ≤ ∥∥c(t)
∥∥

H→H

∣∣e– α
 t∣∣‖ϕ‖H +

∥∥B

 s(t)

∥∥
H→H

∥∥A/B– 

∥∥

H→H ,∣∣∣∣ α

e α
 t

∣∣∣∣∥∥A–/ϕ
∥∥

H +
∥∥B


 s(t)

∥∥
H→H

∥∥A/B– 

∥∥

H→H

∣∣e– α
 t∣∣∥∥A–/ψ

∥∥
H

+
∫ t



∥∥B

 s(t – s)

∥∥
H→H

∥∥A/B– 

∥∥

H→H

∥∥A–/f (s)
∥∥

H ds

≤ M(δ)
[
‖ϕ‖H +

∥∥A–/ψ
∥∥

H + max
≤t≤T

∥∥A–/f (t)
∥∥

H

]

for any t ∈ [, T]. Then we obtain

max
≤t≤T

∥∥u(t)
∥∥

H ≤ M(δ)
[
‖ϕ‖H +

∥∥A–/ψ
∥∥

H + max
≤t≤T

∥∥A–/f (t)
∥∥

H

]
.

Applying A 
 to () and using the estimate for (), in a similar manner, we get

∥∥A

 u(t)

∥∥
H ≤ ∥∥c(t)

∥∥
H→H

∣∣e– α
 t∣∣∥∥A


 ϕ
∥∥

H

+
∥∥B


 s(t)

∥∥
H→H

∥∥A/B– 

∥∥

H→H

∣∣∣∣ α

e α
 t

∣∣∣∣‖ϕ‖H

+
∥∥B


 s(t)

∥∥
H→H

∥∥A/B– 

∥∥

H→H

∣∣e– α
 t∣∣‖ψ‖H

+
∫ t



∥∥A/B– 

∥∥

H→H

∥∥B

 s(t – s)

∥∥
H→H

∥∥f (s)
∥∥

H ds

≤ M(δ)
[∥∥A


 ϕ
∥∥

H + ‖ψ‖H + max
≤t≤T

∥∥f (t)
∥∥

H

]
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for any t ∈ [, T]. Then we get

max
≤t≤T

∥∥A

 u(t)

∥∥
H ≤ M(δ)

[∥∥A

 ϕ
∥∥

H + ‖ψ‖H + max
≤t≤T

∥∥f (t)
∥∥

H

]
.

Now, we obtain an estimate for ‖Au(t)‖H . Applying A to () and using an integration by
parts, we can write the formula

Au(t)e
α
 t = c(t)Aϕ +

α


A


 s(t)A


 ϕ + A


 s(t)A


 ψ

+ AB–
[

f (T) – c(t)f () –
∫ t


c(t – s)f ′(s) ds

]
.

Using the last formula and estimates (), we obtain

∥∥Au(t)
∥∥

H ≤ ∥∥c(t)
∥∥

H→H

∣∣e– α
 t∣∣‖Aϕ‖H

+
∥∥B


 s(t)

∥∥
H→H

∥∥A/B– 

∥∥

H→H

∣∣∣∣ α

e α
 t

∣∣∣∣∥∥A

 ϕ
∥∥

H

+
∥∥B


 s(t)

∥∥
H→H

∥∥A/B– 

∥∥

H→H

∣∣e– α
 t∣∣∥∥A


 ψ
∥∥

H

+
∥∥AB–∥∥

H→H

[∥∥f (T)
∥∥

H +
∥∥c(t)

∥∥
H→H

∥∥f ()
∥∥

H

]
+
∥∥AB–∥∥

H→H

∫ t



∥∥c(t – s)
∥∥

H→H

∥∥f ′(s)
∥∥

H ds

≤ M(δ)
[
‖Aϕ‖H +

∥∥A

 ψ
∥∥

H +
∥∥f ()

∥∥
H + max

≤t≤T

∥∥f ′(t)
∥∥

H

]

for any t ∈ [, T]. Then we get

max
≤t≤T

∥∥Au(t)
∥∥

H ≤ M(δ)
[
‖Aϕ‖H +

∥∥A

 ψ
∥∥

H +
∥∥f ()

∥∥
H + max

≤t≤T

∥∥f ′(t)
∥∥

H

]
.

The estimate for max≤t≤T ‖ du
dt ‖H follows from the last estimate and the triangle inequal-

ity. Theorem .. is proved. �

Remark . All statements of Theorem . hold in an arbitrary Banach space E under the
assumptions (see, e.g., [, ]):

{
‖c(t)‖E→E ≤ M, ‖B 

 s(t)‖E→E ≤ M,
‖B–/ϕ‖E ≤ M(δ)‖ϕ‖E , ‖A/B– 

 ‖E→E ≤ M(δ).
()

Now, we consider the application of this abstract theorem, Theorem .. First, we con-
sider the initial-value problem for the telegraph equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt(t, x) + αut(t, x) – (a(x)ux)x + δu(t, x) + βu(t, x)
= f (t, x),  < t < T ,  < x < l,

u(, x) = ϕ(x), ut(, x) = ψ(x),  ≤ x ≤ l,
u(t, ) = u(t, l), ux(t, ) = ux(t, l),  ≤ t ≤ T .

