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Abstract
In this paper, we present a new approach via variational methods and critical point
theory to obtain the existence and multiplicity of solutions to a class of damped
vibration problems with impulsive effects on time scales. By establishing a proper
variational set, two existence results and two multiplicity results are obtained. Finally,
one example is presented to illustrate the feasibility and effectiveness of our results.
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1 Introduction
Consider the damped vibration problem with impulsive effects on time scales

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u� (t) + B(u + uσ )�(t) + A(σ (t))u(σ (t))
+ ∇F(σ (t), u(σ (t))) = , �-a.e. t ∈ [, T]κ

T
,

u() – u(T) = u�() – u�(T) = ,
(ui)�(t+

j ) – (ui)�(t–
j ) = Iij(ui(tj)), i = , , . . . , N , j = , , . . . , p,

()

where t =  < t < t < · · · < tp < tp+ = T , tj ∈ [, T]T (j = , , , . . . , p + ),

(
ui)�(t+

j
)

=

{
limt→t+

j
(ui)�(t), t is right-dense;

(ui)�(σ (tj)), t is right-scattered,

(
ui)�(t–

j
)

=

{
limt→t–

j
(ui)�(t), t is left-dense;

(ui)�(ρ(tj)), t is left-scattered,

u(t) = (u(t), u(t), . . . , uN (t)), B = [blm] is an antisymmetry N × N constant matrix, A(t) =
[alm(t)] is a symmetric N × N matrix-valued function defined on [, T]T with alm ∈
L∞([, T],R), for all l, m = , , . . . , N , Iij : R → R (i = , , . . . , N , j = , , . . . , p) are continu-
ous and F : [, T]T ×R

N →R satisfies the following assumption:
(A) F(t, x) is �-measurable in t for every x ∈R

N and continuously differentiable in x for
�-a.e. t ∈ [, T]T and there exist a ∈ C(R+,R+), bσ ∈ L(, T ;R+) such that

∣
∣F(t, x)

∣
∣≤ a

(|x|)b(t),
∣
∣∇F(t, x)

∣
∣≤ a

(|x|)b(t),
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for all x ∈R
N and �-a.e. t ∈ [, T]T, where ∇F(t, x) denotes the gradient of F(t, x)

in x.
For the sake of convenience, in the sequel, we denote � = {, , . . . , N}, � = {, , . . . , p}.
Problem () covers the second-order Hamiltonian system with impulsive effects (when

T = R)

⎧
⎪⎨

⎪⎩

ü(t) + Bu̇(t) + A(t)u(t) + ∇F(t, u(t)) = , a.e. t ∈ [, T];
u() – u(T) = u̇() – u̇(T) = ,
u̇i(t+

j ) – u̇i(t–
j ) = Iij(ui(tj)), i = , , . . . , N , j = , , . . . , p,

as well as the second-order discrete Hamiltonian system (when T = Z, T ∈N, T ≥ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u(t) + B�(u(t) + u(t + )) + A(t + )u(t + )
+ ∇F(t + , u(t + )) = , a.e. t ∈ [, T – ] ∩Z,

u() – u(T) = , �u() – �u(T) = ,
�ui(tj + ) – �ui(tj – ) = Iij(ui(tj)), i = , , . . . , N , j = , , . . . , p.

When T = R, Iij ≡ , i ∈ �, j ∈ �, B and A(t) are zero matrices, () is the Hamiltonian
system

{
ü(t) + ∇F(t, u(t)) = , a.e. t ∈ [, T];
u() – u(T) = u̇() – u̇(T) = .

()

Mawhin and Willem in [] studied the periodic solutions of () and obtained a series of re-
sults. Equation () has also been investigated by several authors using various techniques
and different conditions on the nonlinearities, such as the coercive type potential condi-
tion (see []) and the even type potential condition (see []).

When T = R, Iij ≡ , i ∈ �, j ∈ �, B =  and A(t) is not a zero matrix, He and Wu in
[] researched the existence of solutions for () when A(t) is negative-definite. Meng and
Zhang in [] got some sufficient conditions for the existence of solutions for () by using
a minimax theorem. Wu et al. in [] studied the periodic solutions for a class of damped
vibration problems.

When T = R, Iij ≡ , i ∈ �, j ∈ �, B and A(t) are not zero matrices, Li et al. in []
researched the existence and multiplicity of solutions for () by variational methods and
some critical point theorems.

When Iij(t) 
≡ , i ∈ �, j ∈ �, B and A(t) are not zero matrices, until now, it is unknown
whether problem () has a variational structure or not.

In recent years, dynamic equations on time scales have been studied extensively in the
literature (see [–]). The study of dynamic equations on a time scale is a new area of
still fairly theoretical exploration in mathematics. Dynamic equations on time scales can
build bridges between continuous and discrete mathematics. Hilger introduce the theory
of time scales with the motivation of providing a unified approach to discrete and contin-
uous analysis in []. In fact, the calculus on time scales can unify continuous and discrete
analysis. There exist many other interesting time scales in the real world. The time scales
calculus has a tremendous potential for applications in some mathematical problems and
some mathematical models of real processes and phenomena studied in physics, chem-
ical technology, population dynamics, biotechnology, economics, neural networks, and
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social sciences [, ]. For example, it can model insect populations that are continuous
in season (and may follow a difference scheme with variable step size), die out in winter,
while their eggs are incubating or dormant, and then hatch in a new season, giving rise to
a nonoverlapping population.

Besides, impulsive and periodic boundary value problems on time scales have been stud-
ied extensively in the literature. There have been many approaches to study periodic solu-
tions of impulsive differential equations on time scales, such as method of lower and upper
solutions, fixed-point theory, coincidence degree theory and so on. However, the study of
solutions for impulsive differential equations on time scales using variational method has
received considerably less attention. The variational method is, to the best of our knowl-
edge, an effective approach to deal with nonlinear problems on time scales with some type
of discontinuities such as impulses (see []).

Motivated by the above, we research the existence of variational construction for prob-
lem () in an appropriate space of functions in this paper. As applications, we study the
existence and multiplicity of solutions for () by some critical point theorems. All these
results are new even in both the differential equations case and the difference equations
case.

2 Preliminaries and statements
In this section, we present some fundamental definitions and results from the calculus on
time scales and Sobolev’s spaces on time scales that will be required below.

We denote [a, b]κ
T

= ([a, b]κ
T

)κ , therefore [a, b]κ
T

= [a, b]T if b is left-dense and [a, b]κ
T

=
[a,ρ(b)]κ

T
if b is left-scattered.

Definition . (Definition ., []) Assume that f : T → R
N is a function, f (t) =

(f (t), f (t), . . . , f N (t)) and let t ∈ T
κ . Then we define f �(t) = (f � (t), f � (t), . . . , f N� (t)) (pro-

vided it exists). We call f �(t) the delta (or Hilger) derivative of f at t. The function f is delta
(or Hilger) differentiable provided f �(t) exists, for all t ∈ T

κ . The function f � : Tκ → R
N

is then called the delta derivative of f on T
κ .

Definition . (Definition ., []) For a function f : T→R
N we shall refer to the second

derivative f � provided f � is differentiable on T
κ = (Tκ )κ with derivative f � = (f �)� :

T
κ →R

N .

Definition . (Definition ., []) Assume that f : T → R
N is a function, f (t) =

(f (t), f (t), . . . , f N (t)) and let A be a �-measurable subset of T. f is integrable on A if and
only if f i (i = , , . . . , N ) are integrable on A, and

∫

A f (t)�t = (
∫

A f (t)�t,
∫

A f (t)�t, . . . ,
∫

A f N (t)�t).

Definition . ([]) Let B ⊂ T. B is called a �-null set if μ�(B) = . We say that a prop-
erty P holds �-almost everywhere (�-a.e.) on B, or for �-almost all (�-a.a.) t ∈ B if there
is a �-null set E ⊂ B such that P holds, for all t ∈ B\E.

