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Abstract
In the present study, the inverse problem for a multidimensional elliptic equation
with mixed boundary conditions and overdetermination is considered. The first and
second orders of accuracy in t and the second order of accuracy in space variables for
the approximate solution of this inverse problem are constructed. Stability, almost
coercive stability, and coercive stability estimates for the solution of these difference
schemes are established. For the two-dimensional inverse problems with mixed
boundary value conditions, numerical results are presented in test examples.
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1 Introduction
Inverse problems for partial differential equations are frequently encountered in various
branches of science (see [–] and the bibliography therein).

In recent years, theory and methods of solutions of inverse problems of determining
the parameter of partial differential equations have been extensively studied by several
researchers (see [–] and the references therein).

We will denote the set of natural numbers from  to n by Nn = {, , . . . , n}, and closure
of set � by � = � ∪ S.

Let n ∈ N, δ, T , L > , λ ∈ (, T) be given numbers and � = (, L) × · · · × (, L) be the
open cube in the n-dimensional Euclidean space with boundary S = ∂� = S ∪ S, where

S =
n⋃

i=

{
x = (x, x, . . . xn) | xi =  or xi = L, xk ∈ [, L], k ∈Nn\{i}

}
,

S =
n⋃

i=

{
x = (x, x, . . . xn) | xi = , xk ∈ [, L], k ∈Nn\{i}

}
,

S =
n⋃

i=

{
x = (x, x, . . . xn) | xi = L, xk ∈ (, L], k ∈ Nn\{i}

}
,
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and let ar ,ϕ, ξ ,ψ : � →R, f : (, T) ×� →R be given smooth functions such that ar(x) ≥
a >  for x ∈ �, r ∈Nn. Consider the multidimensional elliptic equation

–utt(t, x) –
n∑

r=

(
ar(x)uxr (t, x)

)
xr

+ δu(t, x) = f (t, x) + p(x),

x = (x, . . . , xn) ∈ �,  < t < T . (.)

Here u(t, x) and p(x) are unknown functions.
In [, T] × �, consider the inverse problem of finding functions u(t, x) and p(x) for the

multidimensional elliptic equation (.) with overdetermined boundary conditions

u(, x) = ϕ(x), u(λ, x) = ξ (x), u(T , x) = ψ(x), x ∈ � (.)

and one of the following usual boundary conditions on [, T] × S:

u(t, x) = ,  ≤ t ≤ T , x ∈ S, (.)

∂u(t, x)
∂�n = ,  ≤ t ≤ T , x ∈ S, (.)

∂u(t, x)
∂�n = , x ∈ S, u(t, x) = , x ∈ S,  ≤ t ≤ T , (.)

u(t, x) = , x ∈ S,
∂u(t, x)

∂�n = , x ∈ S,  ≤ t ≤ T . (.)

For the problem of determining the parameter of an elliptic equation in a Banach space,
the exact estimates of solution in Hölder norms are established in []. Well-posedness of
inverse problem (.), (.), (.) and its approximations were investigated in []. In [],
the third and fourth order stable difference schemes for approximate solution of this prob-
lem were presented. Stability and coercive stability estimates for the solution of the first
and second order difference schemes for inverse problem (.), (.), (.) were established
in []. In [], the authors studied inverse problem (.), (.), (.).

Our aim in this work is to construct the first and second orders of accuracy difference
schemes for an approximate solution of inverse problem (.), (.), (.) and to establish
stability, coercive stability, almost coercive stability estimates for the solution of these dif-
ference schemes.

This paper is planned as follows. In Section , we give theorems on well-posedness of
inverse problems with mixed boundary conditions and overdetermination. Section  is de-
voted to the construction of the first and second order difference schemes for approximate
solution of problem (.), (.), (.). In this section, we establish stability, almost coercive,
and coercive stability inequalities for the solution of difference schemes. In Section , we
present numerical results for a two-dimensional elliptic equation. The conclusion is given
in the final Section .