()

Problem () has a unique smooth solution u(t, x) for smooth a(x) ≥ a > , x ∈ (, ), δ > ,
a(l) = a(), ϕ(x), ψ(x) (x ∈ [, l]), and f (t, x) (t ∈ (, T), x ∈ (, l)) functions. This allows
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us to reduce the problem () to the initial value () in a Hilbert space H = L[, l] with a
self-adjoint positive definite operator Ax defined by (). Let us give a number corollaries
of the abstract Theorem ..

Theorem . For solutions of the problem () the stability inequalities

max
≤t≤T

∥∥u(t, ·)∥∥W 
 [,l] ≤ M

[
max

≤t≤T

∥∥f (t, ·)∥∥L[,l] + ‖ϕ‖W 
 [,l] + ‖ψ‖L[,l]

]
, ()

max
≤t≤T

∥∥u(t, ·)∥∥W 
 [,l] + max

≤t≤T

∥∥utt(t, ·)∥∥L[,l]

≤ M

[
max

≤t≤T

∥∥ft(t, ·)∥∥L[,l] +
∥∥f (, ·)∥∥L[,l] + ‖ϕ‖W 

 [,l] + ‖ψ‖W 
 [,l]

]
()

hold, where M does not depend on f (t, x) and ϕ(x), ψ(x).

Proof Problem () can be written in abstract form

{
du(t)

dt + α du(t)
dt + Au(t) + βu(t) = f (t) ( ≤ t ≤ T),

u() = ϕ, u′() = ψ
()

in a Hilbert space L[, l] of all square integrable functions defined on [, l] with self-
adjoint positive definite operator A = Ax by the formula

Axu(x) = –
(
a(x)ux

)
x + σu(x) ()

with the domain

D
(
Ax) =

{
u(x) : u, ux,

(
a(x)ux

)
x ∈ L[, l], u() = u(l), u′() = u′(l)

}
.

Here, f (t) = f (t, x) and u(t) = u(t, x) are known and unknown abstract functions defined
on [, l] with the values in H = L[, l]. Therefore, estimates () and () follow from es-
timates (), (), and (). Thus, Theorem . is proved. �

Second, let � ⊂ Rn be a bounded open domain with smooth boundary S, � = � ∪ S. In
[, T] × � we consider the boundary value problem for telegraph equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt(t, x) + αut(t, x) –
∑n

r=(ar(x)uxr )xr + βu(t, x)
= f (t, x), x = (x, . . . , xn) ∈ �,  < t < T ,

u(, x) = ϕ(x), ∂u(,x)
∂t = ψ(x), x ∈ �,

u(t, x) = , x ∈ S,  ≤ t ≤ T ,

()

where ar(x) (x ∈ �), ϕ(x), ψ(x) (x ∈ �) and f (t, x), t ∈ (, T), x ∈ �, are given smooth
functions and ar(x) > . We introduce the Hilbert space L(�), the space of all integrable
functions defined on �, equipped with the norm

‖f ‖L(�) =
{∫

· · ·
∫

x∈�

∣∣f (x)
∣∣ dx · · · dxn

} 


.
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Theorem . For solutions of the problem () the stability inequalities

max
≤t≤T

∥∥u(t, ·)∥∥W 
 (�) ≤ M

[
max

≤t≤T

∥∥f (t, ·)∥∥L(�) + ‖ϕ‖W 
 (�) + ‖ψ‖L(�)

]
, ()

max
≤t≤T

∥∥u(t, ·)∥∥W 
 (�) + max

≤t≤T

∥∥utt(t, ·)∥∥L(�)

≤ M

[
max

≤t≤T

∥∥ft(t, ·)∥∥L(�) +
∥∥f (, ·)∥∥L(�) + ‖ϕ‖W 

 (�) + ‖ψ‖W 
 (�)

]
()

hold, where M does not depend on f (t, x) and ϕ(x), ψ(x).

Proof Problem () can be written in the abstract form () in Hilbert space L(�) with
self-adjoint positive definite operator A = Ax defined by formula

Axu(x) = –
n∑

r=

(
ar(x)uxr

)
xr

+ σu(x) ()

with domain

D
(
Ax) =

{
u(x) : u(x), uxr (x),

(
ar(x)uxr

)
xr

∈ L(�),  ≤ r ≤ n, u(x) = , x ∈ S
}

.