For p ∈ R, p ≥ , we set the space

Lp
�

(
[, T

)

T
,RN ) =

{

u : [, T)T →R
N :
∫

[,T)T

∣
∣f (t)

∣
∣p�t < +∞

}
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with the norm

‖f ‖Lp
�

=
(∫

[,T)T

∣
∣f (t)

∣
∣p�t

) 
p

.

We have the following theorem.

Theorem . (Theorem ., []) Let p ∈R be such that p ≥ . Then the space Lp
�([, T)T,

R
N ) is a Banach space together with the norm ‖ · ‖Lp

�
. Moreover, L

�([a, b)T,RN ) is a
Hilbert space together with the inner product given for every (f , g) ∈ Lp

�([a, b)T,RN ) ×
Lp

�([a, b)T,RN ) by

〈f , g〉L
�

=
∫

[a,b)T

(
f (t), g(t)

)
�t,

where (·, ·) denotes the inner product in R
N .

Definition . (Definition ., []) A function f : [a, b]T → R
N , f (t) = (f (t), f (t), . . . ,

f N (t)). We say that f is absolutely continuous on [a, b]T (i.e. f ∈ AC([a, b]T,RN )), if, for
every ε > , there exists δ >  such that if {[ak , bk)T}n

k= is a finite pairwise disjoint family
of subintervals of [a, b]T satisfying

∑n
k=(bk – ak) < δ, then

∑n
k= |f (bk) – f (ak)| < ε.

Now, we recall the Sobolev space W ,p
�,T ([, T]T,RN ) on [, T]T defined in []. For the

sake of convenience, in the sequel, we will let uσ (t) = u(σ (t)).

Definition . (Definition ., []) Let p ∈ R be such that p >  and u : [, T]T → R
N .

We say that u ∈ W ,p
�,T ([, T]T,RN ) if and only if u ∈ Lp

�([, T)T,RN ) and there exists g :
[, T]κ

T
→R

N such g ∈ Lp
�([, T)T,RN ) and

∫

[,T)T

(
u(t),φ�(t)

)
�t = –

∫

[,T)T

(
g(t),φσ (t)

)
�t, ∀φ ∈ C

T ,rd
(
[, T]T,RN). ()

For p ∈ R, p > , we denote

V ,p
�,T
(
[, T]T,RN) =

{
x ∈ AC

(
[, T]T,RN) : x� ∈ Lp

�

(
[, T

)

T
,RN ), x() = x(T)

}
.

It follows from Remark . in [] that

V ,p
�

(
[, T]T,RN

)⊂ W ,p
�

(
[, T]T,RN)

is true for every p ∈ R with p > . These two sets are, as a class of functions, equiva-
lent. It is the characterization of functions in W ,p

�,T ([, T]T,RN ) in terms of functions in
V ,p

�,T ([, T]T,RN ) too. That is, we have the following theorem.

Theorem . (Theorem ., []) Suppose that u ∈ W ,p
�,T ([, T]T,RN ) for some p ∈Rwith

p > , and that () holds for g ∈ Lp
�([, T)T,RN ). Then, there exists a unique function x ∈

V ,p
�,T ([, T]T,RN ) such that the equalities

x = u, x� = g, �-a.e. on [, T)T ()
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are satisfied and

∫

[,T)T
g(t)�t = . ()

By identifying u ∈ W ,p
�,T ([, T]T,RN ) with its absolutely continuous representative x ∈

V ,p
�,T ([, T]T,RN ), for which () holds, the set W ,p

�,T ([, T]T,RN ) can be endowed with the
structure of Banach space. That is, we have the following theorem.

Theorem . (Theorem ., []) Assume p ∈R and p > . The set W ,p
�,T ([, T]T,RN ) is a

Banach space together with the norm defined as

‖u‖W ,p
�,T

=
(∫

[,T)T

∣
∣u(t)

∣
∣p�t +

∫

[,T)T

∣
∣u�(t)

∣
∣p�t

) 
p

, ∀u ∈ W ,p
�,T
(
[, T]T,RN). ()

Moreover, the set H
�,T = W ,

�,T ([, T]T,RN ) is a Hilbert space together with the inner prod-
uct

〈u, v〉H
�,T

=
∫

[,T)T

(
u(t), v(t)

)
�t +

∫

[,T)T

(
u�(t), v�(t)

)
�t, ∀u, v ∈ H

�,T .

The Banach space W ,p
�,T ([, T]T,RN ) has some important properties.

Theorem . (Theorem ., []) There exists C >  such that the inequality

‖u‖∞ ≤ C‖u‖H
�,T

()

holds, for all u ∈ H
�,T , where ‖u‖∞ = maxt∈[,T]T |u(t)|.

Moreover, if
∫

[,T)T
u(t)�t = , then

‖u‖∞ ≤ C
∥
∥u�

∥
∥

L
�

.

In the sequel, ‖ · ‖ denotes the norm ‖ · ‖H
�,T

.

3 Variational setting
In this section, we recall some basic facts which will be used in the proofs of our main
results. In order to apply the critical point theory, we make a variational structure. From
this variational structure, we can reduce the problem of finding solutions of () to the one
of seeking the critical points of a corresponding functional.

If u ∈ H
�,T , by identifying u ∈ H

�,T with its absolutely continuous representative
x ∈ V ,

�,T ([, T]T,RN ) for which () holds, then u is absolutely continuous and u̇ ∈
L([, T)T;RN ). In this case, �u�(t+) – u�(t–) =  may not hold for some t ∈ (, T)T. This
leads to impulsive effects.

Take v ∈ H
�,T and multiply the two sides of the equality

u�
(t) + B

(
u + uσ

)�(t) + A
(
σ (t)

)
u
(
σ (t)

)
+ ∇F

(
σ (t), u

(
σ (t)

))
= 
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by vσ and integrate on [, T)T, we have

∫

[,T)T

[
u�

(t) + B
(
u + uσ

)�(t) + A
(
σ (t)

)
u
(
σ (t)

)
+ ∇F

(
σ (t), u

(
σ (t)

))]
vσ (t)�t = . ()

Moreover, combining with u�() – u�(T) = , one has

∫

[,T)T

(
u�

(t), vσ (t)
)
�t

=
p∑

j=

∫

[tj ,tj+)T

(
u� (t), vσ (t)

)
�t

=
p∑

j=

[
(
u�
(
t–
j+
)
, v
(
t–
j+
))

–
(
u�
(
t+
j
)
, v
(
t+
j
))

–
∫

[tj ,tj+)

(
u�(t), v�(t)

)
�t
]

=
p∑

j=

[ N∑

i=

((
ui)�(t–

j+
)
vi(t–

j+
)

–
(
ui)�(t+

j
)
vi(t+

j
))

–
∫

[tj ,tj+)

(
u�(t), v�(t)

)
�t

]

= u�(T)v(T) – u�()v() –
p∑

j=

N∑

i=

Iij
(
ui(tj)

)
vi(tj) –

∫

[,T)T

(
u�(t), v�(t)

)
�t

= –
p∑

j=

N∑

i=

Iij
(
ui(tj)

)
vi(tj) –

∫

[,T)T

(
u�(t), v�(t)

)
�t

and

∫

[,T)T

(
Bu�(t) + B

(
uσ
)�(t), vσ (t)

)
�t

=
∫

[,T)T

(
Bu�(t), vσ (t)

)
�t –

∫

[,T)T

(
Buσ (t), v�(t)

)
�t

=
∫

[,T)T

(
Bu�(t), vσ (t)

)
�t +

∫

[,T)T

(
Bu�(t), v(t)

)
�t.

Considering the above, we introduce the following concept solution for problem ().