2 Well-posedness of inverse problems with mixed boundary conditions and
overdetermination

Let Cα,α
T (L(�)) be the space obtained by completion of the space of all smooth L(�)-

valued functions g on [, T] with the norm

‖g‖Cα,α
T (L(�)) = ‖g‖C(L(�)) + sup

≤t<t+τ≤T

(t + τ )α(T – t)α‖g(t + τ ) – g(t)‖L(�)

τα
.
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Denote the differential expression generated by (.) []

Aρ(x) = –
n∑

r=

(
ar(x)ρxr (x)

)
xr

+ δρ(x), (.)

where ρ ∈ W 
 (�).

The differential expression (.) defines a self-adjoint positive definite operator A acting
on L(�) with the domain

D(A) =
{
ρ ∈ W 

 (�),
∂ρ

∂�n =  on S,ρ =  on S

}
.

Therefore, by using abstract Theorems . and . of paper [] for H = L(�), we get
the following theorems on well-posedness of inverse problem (.), (.), (.).

Theorem . Suppose that A is defined by formula (.), ϕ, ξ ,ψ ∈ D(A). Then, for the
solutions (u, p) of inverse problem (.), (.), (.), the stability inequalities

‖u‖C(L(�)) ≤ M
[‖ϕ‖L(�) + ‖ψ‖L(�) + ‖ξ‖L(�) + ‖f ‖C(L(�))

]
, (.)

∥∥A–p
∥∥

L(�) ≤ M
[‖ϕ‖L(�) + ‖ψ‖L(�) + ‖ξ‖L(�) + ‖f ‖C(L(�))

]
, (.)

‖p‖L(�) ≤ M

[
‖Aϕ‖L(�) + ‖Aψ‖L(�) + ‖Aξ‖L(�)

+


α( – α)
‖f ‖Cα,α

T (L(�))

]
, (.)

are satisfied, where M is independent of α, ϕ(x), ξ (x), ψ(x), and f (t, x).

Theorem . Assume that A is defined by formula (.), ϕ,ψ , ξ ∈ D(A). Then, for the so-
lution of inverse problem (.), (.), (.), the coercive stability estimate

∥∥u′′∥∥
Cα,α

T (L(�)) + ‖u‖Cα,α
T (W 

 (�)) + ‖p‖L(�)

≤ M

[


α( – α)
‖f ‖Cα,α

T (L(�)) + ‖ϕ‖W 
 (�) + ‖ψ‖W 

 (�) + ‖ξ‖W 
 (�)

]
(.)

holds, where M does not depend on α, ϕ(x), ξ (x), ψ(x), and f (t, x).

Now, consider inverse problem (.), (.), (.).
The differential expression (.) defines a self-adjoint positive definite operator A acting

on L(�) with the domain

D(A) =
{
ρ ∈ W 

 (�),ρ =  on S,
∂ρ

∂�n =  on S

}
.

So, in a similar manner, applying abstract Theorems . and . of paper [] for H =
L(�), we can get the theorems on well-posedness of inverse problem (.), (.), (.).
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Theorem . Suppose that A is defined by formula (.), ϕ, ξ ,ψ ∈ D(A). Then, for the
solution (u, p) of inverse problem (.), (.), (.), the stability inequalities (.), (.), (.)
hold.

Theorem . Assume that A is defined by formula (.), ϕ,ψ , ξ ∈ D(A). Then, for the so-
lution (u, p) of inverse problem (.), (.), (.), coercive stability estimate (.) is valid.

3 Difference schemes and their well-posedness
We discretize inverse problem (.), (.), (.) in two steps. In the first step, define the set
of grid points in space variables,

⎧
⎨

⎩
�̃h = {x = (hm, . . . , hnmn) | mi = , . . . , Mi, hiMi = L, i = , . . . , n},
�h = �̃h ∩ �, S

h = �̃h ∩ S, S
h = �̃h ∩ S.

