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Abstract
The local well-posedness of the periodic Benjamin equation with small initial value in
Hs(T), s≥ –1/2, is given. It is here shown that –1/2 is the lower endpoint to obtain the
bilinear estimates which are the crucial steps to obtain the local well-posedness by
the Picard iteration.
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1 Introduction
The initial value problem (IVP) associated to the periodic Benjamin equation is

⎧
⎨

⎩

∂tu – H∂
x u – ∂

x u + ∂x(u) = , t ∈R;

u(x, ) = ϕ(x), ϕ ∈ Hs(T).
(.)

Here T = R \ π , H is the Hilbert transform

Hf (x) = p.v.

π

∫ f (x – y)
y

dy.

The Benjamin equation physically characterizes the vertical displacement (bounded above
and below by rigid horizontal planes) of the interface between a thin layer of fluid atop and
a much thicker layer of higher density fluid (cf. []). The more general form of (.) could
be stated as

⎧
⎨

⎩

∂tu + αH∂
x u + β∂

x u + ∂x(u) = , α,β , t ∈ R;

u(x, ) = ϕ(x), ϕ ∈ Hs(T).
(.)

As a KdV type equation, (.) models a large amount of physical quantities. If α �= ,
β = , (.) is the IVP of the Benjamin-Ono (BO) equation. The BO equation is a model
for one-dimensional long waves in deep stratified fluids and is completely integrable. It
is also a typical dispersive model for which the solution map could not be obtained by a
Picard approach in L-based Sobolev spaces. For its well-posedness theory, see e.g. [–]
and the references therein. If (α,β) = (, –), (.) agrees with the well-known IVP of KdV

© 2015 Shi and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13661-015-0322-8
mailto:shishaoguang@mail.bnu.edu.cn


Shi and Li Boundary Value Problems  (2015) 2015:60 Page 2 of 15

equation. The history of the well-posedness for KdV equation is quite rich and the litera-
ture extensive. For the non-periodic case, see e.g. [–]. The periodic case can be found
in []. For the local well-posedness of the dispersion generalized periodic KdV equation,
see [–] for example. Some recent results in the context of long waves in deep stratified
fluids can be found in [–].

If α �= , β �= , then (.) is the IVP of the Benjamin equation. There is some well-
known work as regards the Benjamin type equations; see [–] for example. The well-
posedness of the Benjamin equation in the non-periodic case were fully discussed by Chen
et al. in their recent two papers [, ]. For the periodic case, there were less results for
(.) than the non-periodic case. Only in [], Linares obtained the well-posedness of (.)
with initial value in L space. In this paper, (.) will be taken as our model to study the
IVP of the periodic Benjamin equation. We will prove that the local well-posedness result
of Linares, valid for s ≥ , can be extended to s ≥ –/.

For the scaling argument, the following γ -periodic IVP for Benjamin equation should
be considered:

⎧
⎨

⎩

∂tu – H∂
x u – ∂

x u + ∂x(u) = , t ∈R;

u(x, ) = ϕ(x), ϕ ∈ Hs(,γ ).
(.)

Now, we formulate the main result of this paper as follows.

Theorem . For s ≥ –/, γ �  and ϕ ∈ Hs, there exists T = T(‖ϕ‖Hs ) >  such that (.)
has a unique solution u ∈ C([, T], Hs) ∩ Y s. The solution map T : ϕ → u is an analytic
map on Hs.

The definitions of Xs, Y s, and Hs will be given in Section . To prove Theorem ., the
following bilinear estimates are crucial to our analysis.

Theorem . For s ≥ –/ and f , g ∈ Xs, the following two bilinear estimates are true:
(


γ

∑

k∈Ż\γ
|k|s

∫

R

|ŵfg(k,λ)|
〈λ + φ(k)〉 dλ

)/

� ‖f ‖Xs‖g‖Xs (.)

and
(


γ

∑

k∈Ż\γ
|k|s

[∫

R

|ŵfg(k,λ)|
〈λ + φ(k)〉 dλ

])/

� ‖f ‖Xs‖g‖Xs , (.)

where ŵfg(k,λ) = i
γ  kf̂ ∗γ ĝ(k,λ), φ(k) = k – |k|k.

Since Miura’s transform does not work for the Benjamin equation, the way to set up
the ill-posedness of KdV equation fails in dealing with that of the Benjamin equation.
However, we can provide a counterexample to show that the bilinear estimates (.) and
(.) fail for s < –/.