Here, f (t) = f (t, x) and u(t) = u(t, x) are known and unknown abstract functions defined
on � with the values in H = L(�). So, estimates () and () follow from estimates (),
(), and () and the following theorem. �

Theorem . For the solutions of the elliptic differential problem []
⎧⎨
⎩Axu(x) = ω(x), x ∈ �,

u(x) = , x ∈ S,

the following coercivity inequality holds:

n∑
r=

‖uxrxr ‖L(�) ≤ M‖ω‖L(�).

Here M does not depend on ω(x).

In Section , the difference schemes of the first and second order of accuracy for the
approximate solution of problem () are investigated. Stability estimates for the solution
of these difference schemes are established. In applications, difference schemes for the
approximate solution of the two mixed problems () and () are presented. Stability
estimates for the solution of these difference schemes are established.

3 Stability of two-step difference schemes
First, we consider the approximation of first order in t of the two-step difference scheme
for the numerical solution of the initial value problem ()

⎧⎪⎨
⎪⎩

uk+–uk +uk–
τ + α

uk+–uk–
τ

+ Auk+ + βuk+ = fk ,
fk = f (tk+),  ≤ k ≤ N – , Nτ = T ,

u = ϕ, u–u
τ

+ (A + (β – α

 )I)τu = 
+ α

 τ
ψ .

()
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Now, we will consider operators R, R̃ defined by

R =
(

I + i

√(
 –

ατ



)((
 +

ατ



)
I + τ 

(
B +

α


I
))

– I
)

P,

R̃ =
(

I – i

√(
 –

ατ



)((
 +

ατ



)
I + τ 

(
B +

α


I
))

– I
)

P,

P =
((

 +
ατ



)
I + τ 

(
B +

α


I
))–

,

and we will introduce the following operators:

R =
((

ατ +
τ B


+

ατ 



)

+ iτB/
(

 + ατ + τ B +
ατ 



)√
 – ατ –

ατ


B–
)

×
((

–iτB/

√
 – ατ –

ατ


B–
)(

 + ατ + τ B +
ατ 



))–

,

R =
(

τ

√
 + B +

ατ 


+

ατ 


B–
)(

 + ατ + τ B +
ατ 



)

×
(

–iB



(
 + ατ + τ B +

ατ 



)√
 – ατ –

ατ


B–
)–

,

R =
(

τB



(
 + ατ + τ B +

ατ 



))

×
((

 + ατ + τ B +
ατ 



)(
iτB




√
 – ατ –

ατ


B–
))–

,

R =
(

 + τ B – ατ B –
ατ 



)

×
((

–iB



√
 – ατ –

ατ


B–
)

×
(

 + ατ + τ B +
ατ 



)
( – ατ )

)–

,

R =
(

–ατ – τ B –
ατ 


+ iτB




√
 – ατ –

ατ


B–
)

×
((

 + ατ + τ B +
ατ 



))–

,

R =
(

 – iτB



√
 – ατ –

ατ


B–
)

×
(

ατ + τ B +
ατ 


– iτB




√
 – ατ –

ατ


B–
)–

,

()

and their conjugates R̃, R̃, R̃. Let us give one lemma, which will be needed below.
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Lemma . The following estimates hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖R‖H→H ≤ , ‖R̃‖H→H ≤ ,
‖R‖H→H ≤ , ‖R̃‖H→H ≤ ,
‖B/R‖H→H ≤ , ‖τB/R‖H→H ≤ ,
‖B/R‖H→H ≤ , ‖B–/R‖H→H ≤ τ ,
‖B–/R̃‖H→H ≤ τ ,
‖τB/R‖H→H ≤ , ‖τB/R̃‖H→H ≤ .

()

Theorem . Suppose that the assumption () holds and ϕ ∈ D(A), ψ ∈ D(A 
 ). Then for

the solution of difference scheme () the stability estimates

max
≤k≤N

‖uk‖H ≤ M
{

max
≤k≤N–

∥∥A–/fk
∥∥

H +
∥∥A–/ψ

∥∥
H + ‖ϕ‖H

}
, ()

max
≤k≤N

∥∥A/uk
∥∥

H ≤ M
{

max
≤k≤N–

‖fk‖H + ‖ψ‖H +
∥∥A/ϕ

∥∥
H

}
, ()

max
≤k≤N

‖Auk‖H ≤ M
{

max
≤k≤N–

∥∥∥∥ 
τ

(fk – fk–)
∥∥∥∥

H

+ ‖f‖H +
∥∥A/ψ

∥∥
H + ‖Aϕ‖H

}
()

hold, where M does not depend on τ , ϕ, ψ , and fk ,  ≤ s ≤ N – .