Introduce the Hilbert spaces Lh = L(�̃h) and W 
h = W 

 (�̃h) of grid functions gh(x) =
{g(hm, . . . , hnmn) | mi = , . . . , Mi, i = , . . . , n} defined on �̃h equipped with the norms

∥∥gh∥∥
Lh

=
(∑

x∈�̃h

∣∣gh(x)
∣∣h · · ·hn

)/

,

∥∥gh∥∥
W 

h
=
∥∥gh∥∥

Lh
+

(
∑

x∈�̃h

n∑

i=

∣∣(gh(x)
)

xi ,mi

∣∣h · · ·hn

)/

+

(
∑

x∈�̃h

n∑

i=

∣∣(gh(x)
)

xixi ,mi

∣∣h · · ·hn

)/

,

respectively.
To the differential operator A (.) assign the difference operator Ax

h, defined by the
formula

Ax
huh = –

n∑

i=

(
ai(x)uh

xi

)
xi ,mi

+ δuh (.)

acting in the space of grid functions uh(x) satisfying the conditions uh(x) =  for all x ∈ S
h

and Dhuh(x) =  for all x ∈ S
h. Here, Dhuh(x) is an approximation of ∂u

∂�n . Note that [, ]
Ax

h is a self-adjoint positive definite operator in L(�̃h).
In this step, by using Ax

h, for obtaining uh(t, x) functions, we arrive at the problem

⎧
⎨

⎩
– duh(t,x)

dt + Ax
huh(t, x) = f h(t, x) + ph(x),  < t < T , x ∈ �h,

uh(, x) = ϕh(x), uh(λ, x) = ξh(x), uh(T , x) = ψh(x), x ∈ �̃h.
(.)

In the second step, applying the approximate formula

uh(λ, x) = uh
([

λ

τ

]
τ , x
)

+ o(τ )
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for uh(λ, x) = ξh(x), we replace inverse problem (.), (.), (.) with the first order of ac-
curacy difference scheme

⎧
⎪⎪⎨

⎪⎪⎩

– uh
k+(x)–uh

k (x)+uh
k–(x)

τ + Ax
huh

k(x) = θh
k (x) + ph(x),

θh
k (x) = f h(tk , x), tk = kτ ,  ≤ k ≤ N – , x ∈ �h,

uh
(x) = ϕh(x), uh

N (x) = ψh(x), uh
l (x) = ξh(x), x ∈ �̃h, Nτ = T .

(.)

Here, l = [ λ
τ

], [·] is a notation for the greatest integer function.
In this step, by using the approximate formula

uh(λ, x) = uh(lτ , x) +
(

λ

τ
– l
)(

uh(lτ + τ , x) – uh(lτ , x)
)

+ o
(
τ )

for uh(λ, x) = ξh(x), we construct the second order of accuracy difference scheme for in-
verse problem (.), (.), (.)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– uh
k+(x)–uh

k (x)+uh
k–(x)

τ + Ax
huh

k(x) = θh
k (x) + ph(x),

θh
k (x) = f h(tk , x), tk = kτ ,  ≤ k ≤ N – , x ∈ �̃h,

uh
(x) = ϕh(x), uh

N (x) = ψh(x),

uh
l (x) + ( λ

τ
– l)(uh

l+(x) – uh
l (x)) = ξh(x), x ∈ �̃h, Nτ = T .

(.)

Applying

uh
k(x) = vh

k(x) –
(
Ax

h
)–ph(x),  ≤ k ≤ N – , (.)

we can reduce difference problems (.) and (.) to the auxiliary nonlocal difference prob-
lems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– vh
k+(x)–vh

k (x)+vh
k–(x)

τ + Ax
hvh

k(x) = θh
k (x),

θh
k (x) = f h(tk , x), tk = kτ ,  ≤ k ≤ N – , x ∈ �h,

vh
(x) – vh

l (x) = ϕh(x) – ξh(x),

vh
N (x) – vh

l (x) = ψh(x) – ξh(x), x ∈ �̃h, Nτ = T

(.)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– vh
k+(x)–vh

k (x)+vh
k–(x)