Definition . We say that a function u ∈ H
�,T is a weak solution of problem () if the

identity

∫

[,T)T

(
u�(t), v�(t)

)
�t +

p∑

j=

N∑

i=

Iij
(
ui(tj)

)
vi(tj)

=
∫

[,T)T

(
Aσ (t)uσ (t) + ∇F

(
σ (t), uσ (t)

)
, vσ (t)

)
�t

+
∫

[,T)T

(
Bu�(t), vσ (t)

)
�t +

∫

[,T)T

(
Bu�(t), v(t)

)
�t

holds for any v ∈ H
�,T .
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Consider the functional ϕ : H
�,T →R defined by

ϕ(u) =



∫

[,T)T

∣
∣u�(t)

∣
∣�t +

p∑

j=

N∑

i=

∫ ui(tj)


Iij(t) dt

+
∫

[,T)T

(
Buσ (t), u�(t)

)
�t –




∫

[,T)T

(
Aσ (t)uσ (t), uσ (t)

)
�t + J(u)

= ψ(u) + φ(u), ()

where

J(u) = –
∫

[,T)T
F
(
σ (t), uσ (t)

)
�t,

ψ(u) =



∫

[,T)T

∣
∣u�(t)

∣
∣�t +

∫

[,T)T

(
Buσ (t), u�(t)

)
�t

–



∫

[,T)T

(
Aσ (t)uσ (t), uσ (t)

)
�t + J(u),

φ(u) =
p∑

j=

N∑

i=

∫ ui(tj)


Iij(t) dt. ()

Lemma . The functional ϕ is continuously differentiable on H
�,T and

〈
ϕ′(u), v

〉
=
∫

[,T)T

(
u�(t), v�(t)

)
�t +

p∑

j=

N∑

i=

Iij
(
ui(tj)

)
vi(tj)

–
∫

[,T)T

(
Aσ (t)uσ (t) + ∇F

(
σ (t), uσ (t)

)
, vσ (t)

)
dt

–
∫

[,T)T

(
Bu�(t), vσ (t)

)
�t –

∫

[,T)T

(
Bu�(t), v(t)

)
�t. ()

Proof Set L(t, x, y) = 
 |y| + 

 (Bx, y) – 
 (A(t)x, x) – F(t, x), for all x, y ∈ RN and t ∈ [, T)T.

Then L(t, x, y) satisfies all assumptions of Theorem . in []. Hence, by Theorem . in
[], we know that the functional ψ is continuously differentiable on H

�,T and

〈
ϕ′(u), v

〉
=
∫

[,T)T

(
u�(t), v�(t)

)
�t +

p∑

j=

N∑

i=

Iij
(
ui(tj)

)
vi(tj)

–
∫

[,T)T

(
Aσ (t)uσ (t) + ∇F

(
σ (t), uσ (t)

)
, vσ (t)

)
dt

–
∫

[,T)T

(
Bu�(t), vσ (t)

)
�t +

∫

[,T)T

(
Buσ (t), v�(t)

)
�t

–
∫

[,T)T

(
Bu�(t), vσ (t)

)
�t –

∫

[,T)T

(
Bu�(t), v(t)

)
�t,

for all H
�,T .
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On the other hand, by the continuity of Iij, i ∈ �, j ∈ �, one has φ ∈ C(H
T ,R) and

〈
φ′(u), v

〉
=

p∑

j=

N∑

i=

Iij
(
ui(tj)

)
vi(tj),

for all u, v ∈ H
�,T . Thus, ϕ is continuously differentiable on H

�,T and () holds. �

Lemma . φ′ is compact on H
�,T .

Proof Let {uk} ⊂ H
�,T be any bounded sequence. Since H

�,T is a Hilbert space, we can
assume that uk ⇀ u. Theorem . implies that ‖uk – u‖∞ → . By (), we have

∥
∥φ′(uk) – φ′(u)

∥
∥ = sup

v∈H
�,T ,‖v‖≤

∣
∣
〈
φ′(uk) – φ′(u), v

〉∣
∣

= sup
v∈H

�,T ,‖v‖≤

∣
∣
∣
∣
∣

p∑

j=

N∑

i=

[
Iij
(
ui

k(tj)
)

– Iij
(
ui(tj)

)]
vi(tj)

∣
∣
∣
∣
∣

≤ ‖v‖∞ sup
v∈H

�,T ,‖v‖≤

∣
∣
∣
∣
∣

p∑

j=

N∑

i=

∣
∣Iij
(
ui

k(tj)
)

– Iij
(
ui(tj)

)∣
∣

∣
∣
∣
∣
∣

≤ C‖v‖ sup
v∈H

�,T ,‖v‖≤

∣
∣
∣
∣
∣

p∑

j=

N∑

i=

∣
∣Iij
(
ui

k(tj)
)

– Iij
(
ui(tj)

)∣
∣

∣
∣
∣
∣
∣

= C sup
v∈H

�,T ,‖v‖≤

∣
∣
∣
∣
∣

p∑

j=

N∑

i=

∣
∣Iij
(
ui

k(tj)
)

– Iij
(
ui(tj)

)∣
∣

∣
∣
∣
∣
∣
.

The continuity of Iij and this imply that φ′(uk) → φ′(u) in H
�,T . The proof is complete.

�

By Definition . and Lemma ., the weak solutions of problem () correspond to the
critical points of ϕ.

Moreover, we need more preliminaries. We define operators G : H
�,T → (H

�,T )∗ as fol-
lows, for any u ∈ H

�,T , which is given by

Gu(v) =
∫

[,T)T

(
Bu�(t), vσ (t)

)
�t,

for all v ∈ H
�,T , where (H

�,T )∗ denotes the dual space of H
�,T . By the Riesz representation

theorem, we can identify (H
�,T )∗ with H

�,T . Thus, Gu can also be viewed as a function
belonging to H

�,T such that 〈Gu, v〉 = Gu(v) for any u, v ∈ H
�,T and G is a bounded linear

self-adjoint operator on H
�,T . On the other hand, we can obtained the following lemma

in the same way as the proof of Lemma . of [].

Lemma . G is compact on H
�,T .

For any u ∈ H
�,T , let

q(u) =



∫

[,T)T

[∣
∣u̇(t)

∣
∣ +

(
Buσ (t), u�(t)

)
–
(
Aσ (t)uσ (t), uσ (t)

)]
�t,
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we see that

q(u) =


‖u‖ –




∫

[,T)T

((
Aσ (t) + IN×N

)
uσ (t) + Bu�(t), uσ (t)

)
�t

=


〈
(I – K)u, u

〉
,

where K : H
�,T → H

�,T is the bounded self-adjoint linear operator defined, using Riesz
representation theorem, by

〈Ku, v〉 = 〈Gu, v〉 +
∫

[,T)T

((
Aσ (t) + IN×N

)
uσ (t), uσ (t)

)
�t, ∀u, v ∈ H

�,T ,

IN×N and I denote N × N identity matrix and identity operator respectively. By (), ϕ(u)
can be rewritten as

ϕ(u) = q(u) + φ(u) + J(u)

=


〈
(I – K)u, u

〉
+ φ(u) + J(u). ()

The compact embedding of H
�,T into C([, T]T, RN ) and Lemma . imply that K is com-

pact. By classical spectral theory, we can decompose H
�,T into the orthogonal sum of

invariant subspaces for I – K

H
�,T = H– ⊕ H ⊕ H+,

where H = ker(I – K) and H–, H+ are such that, for some δ > ,

q(u) ≤ –δ‖u‖, if u ∈ H–, ()

q(u) ≥ δ‖u‖, if u ∈ H+. ()

Remark . K has only finitely many eigenvalues λi with λi >  since K is compact on
H

�,T . Hence H– is finite dimensional. Notice that I – K is a compact perturbation of the
self-adjoint operator I . By a well-known theorem, we know that  is not in the essential
spectrum of I – K . Hence H is a finite dimensional space too.

To prove our main results, we need the following definitions and theorems.

Definition . ([], p.) Let X be a real Banach space and I ∈ C(X,R). I is said to be
satisfying (PS) condition on X if any sequence {xn} ⊆ X for which I(xn) is bounded and
I ′(xn) →  as n → ∞, possesses a convergent subsequence in X.

