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Abstract
This paper is concerned with the existence of periodic and subharmonic solutions for
a class of the second-order impulsive Hamiltonian systems. It employs the linking
theorem.
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1 Introduction and main results
In this paper, we consider the second-order impulsive differential equation

{
–q̈(t) = ∇F(t, q(t)), t �= tj, t ∈R,
�q̇(tj) = –gj(q(tj)), j ∈ Z,

(.)

where q ∈ R
N , ∇F(t, q) = gradq F(t, q), gj(q) = gradq Gj(q), Gj ∈ (RN ,R) for each j ∈ Z, and

the operator � is defined as �q̇(tj) = q̇(t+
j ) – q̇(t–

j ), where q̇(t+
j ) (q̇(t–

j )) denotes the right-
hand (left-hand) limit of q̇ at tj. There exist an m ∈ N and a T >  such that  = t < t <
· · · < tm = T , tj+m = tj + T , and gj+m = gj, j ∈ Z. F : R × R

N → R is T-periodic in its first
variable and satisfies:

(H) F(t, q) is measurable in t for each q ∈R
N and continuously differentiable in q for a.e.

t ∈ [, T] and there exist a ∈ C(R+,R+), b ∈ L([, T];R+) such that

∣∣F(t, q)
∣∣ ≤ a

(|q|)b(t),
∣∣∇F(t, q)

∣∣ ≤ a
(|q|)b(t)

for all q ∈R and a.e. t ∈ [, T].

Let

H
T =

{
q : R →R

N | q, q̇ ∈ L(([, T]
)
,RN)

, q(t) = q(t + T), t ∈R
}

.

Then H
T is a Hilbert space with the norm defined by

‖q‖H
T

=
(∫ T



(∣∣q̇(t)
∣∣ + |q|)dt

) 


, q ∈ H
T .

© 2015 Xie et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13661-015-0313-9
mailto:ljianli@sina.com


Xie et al. Boundary Value Problems  (2015) 2015:52 Page 2 of 10

For the norm in L([, T]), we put

‖q‖L =
(∫ T



∣∣q(t)
∣∣ dt

) 


.

Next we set � = {, , . . . , m – }, and define a functional ϕ as

ϕ(q) =



∫ T



∣∣q̇(t)
∣∣ dt –

∫ T


F
(
t, q(t)

)
dt –

∑
j∈�

Gj
(
q(tj)

)
, q ∈ H

T . (.)

Note that ϕ is Fréchet differentiable at any q ∈ H
T and for any p ∈ H

T , we have

ϕ′(q)(p) = lim
h→

ϕ(q + hp) – ϕ(q)
h

=
∫ T



(
q̇(t)ṗ(t) – ∇F

(
t, q(t)

)
p(t)

)
dt –

∑
j∈�

gj
(
q(tj)

)
p(tj).

It is clear that the critical points of the functional ϕ are classical T-periodic solutions of
system (.).

When the impulsive function gj = , the system (.) reduces to the following second-
order Hamiltonian system:

–q̈(t) = ∇F
(
t, q(t)

)
, t ∈R. (.)

The existence of periodic solutions for system (.) has been discussed extensively in the
literature; see [–].

Note that system (.) is called a superquadratic second-order Hamiltonian system if the
potential function F satisfies

lim
q→+∞

F(t, q)
|q| = +∞. (.)

In , Rabinowitz [] got the nonconstant periodic solutions under the following con-
dition: there exist μ >  and L >  such that

 < μF(t, q) ≤ ∇F(t, q)q, ∀|q| ≥ L, t ∈ [, T], (.)

which is stronger than (.) and is known as the Ambrosetti-Rabinowitz condition (A-R
condition). From then on, many authors have devoted their work to the investigation con-
cerning the existence of solutions of second-order systems under condition (.); see [, ]
and references therein. In , Fei [] obtained the existence of solutions for system (.)
under a kind of new superquadratic condition which is different from the A-R condition.
Subsequently, Tao and Tang [] gave the following two results, more general than Fei’s.