τ + Ax
hvh

k(x) = θh
k (x),

θh
k (x) = f h(tk , x), tk = kτ ,  ≤ k ≤ N – , x ∈ �̃h,

vh
(x) – vh

l (x) – ( λ
τ

– l)(vh
l+(x) – vh

l (x)) = ϕh(x) – ξh(x),

vh
N (x) – vh

l (x) – ( λ
τ

– l)(vh
l+(x) – vh

l (x)) = ψh(x) – ξh(x),

x ∈ �̃h, Nτ = T ,

(.)

respectively.
The difference schemes for nonlocal boundary value problems for the multidimensional

elliptic equation were studied in [, ].
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Denote

C =



(
τAx

h +
√

Ax
h + τ 

(
Ax

h
)
)

, R = (I + τC)–.

Let H be the Hilbert space L(�).

Lemma . The following estimates are satisfied []:

∥∥Rk∥∥
H→H ≤ M

(
 + δ


 τ
)–k , δ > ,

∥∥CRk∥∥
H→H ≤ M

kτ
, k ≥ ,

∥∥(I – RN)–∥∥
H→H ≤ M,

where M is independent of τ .

Lemma . ([]) For  ≤ l ≤ N –  and for the operator S = RN + Rl – RN–l + RN–l – RN+l ,
the operator I – S has an inverse G = (I – S)– and the estimate

‖G‖H→H ≤ M (.)

is satisfied, where M does not depend on τ .

Lemma . ([]) For  ≤ l ≤ N –  and for the operator

S = RN –
(

λ

τ
– l – 

)(
Rl – RN–l + RN–l – RN+l)

+
(

λ

τ
– l
)(

Rl+ – RN–l– + RN–l– – RN+l+),

the operator I – S has an inverse

G =
(

I – RN +
(

λ

τ
– l – 

)(
Rl – RN–l + RN–l – RN+l)

–
(

λ

τ
– l
)(

Rl+ – RN–l– + RN–l– – RN+l+)
)–

,

and the estimate

‖G‖H→H ≤ M (.)

is valid, where M does not depend on τ .

In a similar manner as [], we can obtain the following representation formula

uh
k(x) =

(
I – RN)–

[
((

Rk – RN–k)vh
(x) +

(
RN–k – RN+k)vh

N (x)
)

–
(
RN–k – RN+k)(I + τC)(I + τC)–C–

N–∑

i=

(
RN–i – RN+i)f h

i (x)τ

]



Ashyralyyev and Dedeturk Boundary Value Problems  (2015) 2015:51 Page 7 of 15

+ (I + τC)(I + τC)–C–
N–∑

i=

(
R|k–i| – Rk+i)f h

i (x)τ + ϕh(x) – vh
(x), (.)

ph(x) = Ax
hϕ

h(x) – Ax
hvh

(x),

vh
N (x) = vh

(x) + ψh(x) – ϕh(x),

with

vh
(x) = –G

(
RN–l – RN+l)(I + τC)(I + τC)–C–

×
N–∑

i=

(
RN–i – RN+i)f h

i (x)τ + G
(
I – RN)(I + τC)

× (I + τC)–C–
N–∑

i=

(
R|l–i| – Rl+i)f h

i (x)τ

+ G
(
I – RN)(ϕh(x) – ξh(x)

)
+ G

(
RN–l – RN+l)(ψh(x) – ϕh(x)

)
(.)

for the solution of difference scheme (.) and

vh
(x) =

(
λ

τ
– l – 

)
G
(
RN–l – RN+l)(I + τC)(I + τC)–C–

×
N–∑

i=

(
RN–i – RN+i)f h

i (x)τ

–
(

λ

τ
– l – 

)
G
(
I – RN)(I + τC)(I + τC)–C–

×
N–∑

i=

(
R|l–i| – Rl+i)f h

i (x)τ

–
(

λ

τ
– l
)