Definition . ([]) Let X be a real Banach space and I ∈ C(X,R). I is said to be sat-
isfying (C) condition on X if any sequence {xn} ⊆ X for which I(xn) is bounded and
( + ‖xn‖)I ′(xn) →  as n → ∞, possesses a convergent subsequence in X.

Firstly, we state the local linking theorem.
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Let X be a real Banach space with a direct decomposition X = X ⊕ X. Consider two
sequences of subspace

X
 ⊂ X

 ⊂ · · · ⊂ X, X
 ⊂ X

 ⊂ · · · ⊂ X

such that

dim X
n < +∞, dim X

n < +∞, n ∈N,

and

X =
⋃

n∈N
X

n, X =
⋃

n∈N
X

n .

For every multi-index α = (α,α) ∈ N
, we denote by Xα the space Xα ⊕ Xα . We say

α ≤ β ⇔ α ≤ β,α ≤ β. A sequence (αn) ⊂ N
 is admissible if for every α ∈ N

 there is
m ∈N such that n ≥ m ⇒ αn ≥ α.

Definition . (Definition ., []) Let I ∈ C(X,R). The functional I satisfies condition
(C)∗ if every sequence (uαn ) such that αn is admissible and

uαn ∈ Xαn , sup
∣
∣I(uαn )

∣
∣ < ∞,

(
 + ‖uαn‖

)
I ′(uαn ) → 

contains a subsequence which converges to a critical point of I .

Theorem . (Theorem ., []) Suppose that I ∈ C(X,R) satisfies the following as-
sumptions:

(I) X 
= {} and I has a local linking at  with respect to (X, X), that is, for some r > ,

I(u) ≥ , u ∈ X,‖u‖ ≤ r,

I(u) ≤ , u ∈ X,‖u‖ ≤ r.

(I) I satisfies condition (C)∗.
(I) I maps bounded sets into bounded sets.
(I) For every n ∈N, I(u) → –∞ as ‖u‖ → ∞, u ∈ X

n ⊕ X.

Then I has at least two critical points.

Remark . Since I ∈ C(X,R), by condition (I) of Theorem .,  is the critical point of I .
Thus, under the conditions of Theorem ., I has at least one non-trivial critical point.

Secondly, we state another three critical point theorems.

Theorem . (Theorem ., []) Let E be a Hilbert space with E = E ⊕ E and E = E⊥
 .

Suppose I ∈ C(E, R), it satisfies (PS) condition, and

(I) I(u) = 
 〈Lu, u〉 + b(u), where Lu = LPu + LPu and Lκ : Eκ → Eκ is bounded and

selfadjoint, κ = , ,
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(I) b′ is compact, and
(I) there exist a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants α > ω such that

(i) S ⊂ E and I|S ≥ α,
(ii) Q is bounded and I|∂Q ≤ ω,

(iii) S and ∂Q link.

Then I possesses a critical value c ≥ α.

Theorem . (Theorem ., []) Let E be an infinite dimensional Banach space. Let I ∈
C(E,R) be an even functional which satisfies the (PS) condition and I() = . If E = V ⊕W ,
where V is finite dimensional, and I satisfies

(I) there are constants ρ,α >  such that I|∂Bρ∩W ≥ α, where Bρ = {x ∈ E : ‖x‖ < ρ},
(I) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(̃E) such that I ≤  on

Ẽ\BR(̃E),

then I possesses an unbounded sequence of critical values.

Remark . As shown in [], a deformation theorem can be proved with condition (C)
replacing the usual condition (PS), and it turns out that Theorem . and Theorem .
hold under condition (C).

In order to state the other critical point theorem we need the following notions. Let
X and Y be Banach spaces with X being separable and reflexive, and set E = X ⊕ Y . Let
S ⊂ X∗ be a dense subset. For each s ∈ S there is a semi-norm on E defined by

ps : E → R, ps(u) =
∣
∣s(x)

∣
∣ + ‖y‖ for u = x + y ∈ X ⊕ Y .

We denote by TS the topology on E induced by semi-norm family {ps}, and let w and w∗

denote the weak-topology and weak∗-topology, respectively.
For a functional � ∈ C(E, R) we write �a = {u ∈ E : �(u) ≥ a}. Recall that �′ is said

to be weak sequentially continuous if for any uk ⇀ u in E one has limk→∞ �′(uk)v →
�′(u)v for each v ∈ E, i.e. �′ : (E, w) → (E∗, w∗) is sequentially continuous. For c ∈ R we
say that � satisfies condition (C)c if any sequence {uk} ⊂ E such that �(uk) → c and ( +
‖uk‖)�′(uk) →  as k → ∞ contains a convergent subsequence.

Suppose that

(�) for any c ∈ R, �c is TS -closed, and �′ : (�c,TS ) → (E∗, w∗) is continuous;
(�) there exists ρ >  such that κ := inf�(∂Bρ ∩ Y ) > , where

Bρ =
{

u ∈ E : ‖u‖ < ρ
}

;

(�) there exist a finite dimensional subspace Y ⊂ Y and R > ρ such that c̄ := sup�(E) <
∞ and sup�(E\S) < inf�(Bρ ∩ Y ), where

E := X ⊕ Y, and S =
{

u ∈ E : ‖u‖ ≤ R
}

.

Theorem . ([]) Assume that � is even and (�)-(�) are satisfied. Then � has at
least m = dim Y pairs of critical points with critical values less than or equal to c̄ provided
� satisfies condition (C)c, for all c ∈ [κ , c̄].
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Remark . In our applications we take S=X∗, so that TS is the product topology on
E = X ⊕ Y given by the weak topology on X and the strong topology on Y .

4 Main results
First of all, we give two existence results.

Theorem . Suppose that (A) and the following conditions are satisfied.

(F) lim|x|→∞ F(t,x)
|x| = +∞ uniformly for �-a.e. t ∈ [, T]T,

(F) lim|x|→
F(t,x)
|x| =  uniformly for �-a.e. t ∈ [, T]T,

(F) there exist λ >  and η > λ –  such that

lim sup
|x|→∞

F(t, x)
|x|λ < ∞ uniformly for �-a.e. t ∈ [, T]T

and

lim inf|x|→∞
(∇F(t, x), x) – F(t, x)

|x|η >  uniformly for �-a.e. t ∈ [, T]T,

(F) there exists r >  such that

F(t, x) ≥ , ∀|x| ≤ r, and �-a.e. t ∈ [, T]T,

(F) there exist βij,γij > , and ξij ∈ [, ) such that

∣
∣Iij(t)

∣
∣≤ βij + γij|t|ξij for every t ∈R, i ∈ �, j ∈ �,

(F)
∫ t

 Iij(s) ds ≤  for every t ∈ R, i ∈ �, j ∈ �,
(F) there exists ζij >  such that


∫ t


Iij(s) ds – Iij(t)t ≥ , for all i ∈ �, j ∈ � and |t| ≥ ζij,

and

lim
t→

Iij(t)
t

= , for all i ∈ �, j ∈ �.

Then problem () has at least two weak solutions. The one is a nontrivial weak solution,
the other is trivial weak solution.

In order to prove Theorem ., we prove the following lemma.

Lemma . Assume that (A), (F), (F), and (F) are satisfied, then ϕ satisfies condi-
tion (C)∗.