Theorem A Assume that F satisfies (H) and the following conditions:

(H) F(t, q) ≥ , (t, q) ∈ [, T] ×R
N ,

(H) lim|q|→
F(t,q)
|q| < 

ω uniformly for a.e. t ∈ [, T],
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(H) lim inf|q|→+∞ F(t,q)
|q| > 

ω uniformly for a.e. t ∈ [, T],
(H) lim sup|q|→+∞

F(t,q)
|q|r ≤ +∞ uniformly for a.e. t ∈ [, T],

(H) lim inf|q|→+∞ ∇F(t,q)q–F(t,q)
|q|μ >  uniformly for a.e. t ∈ [, T],

where ω = π
T , r > , and μ > r – . Then there exists a nonconstant T-periodic solution of

system (.).

Theorem B Assume that F satisfies (H), (H), (H), (H), (H), and the following condi-
tion:

(H′) lim|q|→
F(t,q)
|q| =  uniformly for a.e. t ∈ [, T].

Then there exists a sequence {kn} ⊂ N, kn → +∞, and the corresponding distinct knT are
periodic solutions of system (.).

It is well known that the theory of impulsive differential equations has emerged as an
important area of investigation. Some classical tools such as some fixed point theorems in
cones, topological degree theory, the upper and lower solutions method combined with
monotone iterative technique [–] have been widely used to get solutions of impulsive
differential equations. Recently, some researchers have studied the existence of solutions
for impulsive differential equations with boundary conditions via variational methods
[–]. For the second-order differential equation u′′ = f (t, u, u′), we generally consider
impulses in the position u and u′. However, in the motion of spacecraft instantaneous im-
pulses depend on the position, which results in jump discontinuities in velocity, with no
change in position. This motivates us to consider the second-order impulsive Hamilto-
nian system (.). By employing critical point theory and variational methods we obtain
the existence of periodic and subharmonic solutions for it. The following results can be
regarded as a generalization to Theorems A and B.

Theorem . Assume that F satisfies (H), (H), (H), (H), (H) and the following con-
ditions hold:

(H′′) lim|q|→
F(t,q)
|q| < 

ω uniformly for a.e. t ∈ [, T],
(G) Gj(q) ≥ , q ∈R

N , j = , , . . . , m,
(G) lim|q|→

Gj(q)
|q| = , j = , , . . . , m,

(G) there exists M >  such that Gj(q) ≤ M|q|r , q ∈R
N , j = , , . . . , m,

(G) gj(q)q – Gj(q) ≥ , q ∈R
N \ {}, j = , , . . . , m.

Then system (.) has at least one non-trivial T-periodic solution.

Theorem . Assume that F satisfies (H), (H), (H′), (H), (H), (H) and Gj satisfies
(G), (G), (G), (G). Then system (.) has a sequence of distinct periodic solutions with
period knT satisfying kn ∈N and kn → +∞ as n → +∞.

In order to prove our theorems, we need the following result. For u ∈ H
T , let ū =


T

∫ T
 u(t) dt and ũ(t) = u(t) – ū. One has

‖ũ‖
∞ ≤ T



∫ T



∣∣u̇(t)
∣∣ dt (Sobolev’s inequality) (.)
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and

∫ T



∣∣ũ(t)
∣∣ dt ≤ T

π

∫ T



∣∣u̇(t)
∣∣ dt (Wirtinger’s inequality). (.)

Lemma . If u ∈ H
T , then there exists a constant C such that ‖q‖∞ ≤ C‖q‖H

T
, where

‖q‖∞ = maxt∈[,T] |q(t)|.