Theorem . For s < –/, (.) and (.) fail.

Here and in the following, for the sake of convenience, the abbreviations 〈ξ 〉 = (+ |ξ |)/

for ξ ∈ R and A � B =: A ≤ CB are used, where C is a positive constant and may change
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from line to line. Similarly, A � B is used to represent A ≤ C–B and A ∼ B stands for
A � B � A.

We end this section with the outline of this paper. In Section , some preliminaries which
are essential to our proofs are collected. Section  contains the proofs of Theorem . and
Theorem .. In Section , Theorem . is proved by constructing a counterexample to
verify that the bilinear estimates (.) and (.) fail for s < –/.

2 Preliminaries
We begin this section with some basic notations. The Fourier transform on [,γ ] is defined
as

û(k) =

γ

∫ γ


u(x) exp(–ikx) dx.

The Fourier inversion formula is denoted by

u(x) =
∫

exp(π ikx)û(k)(dk)γ ,

where (dk)γ is the normalized counting measure on Z \ γ and

∫

f (x)(dk)γ =

γ

∑

k∈Z\γ
f (k).

It is easy to check that the classical properties of the Fourier transform hold for the mea-
sure (dk)γ . That is,

‖u‖L([,γ ]) = ‖û‖L((dk)γ ),

ûv(k) = û ∗γ v̂(k) =
∫

û(k – k)v̂(k)(dk)γ .

For more information as regards the γ -periodic Fourier transform, see [] for example.
For s ∈R, the spatial Sobolev spaces are defined by

Hs
x(,γ ) :=

{
u ∈ S ′(T) : ‖u‖Hs

x =
∥
∥〈·〉sû

∥
∥

L((dk)γ ) < ∞}
.

Let P denote the mean operator

Pu :=

γ

∫ γ


u dx,

or equivalently Pu = û(). The solutions of the Benjamin equation are mean-preserving,
and it will be convenient to assume that

û() =

γ

∫ γ


ϕ(x) dx = ,

which allows us to replace k ∈ Z \ γ with k ∈ Ż \ γ (Ż = Z \ {}). One can easily pass from
the mean-zero case to the general mean case by the Galilean transformation u(t, x) �→
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u(t, x – P(u)t) – P(u), which was introduced in []. Y s is the completion of functions
that are Schwartz in time and C∞ in space with the following norm:

‖u‖Y s = ‖u‖Xs +
∥
∥〈k〉sû(k,λ)

∥
∥

L((dk)γ )L(dλ),

where

‖u‖Xs =
∥
∥〈k〉s〈λ + φ(k)

〉/û(k,λ)
∥
∥

L((dk)γ dλ).

In fact, the study of the periodic Benjamin equation has been based on iteration in the
space Xs, but this space barely fails to control the L∞

t Hs
x norm. Y s is a slight modification

of Xs such that ‖u‖L∞
t Hs

x � ‖u‖Y s .
The nonlinear part of the Benjamin equation is u∂xu, which can be written by a Fourier

transform in frequency as

k
∑

k∈Ż\γ

∫

λ∈R
û(k,λ)û(k – k,λ – λ) dλ. (.)

During the argument, we mainly focus on the iteration of the two functions in (.), which
were understood as two free Benjamin flows iterating with each other. The resonance func-
tion

R(k, k) = λ + φ(k) –
(
λ + φ(k)

)
–

(
λ – λ + φ(k – k)

)

= –k|k| + k|k| + (k – k)|k – k| + kk(k – k) (.)

gives a description of the set where two Benjamin flows interact. The resonance function
is a very important concept in the analysis of the nonlinear dispersion equations. The
following fundamental estimates for the resonance function can be proved easily.

Lemma . Let |kk(k – k)| �= , k, k ∈ Z \ γ and γ � . Then

∣
∣R(k, k)

∣
∣�

∣
∣kk(k – k)

∣
∣, (.)

|k| � ∣
∣kk(k – k)

∣
∣ �

(
max

{|k|, |k|
}). (.)

Proof Equation (.) is obvious. The proof of (.) is a straightforward calculation with
consideration of the following six cases following from []:

G+++ = {k – k > , k > , k > };
G++– = {k – k > , k > , k < };
G+–– = {k – k > , k < , k < };
G––– = {k – k < , k < , k < };
G––+ = {k – k < , k < , k > };
G–++ = {k – k < , k > , k > }. �

The following fundamental estimates can be proved with a slight modification in
[, ].
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Lemma . There exists C >  such that for any ε > , α ∈R, and  < ρ < ,

I(α) =
∫

R

dβ

( + |β|)( + |α – β|) �
log( + |α|)

( + |α|) ; (.)