Proof Let {uαn} be a sequence in H
�,T such that αn is admissible and

uαn ∈ Xαn , sup
∣
∣ϕ(uαn )

∣
∣ < +∞,

(
 + ‖uαn‖

)
ϕ′(uαn ) → ,
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then there exists a constant C >  such that

∣
∣ϕ(uαn )

∣
∣≤ C,

(
 + ‖uαn‖

)∥
∥ϕ′(uαn )

∥
∥≤ C, ()

for all large n. On the other hand, by (F), there are constants C >  and ρ >  such that

F(t, x) ≤ C|x|λ, ()

for all |x| ≥ ρ and �-a.e. t ∈ [, T]T. By (A) one has
∣
∣F(t, x)

∣
∣≤ max

s∈[,ρ]
a(s)b(t), ()

for all |x| ≤ ρ and a.e. t ∈ [, T]. It follows from () and () that
∣
∣F(t, x)

∣
∣≤ max

s∈[,ρ]
a(s)b(t) + C|x|λ, ()

for all x ∈ R
N and �-a.e. t ∈ [, T]T. Since alm ∈ L∞([, T)T,R) for all l, m = , , . . . , N ,

there exists a constant C ≥  such that
∣
∣
∣
∣

∫

[,T)T

(
Aσ (t)uσ (t), uσ (t)

)
�t
∣
∣
∣
∣≤ C

∫

[,T)T

∣
∣uσ (t)

∣
∣�t, ∀u ∈ H

�,T . ()

Let b = maxl,m=,,...,N {blm}. For ∀u ∈ H
�,T , we have

∣
∣
∣
∣

∫

[,T)T

(
Buσ (t), u�(t)

)
�t
∣
∣
∣
∣≤




∫

[,T)T

∣
∣Buσ (t)

∣
∣
∣
∣u�(t)

∣
∣�t

≤ 


∫

[,T)T

[∣
∣Buσ (t)

∣
∣ +

∣
∣u�(t)

∣
∣
]
�t

≤ 


b̄N
∫

[,T)T

∣
∣uσ (t)

∣
∣�t +




∫

[,T)T

∣
∣u�(t)

∣
∣�t. ()

From (F) and (), we have

∣
∣φ(u)

∣
∣ ≤

p∑

j=

N∑

i=

∫ |ui(tj)|



(
βij + γij|t|ξij

)
dt

≤ βpN‖u‖∞ + γ

p∑

j=

N∑

i=

‖u‖ξij+
∞

≤ βpNC‖u‖ + γ Cξij+


p∑

j=

N∑

i=

‖u‖ξij+, ()

for all u ∈ H
�,T , where β = maxi∈�,j∈�{βij}, γ = maxi∈�,j∈�{γij}. Combining (), (),

(), (), and Hölder’s inequality, we have



‖uαn‖ = ϕ(uαn ) – φ(uαn ) +




∫

[,T)T

∣
∣uαn (t)

∣
∣�t +




∫

[,T)T

(
Aσ (t)uαn (t), uσ

αn (t)
)
�t

–
∫

[,T)T

(
Buσ

αn (t), u�
αn (t)

)
dt – J(u)
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≤ C + βpNC‖uαn‖ + γ Cξij+


p∑

j=

N∑

i=

‖uαn‖ξij+ + C

∫

[,T)T

∣
∣uσ

αn (t)
∣
∣�t

+



b̄N
∫

[,T)T

∣
∣uσ

αn (t)
∣
∣�t +




∫

[,T)T

∣
∣u�

αn (t)
∣
∣�t

+ C

∫

[,T)T

∣
∣uσ

αn (t)
∣
∣λ�t + max

s∈[,ρ]
a(s)

∫

[,T)T
bσ (t)�t

≤ C + βpNC‖uαn‖ + γ Cξij


p∑

j=

N∑

i=

‖uαn‖ξij+ +



‖uαn‖

+
(

C +



b̄N
)

T
λ–
λ

(∫

[,T)T

∣
∣uσ

αn (t)
∣
∣λ�t

) 
λ

+ C

∫

[,T)T

∣
∣uσ

αn (t)
∣
∣λ�t + C, ()

for all large n, where C = maxs∈[,ρ] a(s)
∫

[,T)T
bσ (t)�t. On the other hand, by (F), there

exist C >  and ρ >  such that

(∇F(t, x), x
)

– F(t, x) ≥ C|x|η, ()

for all |x| ≥ ρ and �-a.e. t ∈ [, T]T. By (A), we have

∣
∣
(∇F(t, x), x

)
– F(t, x)

∣
∣≤ Cb(t), ()

for all |x| ≤ ρ and �-a.e. t ∈ [, T]T, where C = ( + ρ) maxs∈[,ρ] a(s). Combining ()
and (), one has

(∇F(t, x), x
)

– F(t, x) ≥ C|x|η – Cρ
η
 – Cb(t), ()

for all x ∈R
N and �-a.e. t ∈ [, T]T. According to (F), there exists C >  such that


∫ t


Iij(s) ds – Iij(t)t ≥ –C, for all i ∈ �, j ∈ � and t ∈ R. ()

Thus by (), (), and (), we obtain

C ≥ ϕ(uαn ) –
〈
ϕ′(uαn ), uαn

〉

= φ(uαn ) –
〈
φ′(uαn ), uαn

〉

+
∫

[,T)T

[(∇F
(
σ (t), uσ

αn (t)
)
, uσ

αn (t)
)

– F
(
σ (t), uσ

αn (t)
)]

�t

+
∫

[,T)T

(
Bu�

αn (t), uαn (t)
)
�t –

∫

[,T)T

(
Bu�

αn (t), uσ
αn (t)

)
�t

=
p∑

j=

N∑

i=

(


∫ ui

αn (tj)


Iij(t) dt – Iij

(
ui

αn (tj)
)
ui

αn (tj)
)

+
∫

[,T)T

[(∇F
(
σ (t), uσ

αn (t)
)
, uσ

αn (t)
)

– F
(
σ (t), uσ

αn (t)
)]

�t
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+
∫

[,T)T

(
Bu�

αn (t), uαn (t)
)
�t –

∫

[,T)T

(
Bu�

αn (t), uαn (t) + μ(t)u�
αn (t)

)
�t

=
p∑

j=

N∑

i=

(


∫ ui

αn (tj)


Iij(t) dt – Iij

(
ui

αn (tj)
)
ui

αn (tj)
)

+
∫

[,T)T

[(∇F
(
σ (t), uσ

αn (t)
)
, uσ

αn (t)
)

– F
(
σ (t), uσ

αn (t)
)]

�t

–
∫

[,T)T
μ(t)

(
Bu�

αn (t), u�
αn (t)

)
�t

=
p∑

j=

N∑

i=

(


∫ ui

αn (tj)


Iij(t) dt – Iij

(
ui

αn (tj)
)
ui

αn (tj)
)

+
∫

[,T)T

[(∇F
(
σ (t), uσ

αn (t)
)
, uσ

αn (t)
)

– F
(
σ (t), uσ

αn (t)
)]

�t

≥ –pNC + C

∫

[,T)T

∣
∣uσ

αn

∣
∣η�t – Cρ

η
 T – C

∫

[,T)T
bσ (t)�t, ()

for all large n. From (),
∫

[,T)T
|uσ

αn |η�t is bounded. If η > λ, by Hölder’s inequality, we
have

∫

[,T)T

∣
∣uσ

αn

∣
∣λ�t ≤ T

η–λ
η

(∫

[,T)T

∣
∣uσ

αn

∣
∣η�t

) λ
η

. ()

Since ξij ∈ [, ), for all i ∈ �, j ∈ �, by () and (), {uαn} is bounded in H
�,T . If η ≤ λ,

by (), we obtain

∫

[,T)T

∣
∣uσ

αn (t)
∣
∣λ�t =

∫

[,T)T

∣
∣uσ

αn (t)
∣
∣η
∣
∣uσ

αn (t)
∣
∣λ–η

�t

≤ ‖uαn‖λ–η
∞

∫

[,T)T

∣
∣uσ

αn (t)
∣
∣η�t

≤ Cλ–η
 ‖uαn‖λ–η

∫

[,T)T

∣
∣uσ

αn (t)
∣
∣η�t. ()