Proof The proof follows easily from the Hölder inequality. The detailed argument is sim-
ilar to the proof of Lemma . in [] and we thus omit it here. �

Lemma . [] Let X = X ⊕ X be a real Banach space, where X is a finite dimensional
closed subspace of X and X = X⊥

 . Suppose that ϕ ∈ C(X, R) satisfies the Palais-Smale
condition and the following conditions:

(i) there exist constant ρ >  and a such that ϕ(x) ≥ a, ∀x ∈ X ∩ ∂Bρ , where
Bρ = {x ∈ X : ‖x‖X < ρ},

(ii) there exist a constant w < a and e ∈ X, ‖e‖X = , s > , s > ρ such that ϕ(x)|∂Q ≤ w,
where Q = {x ∈ X | x = z + λe, z ∈ X, |z| ≤ s,λ ∈ (, s)}.

Then ϕ possesses a critical value.

2 Proof of Theorem 1.1
Proof of Theorem . It is well known that Lemma . holds true with the condition (C)
replacing the usual Palais-Smale condition. We say the functional ϕ satisfies the condi-
tion (C), i.e., for every sequence {qn} ⊂ H

T , {qn} has a convergent subsequence if {ϕ(qn)}
is bounded and limn→∞( + ‖q‖H

T
)‖ϕ′(qn)‖H

T
= . To this end, we prove Theorem . in

the following steps.
Step . Pick {qn} ⊂ H

T such that {ϕk(qn)} is bounded and limn→∞(+‖q‖H
T

)‖ϕ′(qn)‖H
T

=
, then there exists a constant C >  such that

∣∣ϕ(qn)
∣∣ ≤ C,

(
 + ‖qn‖H

T

)∥∥ϕ′(qn)
∥∥

H
T

≤ C

for all n ∈N. By (H), there exist constants C >  and d >  such that

F(t, q) ≤ C|q|r (.)

for all |q| ≥ d and a.e. t ∈ [, T]. It follows from (H) that F(t, q) ≤ maxs∈[,d] a(s)b(t), for
all |q| ≤ d and a.e. t ∈ [, T]. Therefore, we obtain

F(t, q) ≤ C|q|r + max
s∈[,d]

a(s)b(t)

for all q ∈R and a.e. t ∈ [, T]. Set C = maxs∈[,d] a(s)
∫ T

 b(t) dt. By (.), we have



‖qn‖

H
T

=



∫ T



∣∣qn(t)
∣∣ dt + ϕ(qn) +

∫ T


F
(
t, qn(t)

)
dt +

∑
j∈�

Gj
(
qn(tj)

)

≤ C + C

∫ T



∣∣qn(t)
∣∣r dt +




∫ T



∣∣qn(t)
∣∣ dt
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+ max
s∈[,d]

a(s)
∫ T


b(t) dt + M

∑
j∈�

|qn|r

≤ C + C + (C + M)
∫ T



∣∣qn(t)
∣∣r dt +

T r–
r



(∫ T



∣∣qn(t)
∣∣r dt

) 
r
. (.)

On the other hand, by (H), there exist constants C >  and d >  such that

∇F(t, q)q – F(t, q) ≥ C|q|μ, |q| ≥ d, t ∈ [, T]. (.)

By (H), we have

∣∣∇F(t, q)q – F(t, q)
∣∣ ≤ ( + d) max

s∈[,d]
a(s)b(t), |q| ≤ d, t ∈ [, T]. (.)

Therefore by (.), (.), and (H), we have

C ≥ ϕ(qn) – ϕ′(qn)(qn)

=
∫ T



[∇F(t, qn)qn – F(t, qn)
]

dt +
∑
j∈�

[
gj
(
qn(tj)

)
qn(tj) – Gj

(
qn(tj)

)]

≥ C

∫ T


|qn|μ dt – ( + d) max

s∈[,d]
a(s)

∫ T


b(t) dt,

which implies (
∫ T

 |qn|μ dt)

μ is bounded, i.e., there exists a constant C >  such that

(∫ T


|qn|μ dt

) 
μ

< C.