Iρ(α) =
∫

R

dβ

( + |β|)ρ( + |α – β|) �
 + log( + |α|)

( + |α|)ρ ; (.)

Iε(α) =
∫

R

dβ

( + |β|)+ε( + |α – β|)+ε
� 

( + |α|)+ε
. (.)

Lemma . There exists C >  such that for any ρ > /, γ � , k, k ∈ Z\γ , and λ,λ ∈R,
the following estimates are true:

∑

k �=

log( + |λ + φ(k) + φ(k – k)|)
( + |λ + φ(k) + φ(k – k)|) ≤ Cγ ; (.)

∑

k �=

log( + |λ + φ(k) – φ(k – k)|)
( + |λ + φ(k) – φ(k – k)|) ≤ Cγ ; (.)

∑

k �=

log( + |λ + φ(k) – φ(k – k)|)
( + |λ + φ(k) – φ(k – k)|)ρ ≤ Cγ . (.)

Proof The proof of (.) is given first. The fact that, for any ε > ,

log
(
 + |a|)� Cε

(
 + |a|)ε ,

gives the following estimate by taking ε = /:

∑

k �=


( + |λ + φ(k) + φ(k – k)|)/ ≤ C. (.)

Let β(k,λ), β(k,λ) be two complex roots of λ + φ(k) + φ(k – k). In view of λ + φ(k) +
φ(k – k) being a polynomial of degree  in the variable k, (.) can be rewritten as

∑

k �=


( + |k – β(k,λ)||k – β(k,λ)|)/ ≤ C. (.)

Since

∣
∣k – βj(k,λ)

∣
∣ ≥ ∣

∣k – Rj(k,λ)
∣
∣,

βj(k,λ) can be substituted by its real part Rj(k,λ) for j = , . Set

Z =
{

k :
∣
∣k – βj(k,λ)

∣
∣ ≤ , j = , 

}
.

Then Z has no more than γ numbers k, therefore (.) can be controlled by

γ +
∑

|k–βj(k,λ)|>


( + |k – R(k,λ)||k – R(k,λ)|)/ . (.)
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By the elementary inequality

( + a)( + a) ≤ ( + aa)

for ai ≥ , i = , , it is sufficient to estimate

∑

k


( + |k – R(k,λ)|)/( + |k – R(k,λ)|)/ .

And hence (.) follows by the Hölder inequality with k in the above term.
The same conclusion can be drawn for (.) by replacing k with k in (.), while the

proof of (.) can be handled in much the same way as that of (.) for (ρ – /) > . �

In the following analysis, ρ = / in (.) is always used. Next, we use the lower bound
of the resonance function to recover the derivative on the nonlinear term u∂xu.

Lemma . Let

Qs =
|k|s+|k(k – k)|–s

σ (λ,λ, k, k)

and

Qs,r =
|k|s+|k(k – k)|–s

σ (–r)(λ,λ, k, k)
,

where

σ (λ,λ, k, k) = max
{∣
∣λ + φ(k)

∣
∣,

∣
∣λ + φ(k)

∣
∣,

∣
∣λ – λ + φ(k – k)

∣
∣
}

with kk(k – k) �= . Then for s ≥ –/,  < r < /, and γ � , we have

Qs � , Qs,r �


|n|–r .

Proof It can be confirmed easily by Lemma . that

σ (λ,λ, k, k) �
∣
∣kk(k – k)

∣
∣.

Putting this lower estimate into Qs and Qs,r , we can obtain

Qs ≤ |k|s+|k(k – k)|–s

|kk(k – k)| � |k|s+

|k(k – k)|s+ � 

and

Qs,r ≤ |k|s+|k(k – k)|–s

|kk(k – k)|(–r) � |k|s+

|k|–r|k(k – k)|s+(–r) �


|k|–r ,

where (.) is used in the last estimate. �
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3 Proofs of Theorem 1.1 and Theorem 1.2
For a function f ∈ Xs, set

Pf (k,λ) = |k|s〈λ + φ(k)
〉/∣∣f̂ (k,λ)

∣
∣.