Since ξij ∈ [, ), λ – η < , by () and (), {uαn} is also bounded in H
�,T . Hence, {uαn} is

also bounded in H
�,T . Going if necessary to a subsequence, we can assume that uαn ⇀ u

in H
�,T . From Theorem ., we have ‖uαn – u‖∞ →  and

∫

[,T)T
|uσ

αn – uσ |�t → . Thus,
by () and (), we have

∫

[,T)T

∣
∣u�

αn – u�
∣
∣�t

=
〈
ϕ′(uαn ) – ϕ′(u), uαn – u

〉
–

p∑

j=

N∑

i=

(
Iij
(
ui

αn (tj)
)

– Iij
(
ui(tj)

))(
ui

αn (tj) – ui(tj)
)

+
∫

[,T)T

(
Aσ (t)

(
uσ

αn – u
)
, uσ

αn – uσ
)
�t + 

∫

[,T)T

(
B
(
u�

αn – u�
)
, uαn – u

)
�t

+
∫

[,T)T

(∇F
(
σ (t), uσ

αn

)
– ∇F

(
σ (t), uσ

)
, uσ

αn – uσ
)
�t
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≤ ∥∥ϕ′(uαn )
∥
∥‖uαn – u‖ –

〈
ϕ′(u), uαn – u

〉

–
p∑

j=

N∑

i=

(
Iij
(
ui

αn (tj)
)

– Iij
(
ui(tj)

))(
ui

αn (tj) – ui(tj)
)

+ C

∫

[,T)T

∣
∣uσ

αn – uσ
∣
∣�t +




bN
∫

[,T)T

∣
∣uσ

αn – uσ
∣
∣�t +




∫

[,T)T

∣
∣u�

αn – u�
∣
∣�t

+ ‖uαn – u‖∞
∫

[,T)T

∣
∣∇F

(
σ (t), uσ

αn

)
– ∇F

(
σ (t), uσ

)∣
∣�t.

This implies
∫

[,T)T
|u̇αn – u̇|�t → , and hence ‖uαn – u‖ → . Therefore, uαn → u in

H
�,T . Hence ϕ satisfies condition (C)∗. �

Now, we prove Theorem ..

Proof By Lemma ., ϕ ∈ C(X,R). Set X = H
�,T , X = H+ with (en)n≥ being its Hilbert

basis, X = H– ⊕ H, and define

X
n = span{e, e, . . . , en}, n ∈N,

X
n = X, n ∈N.

Then we have

X
 ⊂ X

 ⊂ · · · ⊂ X, X
 ⊂ X

 ⊂ · · · ⊂ X, X =
⋃

n∈N
X

n, X =
⋃

n∈N
X

n ,

and

dim X
n < +∞, dim X

n < +∞, n ∈N.

We divide our proof into four parts in order to show Theorem ..
Firstly, by Lemma ., ϕ satisfies condition (C)∗.
Secondly, we show that ϕ maps bounded sets into bounded sets.
It follows from (), (), (), (), and () that

∣
∣ϕ(u)

∣
∣ =

∣
∣
∣
∣
∣




∫

[,T)T

∣
∣u�(t)

∣
∣�dt +

p∑

j=

N∑

i=

∫ ui(tj)


Iij(t) dt +

∫

[,T)T

(
Buσ (t), u�(t)

)
�t

∣
∣
∣
∣
∣

–



∫

[,T)T

(
Aσ (t)uσ (t), uσ (t)

)
�t + J(u)

≤ 


∫

[,T)T

∣
∣u�(t)

∣
∣�t +

C



∫

[,T)T

∣
∣uσ (t)

∣
∣t + βpNC‖u‖

+ γ Cξij+


p∑

j=

N∑

i=

‖u‖ξij+

+



bN
∫

[,T)T

∣
∣uσ (t)

∣
∣�t +




∫

[,T)T

∣
∣u�(t)

∣
∣�t + C

∫

[,T)T

∣
∣uσ (t)

∣
∣λ�t

+ max
s∈[,ρ]

a(s)
∫

[,T)T
bσ (t)�t
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≤ 

(
CC

 + bNC
 + 

)‖u‖ + βpNC‖u‖

+ γ Cξij+


p∑

j=

N∑

i=

‖u‖ξij+ + CT‖u‖λ
∞ + C

≤ 

(
CC

 + bNC
 + 

)‖u‖ + βpNC‖u‖

+ γ Cξij+


p∑

j=

N∑

i=

‖u‖ξij+ + CTCλ
 ‖u‖λ + C,

for all u ∈ H
�,T . Thus, ϕ maps bounded sets into bounded sets.

Thirdly, we claim that ϕ has a local linking at  with respect to (X, X).
Applying (F), for ε = δ

C


, there exists ρ >  such that

∣
∣F(t, x)

∣
∣≤ ε|x|, ()

for all |x| ≤ ρ and �-a.e. t ∈ [, T]T. By (F), for ε = δ

pNC


, there exists ρ >  such that

∣
∣Iij(t)

∣
∣≤ ε|t|, |t| ≤ ρ, i ∈ �, j ∈ �. ()

Let ρ = min{ρ,ρ}. For u ∈ X with ‖u‖ ≤ r � ρ
C

, by (), (), (), (), and (), we have

ϕ(u) = q(u) +
p∑

j=

N∑

i=

∫ ui(tj)


Iij(t) dt –

∫

[,T)T
F
(
σ (t), uσ (t)

)
�t

≥ δ‖u‖ –
p∑

j=

N∑

i=

∫ |ui(tj)|



∣
∣Iij(t)

∣
∣dt – ε

∫

[,T)T

∣
∣uσ (t)

∣
∣�t

≥ δ‖u‖ –
p∑

j=

N∑

i=

∫ |ui(tj)|


ε|t|dt – ε

∫

[,T)T

∣
∣uσ (t)

∣
∣�t

≥ δ‖u‖ – ε

p∑

j=

N∑

i=

‖u‖
∞ – ε

∫

[,T)T

∣
∣uσ (t)

∣
∣�t

≥ δ‖u‖ – εpNC
 ‖u‖ – εC

 ‖u‖

≥ δ‖u‖ –
δ


‖u‖ –

δ


‖u‖

=
δ


‖u‖.

This implies that

ϕ(u) ≥ , ∀u ∈ X with ‖u‖ ≤ r.

On the other hand, it follows from (F) that

φ(u) ≤ , ()
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for all u ∈ H
T . Let u = u– + u ∈ X satisfies ‖u‖ ≤ r � r

C
, using (F), (), (), (), and

(), we obtain

ϕ(u) = q(u) + φ(u) –
∫

[,T)T
F
(
σ (t), uσ (t)

)
�t

≤ –δ
∥
∥u–∥∥ –

∫

[,T)T
F
(
σ (t), uσ (t)

)
�t

≤ –δ
∥
∥u–∥∥.

This implies that

ϕ(u) ≤ , ∀u ∈ X with ‖u‖ ≤ r.

Let r = min{r, r}. Then ϕ satisfies the condition (I) of Theorem ..
Finally, we claim that, for every n ∈N,

ϕ(u) → –∞ as ‖u‖ → ∞, u ∈ X
n ⊕ X.