Proof We will obtain the formula for the solution of the problem (). We can rewrite ()
into the following difference problem:

⎧⎪⎨
⎪⎩

( – ατ
 )Iuk– – Iuk + (( + ατ

 )I + τ (B + α

 I))uk+

= τ fk ,  ≤ k ≤ N – ,
u = ϕ, u = (I + Bτ )–ϕ + τ ( + ατ

 )–(I + Bτ )–ψ .
()

It is clear that there exists a unique solution of this initial-value problem and for the solu-
tion of (), the following formula is satisfied (see []):

u = ϕ, u =
(
I + Bτ )–

ϕ + τ

(
 +

ατ



)–(
I + Bτ )–

ψ ,

uk = RR̃(̃R – R)–[Rk– – R̃k–]ϕ
+ (̃R – R)–(̃Rk – Rk)[(I + Bτ )–

ϕ + τ

(
 +

ατ



)–(
I + Bτ )–

ψ

]

+
k–∑
s=

RR̃
(

(̃R – R)
(

 –
ατ



))–[̃
Rk–s – Rk–s]τ fs.

()

Using the spectral property of the self-adjoint positive definite operators, we get

∥∥(I + Bτ )–∥∥
H→H ≤ ,∥∥τB



(
I + Bτ )–∥∥

H→H ≤ ,
∥∥τ B

(
I + Bτ )–∥∥

H→H ≤ .
()
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Then, using the triangle inequality, we get

‖u‖H ≤ ∥∥(I + Bτ )–∥∥
H→H‖ϕ‖H

+
(

 +
ατ



)–∥∥A

 B– 


∥∥

H→H

∥∥τB


(
I + Bτ )–∥∥

H→H

∥∥A–/ψ
∥∥

H

≤ ∥∥A–/ψ
∥∥

H + ‖ϕ‖H . ()

In exactly the same manner, one establishes

∥∥A

 u

∥∥
H ≤ ∥∥(I + Bτ )–∥∥

H→H

∥∥A

 ϕ
∥∥

H

+
(

 +
ατ



)–∥∥A

 B– 


∥∥

H→H

∥∥τB


(
I + Bτ )–∥∥

H→H‖ψ‖H

≤ ‖ψ‖H +
∥∥A


 ϕ
∥∥

H , ()

‖Au‖H ≤ ∥∥(I + Bτ )–∥∥
H→H‖Aϕ‖H

+
(

 +
ατ



)–∥∥A

 B– 


∥∥

H→H

∥∥τB


(
I + Bτ )–∥∥

H→H‖ψ‖H

≤ ∥∥A

 ψ
∥∥

H + ‖Aϕ‖H . ()

Using the spectral property of the self-adjoint positive definite operators, we get

‖R‖H→H ≤ ,
∥∥τB


 R
∥∥

H→H ≤ ,
∥∥τ BR

∥∥
H→H ≤ , ()

‖R̃‖H→H ≤ ,
∥∥τB


 R̃
∥∥

H→H ≤ ,
∥∥τ BR̃

∥∥
H→H ≤ . ()

Now, we will establish estimates for ‖uk‖H , k ≥ . Using (), the estimates for (), (),
(), (), and the triangle inequality, we get

‖uk‖H ≤ 

(‖R̃‖H→H

∥∥Rk∥∥
H→H + ‖R‖H→H

∥∥R̃k∥∥
H→H

)‖ϕ‖H

+


(∥∥A/R

∥∥
H→H

∥∥R̃k∥∥
H→H +

∥∥A/R
∥∥

H→H

∥∥Rk∥∥
H→H

)

× ∥∥(I + Bτ )–∥∥
H→H

[∥∥A–/∥∥
H→H‖ϕ‖H + τ

(
 +

ατ



)–∥∥A–/ψ
∥∥

H

]

+


∥∥τA/R

∥∥
H→H

N–∑
s=

[∥∥R̃k–s∥∥
H→H +

∥∥Rk–s∥∥
H→H

]
τ
∥∥A–/fs

∥∥
H

≤ M

{N–∑
s=

∥∥A–/fs
∥∥

Hτ + ‖ϕ‖H +
∥∥A–/ψ

∥∥
H

}

for any k ≥ . Combining the estimates for ‖uk‖ for any k, we obtain ().
Applying A/ to () and using estimates for (), (), (), (), and the triangle in-

equality, we get

∥∥A/uk
∥∥

H ≤ 

(‖R̃‖H→H

∥∥Rk∥∥
H→H + ‖R‖H→H

∥∥R̃k∥∥
H→H

)∥∥A/ϕ
∥∥

H

+


(∥∥A/R

∥∥
H→H

∥∥R̃k∥∥
H→H +

∥∥A/R
∥∥

H→H

∥∥Rk∥∥
H→H

)