G
(
RN–l– – RN+l+)(I + τC)(I + τC)–C–

×
N–∑

i=

(
RN–i – RN+i)f h

i (x)τ

+
(

λ

τ
– l
)

G
(
I – RN)(I + τC)(I + τC)–C–

×
N–∑

i=

(
R|l+–i| – Rl++i)f h

i (x)τ

+ G
(
I – RN)(ϕh(x) – ξh(x)

)
+
((

λ

τ
– l – 

)
G
(
RN–l – RN+l)

+
(

λ

τ
– l
)

G
(
RN–l– – RN+l+)

)(
ψh(x) – ϕh(x)

)
(.)

for difference scheme (.).
Now, we consider the linear spaces of mesh functions θτ = {θk}N–

 with values in the
Hilbert space H . We denote by C([, T]τ , H) a normed space with the norm

∥∥{θk}N–

∥∥

C([,T]τ ,H) = max
≤k≤N–

‖θk‖H ,
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and by Cα,α
T ([, T]τ , H) a normed space with the norm

∥∥{θk}N–

∥∥
Cα,α

T ([,T]τ ,H) =
∥∥{θk}N–


∥∥

C([,T]τ ,H)

+ sup
≤k<k+n≤N–

(kτ + nτ )α(T – kτ )α‖θk+n – θk‖H

(nτ )α
.

Let τ and |h| =
√

h
 + · · · + h

n be sufficiently small positive numbers.

Theorem . The solutions ({uh
k}N–

 , ph) of difference schemes (.) and (.) obey the fol-
lowing stability estimates:

∥∥{uh
k
}N–



∥∥
C([,T]τ ,Lh) ≤ M

[∥∥ϕh∥∥
Lh

+
∥∥ψh∥∥

Lh
+
∥∥ξh∥∥

Lh
+
∥∥{f h

k
}N–



∥∥
C([,T]τ ,Lh)

]
,

∥∥ph∥∥
Lh

≤ M

[∥∥ϕh∥∥
W 

h
+
∥∥ψh∥∥

W 
h

+
∥∥ξh∥∥

W 
h

+


α( – α)
∥∥{f h

k
}N–



∥∥
Cα,α

T ([,T]τ ,Lh)

]
,

where M is independent of τ , α, h, ϕh, ψh, ξh, and {f h
k }N–

 .

Theorem . The solutions of difference schemes (.) and (.) obey the following almost
coercive stability estimate:

∥∥∥∥

{
uh

k+ – uh
k + uh

k–
τ 

}N–



∥∥∥∥
C([,T]τ ,Lh)

+
∥∥ph∥∥

Lh

≤ M

(∥∥ϕh∥∥
W 

h
+
∥∥ψh∥∥

W 
h

+
∥∥ξh∥∥

W 
h

+ ln

(


τ + h

)∥∥{f h
k
}N–



∥∥
C([,T]τ ,Lh)

)
,

where M does not depend on τ , α, h, ϕh, ψh, ξh, and {f h
k }N–

 .

Theorem . The solutions of difference schemes (.) and (.) obey the following coercive
stability estimate:

∥∥∥∥

{
uh

k+ – uh
k + uh

k–
τ 

}N–



∥∥∥∥
Cα,α

T ([,T]τ ,Lh)
+
∥∥{uh

k
}N–



∥∥
Cα,α

T ([,T]τ ,W 
h) +

∥∥ph∥∥
Lh

≤ M

[


α( – α)
∥∥{f h

k
}N–



∥∥
Cα,α

T ([,T]τ ,Lh) +
∥∥ϕh∥∥

W 
h

+
∥∥ψh∥∥

W 
h

+
∥∥ξh∥∥

W 
h

]
,

where M is independent of τ , α, h, ϕh, ψh, ξh, and {f h
k }N–

 .

The proofs of Theorems .-. are based on the symmetry property of operator Ax
h in

Lh, representation formulas (.), (.), (.), Lemmas .-. and the following theo-
rem on the coercivity estimate for the solution of the elliptic difference problem in Lh.