For given n ∈N, since X
n ⊕ X is a finite-dimensional space, there exists C >  such that

‖u‖ ≤ C‖u‖L
�

, ∀u ∈ X
n ⊕ X. ()

By (F), there exists ρ >  such that

F(t, x) ≥ C

(
CC

 + bNC
 +  + δ

)|x|, ()

for all |x| ≥ ρ and �-a.e. t ∈ [, T]T. From (A), we get

∣
∣F(t, x)

∣
∣≤ max

s∈[,ρ]
a(s)b(t), ()

for all |x| ≤ ρ and �-a.e. t ∈ [, T]T. Equations () and () imply that

F(t, x) ≥ C

(
CC

 + bNC
 +  + δ

)|x| – C – max
s∈[,ρ]

a(s)b(t), ()

for all x ∈ R
N and �-a.e. t ∈ [, T]T, where C = C

(C + bN
 + 

 + δ)ρ
 . Using (), (),

(), (), (), and (), we have, for u = u+ + u + u– ∈ X
n ⊕ X = X

n ⊕ H ⊕ H–,

ϕ(u) =



∫

[,T)T

∣
∣u�(t)

∣
∣�t +

p∑

j=

N∑

i=

∫ ui(tj)


Iij(t) dt +

∫

[,T)T

(
Buσ (t), u�(t)

)
�t

–



∫

[,T)T

(
Aσ (t)uσ (t), uσ (t)

)
�t –

∫

[,T)T
F
(
σ (t), uσ (t)

)
�t

≤ –δ
∥
∥u–∥∥ +




∫

[,T)T

∣
∣
(
u+)�(t)

∣
∣�t +

∫

[,T)T

(
B
(
u+)σ (t),

(
u+)�(t)

)
�t

–



∫

[,T)T

(
Aσ (t)

(
u+)σ (t),

(
u+)σ (t)

)
�t –

∫

[,T)T
F
(
σ (t), uσ (t)

)
�t
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≤ –δ
∥
∥u–∥∥ +




∫

[,T)T

∣
∣
(
u+)�(t)

∣
∣�t +

bN


∫

[,T)T

∣
∣
(
u+)σ (t)

∣
∣�t

+



∫

[,T)T

∣
∣
(
u+)�(t)

∣
∣�t +

C



∫

[,T)T

∣
∣
(
u+)σ (t)

∣
∣�t –

∫

[,T)T
F
(
σ (t), uσ (t)

)
�t

≤ –δ
∥
∥u–∥∥ +



(
CC

 + bNC
 + 

)∥
∥u+∥∥

– C

(
CC

 + bNC
 +  + δ

)‖u‖
L
�

+ CT + C

≤ –δ
∥
∥u–∥∥ +

(
CC

 + bNC
 + 

)∥
∥u+∥∥

–
(
CC

 + bNC
 +  + δ

)‖u‖ + CT + C

= –δ
∥
∥u–∥∥ +

(
CC

 + bNC
 + 

)∥
∥u+∥∥

–
(
CC

 + bNC
 +  + δ

)∥
∥u+ + u + u–∥∥ + CT + C

≤ –δ
∥
∥u–∥∥ +

(
CC

 + bNC
 + 

)‖u+‖ –
(
CC

 + bNC
 +  + δ

)∥
∥u+∥∥

– δ
∥
∥u + u–∥∥ + CT + C

≤ –δ
∥
∥u–∥∥ +

(
CC

 + bNC
 + 

)∥
∥u+∥∥

–
(
CC

 + bNC
 +  + δ

)∥
∥u+∥∥ – δ

∥
∥u∥∥ + CT + C

= –δ‖u‖ + CT + C,

where C = maxs∈[,ρ] a(s)
∫

[,T)T
bσ (t)�t. Hence, for every n ∈ N, ϕ(u) → –∞ as ‖u‖ →

∞ and X
n ⊕ X.

Thus, by Theorem ., problem () has at least one nontrivial weak solution and one
trivial weak solution. �

Example . Let T = , N = , t = , t = . Consider the second order Hamiltonian sys-
tem with impulsive effects

⎧
⎪⎨

⎪⎩

ü(t) + Bu̇(t) + A(t)u(t) + ∇F(t, x) = , a.e. t ∈ [, ];
u() – u() = u̇() – u̇() = ,
�u̇i(tj) = u̇i(t+

j ) – u̇i(t–
j ) = Iij(ui(tj)), i = , , , , j = , ,

()

where A(t) is the unit matrix,

B =

⎛

⎜
⎜
⎜
⎝

 – – –
  – –
   –
   

⎞

⎟
⎟
⎟
⎠

and

F(t, x) = |x|, for all x ∈R
 and t ∈R,
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Iij(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ≥ ,
–(t – ),  ≤ t < ,
t – ,  < t < ,
–t, |t| ≤ ,
t + , – < t < –,
–(t + ), – < t ≤ –,
, t ≤ –,

for all i = , , , , j = , . All conditions of Theorem . hold because of λ = η =  and
βij = γij = , ξij = , ζij = , for all i ∈ �, j ∈ �. According to Theorem ., problem ()
has at least one weak solution.

Theorem . Assume that (A), (F), (F), (F), (F), (F), and the following conditions are
satisfied.

(F) lim sup|x|→
F(t,x)
|x| ≤  uniformly for �-a.e. t ∈ [, T]T,

(F) F(t, x) ≥ , for all x ∈R
N and �-a.e. t ∈ [, T]T.

Then problem () has at least one nontrivial weak solution.

Proof Set E = H+, E = H– ⊕ H and E = H
�,T . Then E is a real Hilbert space, E = E ⊕ E,

E = E⊥
 , and dim(E) < +∞.

From the proof of Lemma ., we know that ϕ satisfies condition (C).
On the other hand, for any small ε = δ

C


, by (F) we know that there is a ρ >  (ρ < ρ)
such that

F(t, x) ≤ ε|x|, for |x| < ρ ,�-a.e. t ∈ [, T]T. ()

By (F), for ε = δ

pNC


, there exists ρ >  such that

∣
∣Iij(t)

∣
∣≤ ε|t|, |t| ≤ ρ, i ∈ �, j ∈ �. ()

Let ρ = 
 min{ρ,ρ}. For u ∈ E with ‖u‖ ≤ r � ρ

C
, by (), (), (), (), and (), we

have

ϕ(u) = q(u) +
p∑

j=

N∑

i=

∫ ui(tj)


Iij(t) dt –

∫

[,T)T
F
(
σ (t), uσ (t)

)
�t

≥ δ‖u‖ –
p∑

j=

N∑

i=

∫ |ui(tj)|



∣
∣Iij(t)

∣
∣dt – ε

∫

[,T)T

∣
∣uσ (t)

∣
∣�t

≥ δ‖u‖ –
p∑

j=

N∑

i=

∫ |ui(tj)|


ε|t|dt – ε

∫

[,T)T

∣
∣uσ (t)

∣
∣�t

≥ δ‖u‖ – ε

p∑

j=

N∑

i=

‖u‖
∞ – ε

∫

[,T)T

∣
∣uσ (t)

∣
∣�t

≥ δ‖u‖ – εpNC
 ‖u‖ – εC

 ‖u‖
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≥ δ‖u‖ –
δ


‖u‖ –

δ


|u‖

=
δ


‖u‖.

Consequently,

ϕ(u) ≥ δρ


� σ > , ∀u ∈ E with ‖u‖ = ρ. ()

Moreover, we can prove that J ′ is compact as the same as the proof in []. It follows from
(), (), and Lemma . that ϕ satisfies the conditions (I), (I), and (I)(i) with S = ∂Bρ ∩
E of Theorem ..

Set e ∈ E ∩ ∂B, r > ρ, r > , Q = {se : s ∈ (, r)} ⊕ (Br ∩ E) and Ẽ = span{e} ⊕ E.
Then S and ∂Q link, where Br = {u ∈ E : ‖u‖ ≤ r}. Set

Q =
{

u ∈ E : ‖u‖ ≤ r
}

, Q =
{

re + u : u ∈ E, and ‖u‖ ≤ r
}

and

Q =
{

se + u : s ∈ [, r], u ∈ E and ‖u‖ = r
}

.