Ashyralyev and Modanli Boundary Value Problems  (2015) 2015:41 Page 11 of 17

× ∥∥(I + Bτ )–∥∥
H→H

[∥∥A–/∥∥
H→H

∥∥A/ϕ
∥∥

H + τ

(
 +

ατ



)–

‖ψ‖H

]

+


∥∥τA/R

∥∥
H→H

N–∑
s=

[∥∥R̃k–s∥∥
H→H +

∥∥Rk–s∥∥
H→H

]
τ‖fs‖H

≤ M

{N–∑
s=

‖fs‖Hτ +
∥∥A/ϕ

∥∥
H + ‖ψ‖H

}

for any k ≥ . Combining the estimates for ‖A/uk‖ for any k, we obtain (). Finally,
applying Abel’s formula to (), we can write

uk =


[̃
RRk – RR̃k]ϕ +



[̃
Rk – Rk]R

[(
I + Bτ )–

ϕ + τ

(
 +

ατ



)–(
I + Bτ )–

ψ

]

+


[̃
Rk – Rk]Rτ

f +


τ R

( k–∑
s=

[
RR̃k–s – R̃Rk–s](fs – fs–)

+ (̃R – R)fk– –
[̃
RR̃k– – RRk–]f

)
,  ≤ k ≤ N . ()

Next, applying A to () and using estimates for (), (), (), (), we get

‖Auk‖H ≤ 

(‖R̃‖H→H

∥∥Rk∥∥
H→H + ‖R‖H→H

∥∥R̃k∥∥
H→H

)‖Aϕ‖H

+


(∥∥A/R

∥∥
H→H

∥∥R̃k∥∥
H→H +

∥∥A/R
∥∥

H→H

∥∥Rk∥∥
H→H

)

× ∥∥(I + Bτ )–∥∥
H→H

[∥∥A–/∥∥
H→H‖Aϕ‖H + τ

(
 +

ατ



)–∥∥A/ψ
∥∥

H

]

+


(∥∥τA/R

∥∥
H→H

∥∥R̃k∥∥
H→H +

∥∥τA/R
∥∥

H→H

∥∥Rk∥∥
H→H

)
τ
∥∥A/f

∥∥
H

+


∥∥τA/R

∥∥
H→H

N–∑
s=

[∥∥τA/R
∥∥

H→H

∥∥Rk–s∥∥
H→H

+
∥∥τA/R̃

∥∥
H→H

∥∥R̃k–s∥∥
H→H

]
× ‖fs – fs–‖H +

[∥∥τA/R̃
∥∥

H→H +
∥∥τA/R

∥∥
H→H

]‖fk–‖H

+
[∥∥τA/R̃

∥∥
H→H

∥∥R̃k–∥∥
H→H +

∥∥τA/R
∥∥

H→H

∥∥Rk–∥∥
H→H

]‖f‖H

≤ M

{N–∑
s=

‖fs – fs–‖H + ‖f‖H + ‖Aϕ‖H +
∥∥A/ψ

∥∥
H

}

for any k ≥ . Combining the estimates for ‖Auk‖H for any k, we obtain (). Theorem .
is proved. �

Second, we consider two types of approximations of second order in t by two-step dif-
ference schemes for the numerical solution of the initial value problem ():⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uk+–uk +uk–
τ + α

uk+–uk–
τ

+ A
 (uk+ + uk–)

+ β

 (uk+ + uk–) = fk , fk = f (tk),  ≤ k ≤ N – ,
u = ϕ,
u–u

τ
+ τ

 Bu + 
+ α

 τ
( 

 B – ατB
 + α

 I)τu = – α
 τ

+ α
 τ

(ψ + τ
 f), f = f (),

()
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk+–uk +uk–
τ + α

uk+–uk–
τ

+ A
 uk + A

 (uk+ + uk–)
+ β

 uk + β

 (uk+ + uk–) = fk , fk = f (tk),  ≤ k ≤ N – ,
u = ϕ,
u–u

τ
+ τ

 Bu + 
+ α

 τ
( 

 B – ατB
 + α

 I)τu = – α
 τ

+ α
 τ

(ψ + τ
 f), f = f ().

()

Theorem . Suppose that the assumption () holds and ϕ ∈ D(A), ψ ∈ D(A 
 ). Then for

the solution of difference schemes () and () the following stability estimates hold:

max
≤k≤N

‖uk‖H ≤ M
{

max
≤k≤N–

∥∥A–/fk
∥∥

H +
∥∥A–/ψ

∥∥
H + ‖ϕ‖H

}
,

max
≤k≤N

∥∥A/uk
∥∥

H ≤ M
{

max
≤k≤N–

‖fk‖H + ‖ψ‖H +
∥∥A/ϕ

∥∥
H

}
,

max
≤k≤N

‖Auk‖H ≤ M
{

max
≤k≤N–

∥∥∥∥ 
τ

(fk – fk–)
∥∥∥∥

H

+ ‖f‖H +
∥∥A/ψ

∥∥
H + ‖Aϕ‖H

}

hold, where M does not depend on τ , ϕ, ψ , and fk ,  ≤ s ≤ N – .