If μ > r, then we have
∫ T

 |qn(t)|r dt ≤ T
μ–r
μ (

∫ T
 |qn(t)|μ dt)

r
μ , which, combining with

(.), implies that ‖qn‖H
T

is bounded. If μ ≤ r, then we have
∫ T

 |qn(t)|r dt ≤ Cr–μ
 ‖qn‖r–μ

H
T

×∫ T
 |qn(t)|μ dt. Since μ > r – , it follows from (.) that ‖qn‖H

T
is bounded too. In a similar

way to Proposition B in [], we can prove that {qn} has a convergent subsequence. So,
the functional ϕ satisfies the condition (C).

Step . We show that the functional ϕ satisfies the assumption (i) of Lemma .. Let
X = H

T , X = R
n, X = H̃

T = {q ∈ H
T | ∫ T

 q(t) dt = }. Then H
T = X ⊕ X and X is a finite

dimensional subspace of H
T .

By (H′′), there exists a constant  < d < d such that F(t, q) ≤ ω

 |q|, |q| ≤ d, t ∈ [, T].
So we have

F(t, q) ≤ ω


|q| + max

s∈[d,d]
a(s)b(t)d–r

 |q|r + C|q|r , q ∈R
N , t ∈ [, T]. (.)

By (.), (.), (.), (.), and (G), ∀q ∈ X, we have

ϕ(q) =



∫ T



∣∣q̇(t)
∣∣ dt –

∫ T


F
(
t, q(t)

)
dt –

∑
j∈�

Gj
(
q(tj)

)

≥ 


∫ T



∣∣q̇(t)
∣∣ dt –

ω



∫ T



∣∣q(t)
∣∣ dt
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– d–r
 max

s∈[d,d]
a(s)

∫ T


b(t)

∣∣q(t)
∣∣r dt – C

∫ T



∣∣q(t)
∣∣r dt – M

∑
j∈�

∣∣q(tj)
∣∣r

≥ π

π + T ‖q‖
H

T
–

(
Cr

d–r
 max

s∈[d,d]
a(s)

∫ T


b(t) dt

+ CCr–
 + MCr–



)
‖q‖r

H
T

. (.)

Hence, there exist constants a >  and ρ ∈ (, ), such that

ϕ(q) ≥ a > , ∀q ∈ X and ‖q‖H
T

= ρ,

which proves (i).
Finally, we show that the functional ϕ satisfies the assumption (ii) of Lemma .. For a

given z ∈ X = R
n, by assumptions (H), (G), we have

ϕ(z) = –
∫ T


F(t, z) dt –

∑
j∈�

Gj(z) ≤  < a.

In what follows, we construct a bounded manifold Q ⊂ X such that ϕ(q) ≤ a, ∀q ∈ ∂Q.
Pick e = (

√


(+ω)T cosωt, , , . . . , ) ∈ X. By calculation, we have ‖e‖H
T

= . By (H), for

δ = inf
t∈[,T]

lim inf|q|→+∞
F(t, q)
|q| –

ω


> ,

there exists a constant d >  such that when |q| ≥ d, we have

F(t, q) ≥
(

δ +
ω



)
|q|. (.)

Therefore, we have

F(t, q) ≥
(

δ +
ω



)
|q| –

(
δ +

ω



)
d

, q ∈R
N , t ∈ [, T]. (.)

Then for any given q = z + λe, z ∈ X, λ ∈ R, from (.), (G) and (.), we get

ϕ(z + λe) =



∫ T



∣∣λė(t)
∣∣ dt –

∫ T


F
(
t, z + λe(t)

)
dt –

∑
j∈�

Gj
(
z + λe(tj)

)

≤ 


ωλ

( + ω)T
T


–
(

δ +
ω



)∫ T



∣∣z + λe(t)
∣∣ dt +

(
δ +

ω



)
d

T

=
ωλ

( + ω)
–

(
δ +

ω



)
λ

( + ω)T
T


–
(

δ +
ω



)
Tz +

(
δ +

ω



)
d

T

= –
δλ

 + ω –
(

δ +
ω



)
Tz +

(
δ +

ω



)
d

T .