Theorem . ([]) For the solution of the elliptic difference problem

⎧
⎨

⎩
Ax

huh(x) = ωh(x), x ∈ �̃h,

uh(x) = , x ∈ Sh
 , Dhuh(x) = , x ∈ Sh

,
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the following coercivity inequality holds:

n∑

q=

∥∥(uh
k
)

xqxq ,mq

∥∥
Lh

≤ M
∥∥ωh∥∥

Lh
,

where M does not depend on h and ωh.

4 Numerical example
We consider the inverse problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ∂u(t,x)
∂t – ∂

∂x (( + cos x) ∂u(t,x)
∂x ) + u(t, x) = f (t, x) + p(x),

 < x < π ,  < t < T ,

f (t, x) = – exp(–t)(cos(x) – ) + (exp(–t) + t)( cos(x) + cos(x) – ),

u(, x) = (cos(x) – ),  ≤ x ≤ π ,

u(T , x) = (exp(–T) + T + )(cos(x) – ),  ≤ x ≤ π ,

u(λ, x) = (exp(–λ) + λ + )(cos(x) – ),  ≤ x ≤ π ,

u(t, ) = ux(t,π ) = ,  ≤ t ≤ T ,λ = T


(.)

for the elliptic equation. It is easy to see that u(t, x) = (exp(–t) + t + )(cos(x) – ) and p(x) =
 cos(x) + cos(x) –  are the exact solutions of (.).

For this example, we have the following auxiliary nonlocal boundary value problem for
an unknown function v(t, x):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– dv(t,x)
dt – ∂

∂x (( + cos x) ∂v(t,x)
∂x ) + v(t, x) = f (t, x),  < x < π ,  < t < T ,

v(t, ) = vx(t,π ) = ,  ≤ t ≤ T ,

v(, x) – v(λ, x) = ( – exp(–λ) – λ)(cos(x) – ),  ≤ x ≤ π ,

v(T , x) – v(λ, x) = (exp(–T) – exp(–λ) + T – λ)(cos(x) – ),  ≤ x ≤ π .

(.)

Consider the set [, T]τ × [,π ]h of grid points depending on the small parameters τ

and h,

[, T]τ × [,π ]h =
{

(tk , xn) : tk = kτ , k = , . . . , N – , Nτ = T ,

xn = nh, n = , . . . , M – , Mh = π
}

.

We get difference schemes of the first order of accuracy in t and the second order of
accuracy in x,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk+
n –vk

n+vk–
n

τ + ( + cos(xn)) vk
n+–vk

n+vk
n–

h – sin(xn) vk
n+–vk

n–
h – vk

n = θ k
n ,

θ k
n = –f (tk , xn), k = , . . . , N – , n = , . . . , M – ,

vk
 = , vk

M – vk
M– = , k = , . . . , N ,

v
n – vl

n = ( – exp(–λ) – λ)(cos(xn) – ), n = , . . . , M,

vN
n – vl

n = (exp(–tN ) – exp(–λ) + tN – λ)(cos(xn) – ),

n = , . . . , M, l = [ λ
τ

]

(.)

for the approximate solutions of the nonlocal boundary value problem (.).
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Now, it is easy to rewrite difference scheme (.) in the following matrix form:

Anvn+ + Bnvn + Cnvn– = IN+θn, n = , . . . , M – ,

v = �, vM = vM–.
(.)

Here, θn is an (N + ) ×  column matrix, IN+ is the (N + ) × (N + ) identity matrix, An,
Bn, Cn are (N + ) × (N + ) square matrices

An =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

   · · ·   
 an  · · ·   
  an · · ·   
...

...
... · · · ...

...
...

   · · · an  
   · · ·  an 
   · · ·   

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (.)

Bn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

    · · · – · · ·    
d bn d  · · ·  · · ·    
 d bn d · · ·  · · ·    
...

...
...

...
...