The proof of Theorem . is based on the formulas for the solution of the difference
schemes () and (), on the estimates for the step operators, and on the self-adjointness
and positivity of operator A.

Now, we consider applications of the main theorem, Theorem .. First, we consider
the boundary value problem (). The discretization of problem () is carried out in two
steps. In the first step, we define the grid space

[, l]h = {x = xn : xn = nh,  ≤ n ≤ M, Mh = l}.

Let us introduce the Hilbert space Lh = L([, l]h) of the grid functions ϕh(x) = {ϕn}M


defined on [, l]h, equipped with the norm

‖ϕh‖Lh =
( ∑

x∈[,L]h

∣∣ϕ(x)
∣∣h
)/

.

To the differential operator Ax defined by the formula (), we assign the difference op-
erator Ax

h by the formula

Ax
hϕ

h(x) =
{

–
(
a(x)ϕx

)
x,n + δϕn

}M–
 ()

acting in the space of grid functions ϕh(x) = {ϕn}M
 satisfying the conditions ϕ = ϕM , ϕ –

ϕ = ϕM – ϕM–. It is well known that Ax
h is a self-adjoint positive definite operator in Lh.

With the help of Ax
h, we reach the boundary value problem

⎧⎪⎨
⎪⎩

uh
tt(t, x) + αuh

t (t, x) + Ax
huh(t, x) + βuh(t, x)

= f h(t, x),  < t < T , x ∈ [, l]h,
uh(, x) = ϕh(x), uh

t (, x) = ψh(x), x ∈ [, l]h.
()
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In the second step, we replace () with the difference scheme (),⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uh
k+(x)–uh

k (x)+uh
k–(x)

τ + α
uh

k+(x)–uh
k–(x)

τ
+ Ax

huh
k+(x) + βuh

k+(x) = f h
k (x),

f h
k (x) = f h(tk+, x), tk = kτ ,  ≤ k ≤ N – , x ∈ [, l]h, Nτ = T ,

uh
(x) = ϕh(x),

uh
 (x)–uh

(x)
τ

+ (Ax
h + (β – α

 )Ih)τuh
 (x) = 

+ α
 τ

ψh(x), x ∈ [, l]h.

()

Theorem . For the solution {uh
k(x)}N

 of problem () the following stability estimates:

max
≤k≤N

∥∥uh
k
∥∥

Lh
≤ M

{
max

≤k≤N–

∥∥f h
k
∥∥

Lh
+
∥∥ψh∥∥

Lh
+
∥∥ϕh∥∥

Lh

}
,

max
≤k≤N

∥∥uh
k
∥∥

W 
h

≤ M

{
max

≤k≤N–

∥∥f h
k
∥∥

Lh
+
∥∥ψh∥∥

Lh
+
∥∥ϕh∥∥

W 
h

}
,

max
≤k≤N

∥∥uh
k
∥∥

W 
h

≤ M

{
max

≤k≤N–

∥∥∥∥ 
τ

(
f h
k – f h

k–
)∥∥∥∥

Lh

+
∥∥f h


∥∥

Lh
+
∥∥ψh∥∥

W 
h

+
∥∥ϕh∥∥

W 
h

}

hold, where M and M do not depend on ϕh(x), ψh(x) and f h
k (x),  ≤ k ≤ N – .

Proof Difference scheme () can be written in abstract form
⎧⎪⎪⎨
⎪⎪⎩

uh
k+–uh

k +uh
k–

τ + α
uh

k+–uh
k–

τ
+ Ahuh

k+ + βuh
k+ = f h

k ,
 ≤ k ≤ N – , Nτ = T ,

uh
 = ϕh, uh

 –uh


τ
+ (Ah + (β – α

 )Ih)τuh
 = 

+ α
 τ

ψh

()

in a Hilbert space Lh with self-adjoint positive definite operator Ah = Ax
h by formula ().

Here, f h
k = f h

k (x) and uh
k = uh

k(x) are known and unknown abstract mesh functions defined
on [, l]h with the values in H = Lh. Therefore, estimates of Theorem . follow from
estimates (), (), and (). Thus, Theorem . is proved. �

Second, we consider the boundary value problem (). The discretization of problem
() is carried out in two steps. In the first step, we define the grid space

�h =
{

x = xr = (hj, . . . , hnjn), j = (j, . . . , jn),  ≤ jr ≤ Nr , Nrhr = , r = , . . . , n
}

,

�h = �h ∩ �, Sh = �h ∩ S,

and introduce the Hilbert space Lh = L(�h) of the grid functions ϕh(x) = {ϕ(hj, . . . ,
hnjn)} defined on �h equipped with the norm

∥∥ϕh∥∥
Lh

=
(∑

x∈�h

∣∣ϕh(x)
∣∣h · · ·hn

) 


.