Then ∂Q = Q ∪ Q ∪ Q.
By (F), (), (), and () we know ϕ|Q ≤ . For each re+u ∈ Q, one has u = u +u– ∈

E and ‖u‖ ≤ r. Hence there exists C >  such that

‖re + u‖∞ ≤ C, ∀re + u ∈ Q. ()

By (F), for large M > , there is ρ >  such that

F(t, x) ≥ M|x|, ∀|x| ≥ ρ,�-a.e. t ∈ [, T]T. ()

By the equivalence of a finite dimensional space, (F), (), and (), there exists C > 
such that

∫

[,T)T
F
(
σ (t), reσ (t) + uσ (t)

)
�t ≥ M

∫

[,T)T

∣
∣reσ (t) + uσ (t)

∣
∣�t – MC

T

≥ MC‖re + u‖ – MC
T

= MC
(
r

 + ‖u‖) – MC
T . ()

Thus, by () and () we have

ϕ(re + u) =
r



〈
(I – K)e, e

〉
+



〈
(I – K)u, u

〉
+ φ(re + u)

–
∫

[,T)T
F
(
σ (t), reσ (t) + uσ (t)

)
�t

≤ r



‖I – K‖ – δ
∥
∥u–∥∥ – MC

(
r

 + ‖u‖) + MC
T
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≤ –
(

MC –


‖I – K‖

)

r
 + MC

T

≤ 

for large M >  and r > ρ.
Moreover, for each se + u ∈ Q, one has s ∈ [, r], u ∈ E, and ‖u‖ = r. Hence there

exists C >  such that

‖se + u‖∞ ≤ C, ∀se + u ∈ Q. ()

By the equivalence of a finite dimensional space, (F), (), and (), we have

∫

[,T)T
F
(
σ (t), seσ (t) + uσ (t)

)
�t ≥ M

∫

[,T)T

∣
∣seσ (t) + uσ (t)

∣
∣�t – MC

T

≥ MC‖se + u‖ – MC
T

= MC
(
s + ‖u‖) – MC

T

= MC
(
s + r


)

– MC
T . ()

Thus, by () and () we have

ϕ(se + u) =
s


〈
(I – K)e, e

〉
+



〈
(I – K)u, u

〉
+ φ(se + u)

–
∫

[,T)T
F
(
σ (t), seσ (t) + uσ (t)

)
�t

≤ s


‖I – K‖ – δ

∥
∥u–∥∥ – MC

(
s + r


)

+ MC
T

≤ –
(

MC –


‖I – K‖

)

s – MCr
 + MC

T

≤ 

for large M >  and r > .
Summing up the above, ϕ satisfies all conditions of Theorem .. Hence ϕ possesses a

critical value c ≥ σ > , and hence problem () has at least one non-trivial weak solution.
The proof is complete. �

Remark . There are a number of functions satisfying (A), (F), (F), (F), and (F), for
example, F(t, x) = et|x|.

Next, we give two multiplicity results.

Theorem . Assume that (A), (F), (F), (F), (F), (F), and the following conditions are
satisfied.

(F) Iij (i ∈ �, j ∈ �) are odd.
(F) F(t, x) is even in x and F(t, ) = .

Then problem () has an unbounded sequence of weak solutions.
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Proof Set W = H+, V = H– ⊕ H and E = H
�,T . Then E = V ⊕ W , dim V < +∞, and ϕ ∈

C(E, R). From the proof of Lemma ., we know that ϕ satisfies the (C) condition. From
the proof of Theorem ., we know that there exist a ρ >  and σ >  such that

ϕ(u) ≥ σ , ∀u ∈ W with ‖u‖ = ρ.

For each finite dimensional subspace Ẽ ⊂ E, by the equivalence of a finite dimensional
space, there is a constant C >  such that

∫

[,T)T

∣
∣uσ (t)

∣
∣�t ≥ C‖u‖, ∀u ∈ Ẽ. ()

Set constant M = (CC
 + bNC

 + ). Then, by (F), there is ρ >  such that

F(t, x) ≥ M|x|, ∀|x| ≥ ρ and �-a.e. t ∈ [, T]. ()

By (A) and (), one has

F(t, x) ≥ M|x| – Mρ
 – Cb(t), ∀x ∈ Rn and �-a.e. t ∈ [, T], ()

where C = maxs∈[,ρ] a(s). Hence, combining (), (), (), (), (), and (), for each
u ∈ Ẽ, one has

ϕ(u) =



∫

[,T)T

∣
∣u�(t)

∣
∣�t +

p∑

j=

N∑

i=

∫ ui(tj)


Iij(t) dt +

∫

[,T)T

(
Buσ (t), u�(t)

)
�t

–



∫

[,T)T

(
Aσ (t)uσ (t), uσ (t)

)
�t –

∫

[,T)T
F
(
σ (t), uσ (t)

)
�t

≤ 


∫

[,T)T

∣
∣u�(t)

∣
∣�t +

C



∫

[,T)T

∣
∣uσ (t)

∣
∣�t + βpNC‖u‖

+ γ Cξij+


p∑

j=

N∑

i=

‖u‖ξij+ +
bN


∫

[,T)T

∣
∣uσ (t)

∣
∣�t +




∫

[,T)T

∣
∣u�(t)

∣
∣�t

– M
∫

[,T)T

∣
∣uσ (t)

∣
∣�t + Mρ

T + C

∫

[,T)T
bσ (t)�t

≤ 


∫

[,T)T

∣
∣u�(t)

∣
∣�t +

C



∫

[,T)T

∣
∣uσ (t)

∣
∣�t + βpNC‖u‖

+ γ Cξij+


p∑

j=

N∑

i=

‖u‖ξij+

+
bN


∫

[,T)T

∣
∣uσ (t)

∣
∣�t +




∫

[,T)T

∣
∣u�(t)

∣
∣�t – MC‖u‖ + Mρ

T + C

≤ 

(
CC

 + bNC
 +  – M

)‖u‖ + βpNC‖u‖

+ γ C

p∑

j=

N∑

i=

‖u‖ξij+ + Mρ
T + C,
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where C = C
∫

[,T)T
bσ (t)�t, and hence

ϕ(u) → –∞ as u ∈ Ẽ and ‖u‖ → ∞. ()

This implies that there is an R = R(̃E) >  such that ϕ ≤  on Ẽ\BR.
Moreover, by (F) and (F), we know that ϕ is even and ϕ() = . In view of Theorem .,

ϕ has a sequence of critical point {un} ⊂ E such that |ϕ(un)| → ∞. If {un} is bounded in E,
then by the definition of ϕ, one knows that {|ϕ(un)|} is also bounded, a contradiction.
Hence {un} is unbounded in E. The proof is completed. �

Remark . There are a number of functions satisfying (A), (F), (F), (F), and (F), for
example, F(t, x) = (|x|). Moreover, there are a number of functions satisfying (F), (F),
(F), and not satisfying (F), for example,

Iij(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, t ≥ ,
(t – ),  ≤ t < ,
–t + ,  < t < ,
t, |t| ≤ ,
–t – , – < t < –,
(t + ), – < t ≤ –,
, t ≤ –,

for all i = , , , , j = , .

Remark . In Theorem . if we delete the condition ‘F(t, ) = ’, we have the following
theorem.

Theorem . Assume that (A), (F), (F), (F), (F), (F), (F), and the following condition
is satisfied.

(F) F(t, x) is even in x.

Then problem () has an infinite sequence of distinct weak solutions.

Proof Set Y = H+, X = H– ⊕ H and E = H
�,T in Theorem .. Then, from the proof

of Lemma . and Theorem ., we know that E = X ⊕ Y , dim(X) < +∞, ϕ is even,
ϕ ∈ C(E, R) satisfies condition (C) and there are constants ρ,σ >  such that ϕ|∂Bρ ∩Y ≥ σ

and infϕ(Bρ ∩ Y ) ≥ , where ∂Bρ = {u ∈ E : ‖u‖ = ρ}.
For each finite dimensional subspace Ẽ ⊂ E, by (), we know that

ϕ(u) → –∞ as u ∈ Ẽ and ‖u‖ → ∞.

Consequently, for each finite dimensional subspace Y ⊂ Y , the condition (�) holds.
Moreover, by dim(X) < +∞ and ϕ ∈ C(E, R), we know that (�) holds, too. Therefore,
the conclusion follows from Theorem .. �

Remark . Even if in the case that Iij ≡ , i ∈ �, j ∈ �, T = R, Theorem . and Theo-
rem . are new too.
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