... · · · ...
...

...
...

    · · ·  · · · d bn d 
    · · ·  · · ·  d bn d
    · · · – · · ·    

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

   · · ·   
 cn  · · ·   
  cn · · ·   
...

...
... · · · ...

...
...

   · · · cn  
   · · ·  cn 
   · · ·   

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (.)

an =
 + cos(xn)

h –
sin(xn)

h
, bn = –


τ  –

( + cos(xn))
h – ,

cn =
 + cos(xn)

h +
sin(xn)

h
, d =


τ  ,

(.)

θn =

⎡

⎢⎢⎣

θ
n
...

θN
n

⎤

⎥⎥⎦ ,

θ k
n = –f (tk , xn), k = , . . . , N – , n = , . . . , M – ,

θ
n =

(
 – exp(–λ) – λ

)(
cos(xn) – 

)
,

θN
n =

(
exp(–tN ) – exp(–λ) + tN – λ

)(
cos(xn) – 

)
, n = , . . . , M – ,

vn– =

⎡

⎢⎢⎣

v
n–
...

vN
n–

⎤

⎥⎥⎦ , vn =

⎡

⎢⎢⎣

v
n
...

vN
n

⎤

⎥⎥⎦ , vn+ =

⎡

⎢⎢⎣

v
n+
...

vN
n+

⎤

⎥⎥⎦ .
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For numerical solving of this system equation, we use the modified Gauss elimination
method []. Solution of (.) is presented by the formula

vn = αn+vn+ + βn+, n = M – , . . . , ,

where αn (n = , . . . , M – ) are (N + ) × (N + ) square matrices and βn (n = , . . . , M – )
are (N + ) ×  column matrices. For αn+, βn+, we have the following formulas:

αn+ = –(Bn + Cnαn)–An,

βn+ = (Bn + Cnαn)–(IN+θn – Cnβn), n = , . . . , M – ,

where

α = (N+)×(N+), β = (N+)× (v = �),

αM = IN+, βM = (N+)× (vM– = vM).

By using the second order of accuracy in x approximation of A, we get the following
values of p in grid points:

pn = –
( + cos(xn))

h

[(
ϕn+ – v

n+
)

– 
(
ϕn – v

n
)

+
(
ϕn– – v

n–
)]

+
sin(xn)

h
((

ϕn+ – v
n+
)

–
(
ϕn– – v

n–
))

+
(
ϕn – v

n
)
,

n = , . . . , M – . (.)

For the approximate solution of problem (.), we use the formula

uk
n = vk

n + ϕn – v
n, n = , . . . , M, k = , . . . , N .

Now, we consider again nonlocal boundary value problem (.).
Applying (.), we get the second order of accuracy in t and xdifference scheme

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk+
n –vk

n+vk–
n

τ + ( + cos(xn)) vk
n+–vk

n+vk
n–

h

– sin(xn) vk
n+–vk

n–
h – vk

n = θ k
n ,

θ k
n = –f (tk , xn), k = , . . . , N – , n = , . . . , M – ,

vk
 = , –vk

M + vk
M– – vk

M– = , k = , . . . , N ,

vk
M – vk

M– + vk
M– – vk

M– = ,

v
n + ( λ

τ
– l – )vl

n – ( λ
τ

– l)vl+
n = ( – exp(–λ) – λ) cos(xn),

n = , . . . , M,

vN
n + ( λ

τ
– l – )vl

n – ( λ
τ

– l)vl+
n

= (exp(–tN ) – exp(–λ) + tN – λ) cos(xn), n = , . . . , M

(.)

for the approximate solution of nonlocal boundary value problem (.).
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Therefore, we can rewrite difference scheme (.) in the matrix form

Anvn+ + Bnvn + Cnvn– = IN+θn, n = , . . . , M – ,

v = , –vM + vM– – vM– = ,
(.)

where An, Cn are defined by (.), (.), (.) and Bn is an (N + ) × (N + ) square matrix

Bn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

    · · ·  y z  · · ·    
d bn d  · · ·     · · ·    
 d bn d · · ·     · · ·    
  d bn · · ·     · · ·    
...