To the differential operator Ax defined by (), we assign the difference operator Ax
h by the

formula

Ax
huh = –

n∑
r=

(
αr(x)uh

xr

)
xr ,jr

, ()
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where Ax
h is known as self-adjoint positive definite operator in Lh, acting in the space of

grid functions uh(x) satisfying the conditions uh(x) =  for all x ∈ Sh. With the help of the
difference operator Ax

h, we arrive at the following boundary value problem:

⎧⎪⎨
⎪⎩

uh
tt(t, x) + αuh

t (t, x) + Ax
huh(t, x) + βuh(t, x) = f h(t, x),

 < t < T , x ∈ �h,
uh(, x) = ϕh(x), uh

t (, x) = ψh(x), x ∈ �h.
()

In the second step, we replace () with the difference scheme ()
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uh
k+(x)–uh

k (x)+uh
k–(x)

τ + α
uh

k+(x)–uh
k–(x)

τ
+ Ax

huh
k+(x) + βuh

k+(x) = f h
k (x),

f h
k (x) = f h(tk+, x), tk = kτ ,  ≤ k ≤ N – , x ∈ �h, Nτ = T ,

uh
(x) = ϕh(x),

uh
 (x)–uh

(x)
τ

+ (Ax
h + (β – α

 )Ih)τuh
 (x) = 

+ α
 τ

ψh(x), x ∈ �h

()

for an infinite system of ordinary differential equations.

Theorem . For the solution {uh
k(x)}N

 of problem () the following stability estimates:

max
≤k≤N

∥∥uh
k
∥∥

Lh
≤ M

{
max

≤k≤N–

∥∥f h
k
∥∥

Lh
+
∥∥ψh∥∥

Lh
+
∥∥ϕh∥∥

Lh

}
,

max
≤k≤N

∥∥uh
k
∥∥

W 
h

≤ M

{
max

≤k≤N–

∥∥f h
k
∥∥

Lh
+
∥∥ψh∥∥

Lh
+
∥∥ϕh∥∥

W 
h

}
,

max
≤k≤N

∥∥uh
k
∥∥

W 
h

≤ M

{
max

≤k≤N–

∥∥∥∥ 
τ

(
f h
k – f h

k–
)∥∥∥∥

Lh

+
∥∥f h


∥∥

Lh
+
∥∥ψh∥∥

W 
h

+
∥∥ϕh∥∥

W 
h

}

hold, where M and M do not depend on ϕh(x), ψh(x) and f h
k (x),  ≤ k ≤ N – .

Proof Difference scheme () can be written in abstract form () in a Hilbert space Lh =
L(�h) with self-adjoint positive definite operator Ah = Ax

h by formula ().
Here, f h

k = f h
k (x) and uh

k = uh
k(x) are known and unknown abstract mesh functions de-

fined on �h with the values in H = Lh. Therefore, estimates of Theorem . follow from
estimates (), (), and () and the following theorem on the coercivity inequality for
the solution of the elliptic difference problem in Lh. �

Theorem . For the solutions of the elliptic difference problem []
⎧⎨
⎩Ax

huh(x) = ωh(x), x ∈ �h,

uh(x) = , x ∈ Sh,
()

the following coercivity inequality holds:

n∑
r=

∥∥uh
xrxr

∥∥
Lh

≤ M
∥∥ωh∥∥

Lh
,

where M does not depend on h and ωh.
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Note that the difference schemes of the second order of accuracy with respect to one
variable for approximate solutions of the mixed problems () and () generated by the
difference schemes () and () can be constructed. The abstract theorem given above
and Theorem . permit us to establish the stability estimates for the solution of these
difference schemes.

In applications, one test example is considered. The theoretical statements for the so-
lution of these difference schemes are supported by the result of the numerical experi-
ment.

4 Numerical results
In applications, the theorems on convergence estimates can be established. The theoret-
ical statements for the solution of difference schemes can be supported by the result of
the numerical experiment. We have not been able to obtain a sharp estimate for the con-
stants figuring in the stability inequality. Therefore we will give the results of numerical
experiments for the initial-boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(t,x)
∂t +  ∂u(t,x)

∂t – ∂u(t,x)
∂x + u(t, x) = e–t sin x,

 < t < ,  < x < π ,
u(, x) = sin x, ∂

∂t u(, x) = – sin x,  ≤ x ≤ π ,
u(t, ) = u(t,π ) = ,  ≤ t ≤ 

()

for the telegraph equation. The exact solution of this problem is

u(t, x) = e–t sin x.