Let

f(x) = –
(

δ +
ω



)
Tx +

(
δ +

ω



)
d

T , x ∈ R
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and

f(x) = –
δx

 + ω , x ∈R.

Clearly, it can be seen that f(x) and f attain their maximum at zero. Therefore,

ϕ(z + λe) ≤ f() + f
(|λ|) = f

(|λ|) +
(

δ +
ω



)
d

T ,

ϕ(z + λe) ≤ f
(|z|) + f() = f

(|z|).

Since limx→∞ f(x) = limx→∞ f(x) = –∞, we can choose s > , s > ρ such that ϕ(z+se) < ,
for |z| = s, or λ = s. Let Q = {q ∈ X | q = z + λe, z ∈ X, |z| ≤ s,λ ∈ (, s)}, we obtain
ϕ|∂Q <  < a, which proves (ii). From the above proofs, we know that the assumptions of
Lemma . are satisfied. Consequently, system (.) admits at least one periodic solution.

�

3 Proof of Theorem 1.2
Proof of Theorem . Let k ≥ . Replace T by kT in the definitions of H

T , H̃
T , ϕ, and ϕ′ in

Theorem ., then we obtain the corresponding spaces and functionals. We denote them
by H

kT , H̃
kT , ϕk , and ϕ′

k , respectively. Define

‖q‖H
kT

=
(∫ kT



(∣∣q̇(t)
∣∣ + |q|)dt

) 


, q ∈ H
kT .

Similar arguments to Theorem . show that the functional ϕk satisfies the condition (C).
By (H′), for  < ε < π

π+T , there exists a constant  < d < d such that when |q| ≤ d

and t ∈ [, T], we have |F(t, q)| ≤ ε|q|, and combining (.) and (H), we obtain

F(t, q) ≤ ε|q| + max
s∈[d,d]

a(s)b(t)d–r
 |q|r + C|q|r , q ∈R

N , t ∈ [, T].

So for any given q ∈ X, we have

ϕk(q) =



∫ kT



∣∣q̇(t)
∣∣ dt –

∫ kT


F
(
t, q(t)

)
dt –

km–∑
j=

Gj
(
q(tj)

)

≥ 


∫ kT



∣∣q̇(t)
∣∣ dt – ε

∫ kT



∣∣q(t)
∣∣ dt

– d–r
 max

s∈[d,d]
a(s)

∫ kT


b(t)

∣∣q(t)
∣∣r dt – C

∫ kT



∣∣q(t)
∣∣r dt – M

km–∑
j=

∣∣q(tj)
∣∣r

≥
(

π

π + T – ε

)
‖q‖

H
kT

–
(
Cr

d–r
 C + CCr–

 + MCr–


)‖q‖r
H

kT
,

where C = maxs∈[d,d] a(s)
∫ kT

 b(t) dt. Hence there exist constants ak >  and ρk ∈ (, )
such that

ϕk(q) ≥ ak > , ∀q ∈ X and ‖q‖H
kT

= ρk ,
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which proves (i) of Lemma .. By the periodicity of F(t, q) in t, (.) holds, i.e.:

F(t, q) ≥
(

δ +
ω



)
|q| –

(
δ +

ω



)
d

, q ∈R
N , t ∈ [, kT]. (.)

Let H̄
kT = span{ek} + R with ek = (cos k–ωt, , , . . . , ) ∈ X. For any given q = z + λek ,

z ∈ X, λ ∈R, from (.), (G), and (.), we get

ϕk(z + λek) =



∫ kT



∣∣λėk(t)
∣∣ dt –

∫ kT


F
(
t, z + λek(t)

)
dt –

km–∑
j=

Gj
(
z + λek(tj)

)

≤ 

λk–ω kT


–

(
δ +

ω



)∫ kT



∣∣z + λek(t)
∣∣ dt +

(
δ +

ω



)
d

kT

=
ωTλ

k
–

(
δ +

ω



)
kTλ


–

(
δ +

ω



)
kTz +

(
δ +

ω



)
d

kT

= –
((k – )ω + δk)Tλ

k
–

(
δ +

ω



)
kTz +

(
δ +

ω



)
d

kT .