...
...

...
...

...
...

...
...

...
...

...
...

...
    · · ·     · · · bn d  
    · · ·     · · · d bn d 
    · · ·     · · ·  d bn d
    · · ·  y z  · · ·    

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

bn = –

τ  –

( + cos(xn))
h – , d =


τ  , y =

(
λ

τ
– l – 

)
, z = –

(
λ

τ
– l
)

.

For solution of (.), we use the formula

vn = αnvn+ + βnvn+ + γn, n = M – , . . . , ,

where αn, βn (n = , . . . , M –) are (N +)× (N +) square matrices and γn (n = , . . . , M –)
are (N + ) ×  column matrices. For the coefficients αn, βn, γn, we get formulas

αn = –(Bn + Cnαn–)–(An + Cnβn–),

βn = ,

γn = (Bn + Cnαn–)–(IN+θn – Cnγn–), n = , . . . , M – .

Here

α = , β = , γ =  (v = ),

α =



IN+, β = –



IN+,

αM– = IN+, βM– = –IN+,

αM– =



IN+, βM– = –



IN+,

and γ, γ, γM–, γM– are the (N + ) ×  zero column vector. For vM and vM–, we have
the following formulas:

vM =
(
Q – QQ–

Q
)–(G – QQ–

G
)
,

vM– = Q–
(G – QvM),
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where

Q = –AM– – BM– – CM–αM– – CM–βM–,

Q = AM– + BM– + CM–αM– + CM–βM–,

Q = –BM– – CM–,

Q = AM– + BM– + CM–,

G = IN+θM– – CM–γM–,

G = IN+θM–.

Now, by using MATLAB programs, we present numerical results for this example (.).
The numerical solutions are recorded for different values of N and M.

The numerical solutions are recorded for different values of N = M for T = . The grid
function uk

n represents the numerical solution of difference schemes for inverse problem
at (tk , xn), respectively. Grid function pn represents the numerical solutions at xn for un-
known function p. For their comparison, the errors are computed by

EuN
M = max

≤k≤N–

(M–∑

n=

∣∣u(tk , xn) – uk
n
∣∣h

) 


,

EpM =

(M–∑

n=

∣∣p(xn) – pn
∣∣h

) 


.

Tables  and  give the error analysis between the exact solution and solutions derived by
difference schemes. Tables  and  are constructed for N = M = , , , and . Hence,
the second order of accuracy difference scheme is more accurate comparing with the first
order of accuracy difference scheme.

Table  is the error analysis between the exact solution p and solutions derived by dif-
ference schemes in the second stage of algorithm.

Table  presents the error analysis between the exact solution u and solutions derived
by first order and second order accuracy of difference schemes.

Table 1 Error analysis for p

N = M = 20 N = M = 40 N = M = 80 N = M = 160

First order of accuracy
difference scheme

0.25111 0.24195 0.11044 0.045366

Second order of accuracy
difference scheme

0.024061 0.0052977 0.0012825 3.16× 10–4

Table 2 Error analysis for u

N = M = 20 N = M = 40 N = M = 80 N = M = 160

First order of accuracy
difference scheme

0.036174 0.042733 0.016978 0.0041271

Second order of accuracy
difference scheme

0.019509 0.0034552 6.41× 10–4 1.56× 10–4
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5 Conclusion
In this paper, the inverse problem for a multidimensional elliptic equation with Dirichlet-
Neumann conditions and overdetermination is considered. The first and second orders
of accuracy difference schemes for approximate solution of this problem are presented.
Theorems on the stability, almost coercive stability, and coercive stability inequalities for
the solutions of difference schemes for inverse problem are proved. Numerical example in
a two-dimensional case is given. As it can be seen from Tables  and , the second order
of accuracy difference scheme is more accurate comparing with the first order of accuracy
difference scheme.
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