For the approximate solution of the initial-boundary value problem (), we consider
the set wτ ,h = [, ]τ × [,π ]h of a family of grid points depending on the small parame-
ters τ and h. We present the following difference scheme of the first order of accuracy
in t and second order of accuracy in x for the approximate solutions of the problem
():

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk+
n –uk

n+uk–
n

τ +  uk+
n –uk–

n
τ

– uk+
n+–uk+

n +uk+
n–

h + uk+
n

= e–tk+ sin xn, xn = nh, tk+ = (k + )τ ,  ≤ k ≤ N – ,  ≤ n ≤ M – ,
u

n = sin xn, u
n–u

n
τ

= – sin xn,  ≤ n ≤ M,
uk

 = uk
M = ,  ≤ k ≤ N .

()

Now, we consider two types of difference schemes of second order of accuracy in t and
x for the approximate solutions of the problem ():

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uk+
n –uk

n+uk–
n

τ +  uk+
n –uk–

n
τ

– 


uk+
n+–uk+

n +uk+
n–

h – 


uk–
n+–uk–

n +uk–
n–

h + 
 (uk+

n + uk–
n )

= e–tk sin(xn), xn = nh, tk = kτ ,  ≤ k ≤ N – ,  ≤ n ≤ M – ,
u

n = sin(xn), xn = nh,
u

n–u
n

τ
= – sin(xn) + τ


u

n–u
n+u

n
τ ,  ≤ n ≤ M,

uk
 = uk

M = ,  ≤ k ≤ N ,

()
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Table 1 Error analysis

τ = 1
N , h = pi

M N = M = 20 N = M = 40 N = M = 80

The difference scheme (45) 7.9931× 10–4 4.2932× 10–4 2.2201× 10–4

The difference scheme (46) 2.3651× 10–4 6.0209× 10–5 1.5196× 10–5

The difference scheme (47) 1.3510× 10–4 3.4524× 10–5 8.7409× 10–6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+
n –uk

n+uk–
n

τ +  uk+
n –uk–

n
τ

– 


uk
n+–uk

n+uk
n–

h – 


uk+
n+–uk+

n +uk+
n–

h

– 


uk–
n+–uk–

n +uk–
n–

h + 
 uk

n + 
 (uk+

n + uk–
n )

= e–tk sin(xn), xn = nh, tk = kτ ,  ≤ k ≤ N – ,  ≤ n ≤ M – ,
u

n = sin(xn), xn = nh,
u

n–u
n

τ
= – sin(xn) + τ


u

n–u
n+u

n
τ ,  ≤ n ≤ M,

uk
 = uk

M = ,  ≤ k ≤ N .

()

To solve these difference equations, a modified Gauss elimination method procedure is
applied. Hence, we seek a solution of the matrix equation in the following form:

uj = αj+uj+ + βj+, uM = , j = M – , . . . , , ,

where αj (j = , , . . . , M) are (N + ) × (N + ) square matrices, and βj (j = , , . . . , M) are
(N + ) ×  column matrices defined by

αj+ = –(B + Cαj)–A,

βj+ = (B + Cαj)–(Dφ – Cβj), j = , , . . . , M – ,

where j = , , . . . , M – , α is the (N + ) × (N + ) zero matrix, and β is the (N + ) × 
zero matrix. The results of computer calculations show that the second-order difference
schemes are more accurate than the difference scheme of the first order of accuracy. Table 
is constructed for N = M = , , and , respectively.

The errors are computed by

EN
M = max

≤k≤N–,≤n≤M–

∣∣u(tk , xn) – uk
n
∣∣,

where u(tk , xn) represents the exact solution and uk
n represents the numerical solution at

(tk , xn) and the results are given in Table .

5 Conclusion
In the present paper, we have discussed the Cauchy problem () for the abstract telegraph
equations. Stability estimates for the solution of this problem are established. The differ-
ence schemes of the first order and second order of accuracy for telegraph equations are
studied. The stability of the difference schemes is established. One test example is given
and numerical results are compared with the exact solution. The comparison convinces us
that the finite difference scheme method of the second order of approximation gives better
results. Numerical results are obtained using Matlab. The theoretical statements for the
solution of these difference schemes are supported by the numerical results. Moreover,
applying the result of the monograph [], the nonlocal boundary value problem for this
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abstract telegraph equations can be investigated. Of course, the stability estimates for the
solution of the nonlocal boundary value problem have been established. The difference
schemes of the first order and second order of accuracy for telegraph equations can be
studied. The stability of the difference schemes has been established without any assump-
tions as regards the grid steps.
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