Let

f(x) = –
(

δ +
ω



)
kTx +

(
δ +

ω



)
d

kT , x ∈R, k ∈N

and

f(x) = –
((k – )ω + δk)Tx

k
, x ∈R, k ∈N.

Clearly, it can be seen that f(x) and f attain their maximum at zero. Therefore, we have

ϕ(z + λe) ≤ f() + f
(|λ|) = f

(|λ|) +
(

δ +
ω



)
d

kT ,

ϕ(z + λe) ≤ f
(|z|) + f() = f

(|z|).

Note that ϕk(z) = –
∫ kT

 F(t, z) dt –
∑km–

j= Gj(z) = –k
∫ T

 F(t, z) dt – k
∑

j∈� Gj(z) ≤ , for all
z ∈ X = R

N . Since limx→∞ f(x) = limx→∞ f(x) = –∞, we can choose s > , s > ρ such
that ϕ(z + sek) < , for |z| = s, or λ = s. Here, we put s = r, s = r, where r = max{, d}.
It is clear that s >  > ρ . Let Qk = {q ∈ X | q = z + λe, z ∈ X, |z| ≤ s,λ ∈ (, s)}.

For any given z + λek ∈ Qk , we have

ϕk(z + λek) ≤ 


∫ kT



∣∣λėk(t)
∣∣ dt ≤ Tωs




.

For every z + λek ∈ ∂Qk , where |z| = s, by (.), we have

ϕk(z + λek) =



∫ kT



∣∣λėk(t)
∣∣ dt –

∫ kT


F
(
t, z + λek(t)

)
dt –

km–∑
j=

Gj
(
z + λek(tj)

)

≤ –
((k – )ω + δk)Tλ

k
–

(
δ +

ω



)
kTz +

(
δ +

ω



)
d

kT ≤ .
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Let E = {t ∈ [, kT] : |z + sek| ≥
√

r
 }, where z = {z, z, . . . , zn} ∈ R. We claim that

meas(E) ≥ kT
 . We have

|z + sek| =
∣∣z + r cos k–ωt

∣∣ +
N∑

i=

|zi|

≥ ∣∣z + r cos k–ωt
∣∣.

If z ≥ , for all t ∈ [, kT
 ] ∪ [ kT

 , kT], we obtain

∣∣z + r cos k–ωt
∣∣ = z + r cos k–ωt ≥

√
r


.

If z < , for all t ∈ [ kT
 , kT

 ], we obtain

∣∣z + r cos k–ωt
∣∣ = –z – r cos k–ωt ≥

√
r


.

Therefore, the assertion is established. So, for every z + λek ∈ ∂Qk , where |λ| = s, combin-
ing with (.), we have

ϕk(z + λek) ≤ 


∫ kT



∣∣λėk(t)
∣∣ dt –

∫ kT


F
(
t, z + λek(t)

)
dt

≤ ωTr

k
–

∫
{t:|z+rek |≥

√
r
 }

F
(
t, z + λek(t)

)
dt

≤ ωTr


–

ω



∫
{t:|z+rek |≥

√
r
 }

∣∣z + λek(t)
∣∣ dt

≤ ωTr


–

kTωr


≤ .

So, functional ϕk has at least one critical point qk for every k ∈N and

ϕk(qk) ≤ Tωs



=

Tωr


=

Tω max{, d
}


. (.)

We claim that there exists a positive integer k > k such that qkk �= qk for all kk ≥ k.
Otherwise, ϕkk (qkk ) = kϕk (qk ) → +∞ as k → +∞, which contradicts (.). Repeating
this process, we get a sequence {qkn} of distinct periodic solutions of system (.). �
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