Then

‖f ‖Xs =
(


γ

∑

k∈Ż/γ

∫

R

(
Pf (k,λ)

) dλ

)/

=
∥
∥Pf (k,λ)

∥
∥

L((dk)γ dλ),

∣
∣ŵfg(k,λ)

∣
∣� 

γ
|k|

∑

k∈Ż\γ

∫

R

∣
∣f̂ (k – k,λ – λ)ĝ(k,λ)

∣
∣dλ.

(.)

Since û() = , it is convenient to assume that kk(k – k) �= .
We first prove Theorem .. The integral in the left hand of (.) can be controlled

by


γ

∑

k

∫

R

|k(k – k)|–s|k|s+Pf Pg dλ

( + |λ + φ(k)|)/( + |λ + φ(k)|)/( + |λ – λ + φ(k – k)|)/ ,

where Pf := Pf (k – k,λ – λ), Pg := Pg(k,λ). Denote by

Q(k,λ, k,λ) =
|k|s+|k(k – k)|–s

〈λ + φ(k)〉/〈λ + φ(k)〉/〈λ – λ + φ(k – k)〉/ ,

then (.) equals

[

γ

∑

k

∫

R

(∑

k

∫

R

Q(k,λ, k,λ)Pf Pg dλ

)

dλ

]/

�
∥
∥Pf (k,λ)

∥
∥

L(λ,(dk)γ )

∥
∥Pg(k,λ)

∥
∥

L(λ,(dk)γ )

= ‖f ‖Xs‖g‖Xs . (.)

Write

A =
{

(k,λ, k,λ) :
∣
∣λ – λ + φ(k – k)

∣
∣ ≤ ∣

∣λ + φ(k)
∣
∣
}

,

then by symmetry, the proof of (.) is reduced to the estimate

[

γ

∑

k

∫

R

(∑

k

∫

R

(χAQ)(k,λ, k,λ)Pf Pg dλ

)

dλ

]/

, (.)

which can be considered by two cases.
Case I. |λ + φ(k)| ≤ |λ + φ(k)|. In this case, set A is replaced by

AI =
{∣
∣λ – λ + φ(k – k)

∣
∣ ≤ ∣

∣λ + φ(k)
∣
∣ ≤ ∣

∣λ + φ(k)
∣
∣
}

.
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Cauchy-Schwarz’s inequality allows us to control (.) by

∥
∥
∥
∥

(

γ

∑

k

∫

R

(χAI Q)(k,λ, k,λ) dλ

) 

(


γ

∑

k

∫

R

P
f P

g dλ

) 

∥
∥
∥
∥

L((dk)γ )dλ

.

We claim that there exists C >  such that, for s ≥ –/,

S
I = sup

k,λ


γ

∑

k

∫

R

(χAI Q)(k,λ, k,λ) dλ � C, (.)

which gives

(.) ≤ SI
∥
∥Pf (k,λ)

∥
∥

L((dk)γ )dλ

∥
∥Pg(k,λ)

∥
∥

L((dk)γ )dλ
� ‖f ‖Xs‖g‖Xs .

Indeed, the fact

〈
λ + φ(k)

〉 ≥ max
{〈

λ + φ(k)
〉
,
〈
λ – λ + φ(k – k)

〉}

allows us to write Q as

Q =
|k|s+|k(k – k)|–s

〈λ + φ(k)〉


〈λ + φ(k)〉〈λ – λ + φ(k – k)〉
≈ Qs


〈λ + φ(k)〉〈λ – λ + φ(k – k)〉 .

Lemma . with s ≥ –/, (k,λ, k,λ) ∈ AI gives

S
I �


γ

sup
k,λ

∑

k

∫

R

dλ

〈λ + φ(k)〉〈λ – λ + φ(k – k)〉 .

Let

β = λ + φ(k), α = λ + φ(k) + φ(k – k) = τ – R(k, k), τ = λ + φ(k).

Then (.) can be obtained by (.) and (.).
Case II. |λ + φ(k)| < |λ + φ(k)|. In this case, set A is

AII =
{∣
∣λ – λ + φ(k – k)

∣
∣ <

∣
∣λ + φ(k)

∣
∣,

∣
∣λ + φ(k)

∣
∣ <

∣
∣λ + φ(k)

∣
∣
}

.

That is, we need to estimate the following term:

∥
∥
∥
∥


γ

∑

k

∫

R

(χAII Q)(k,λ, k,λ)Pf Pg dλ

∥
∥
∥
∥

L((dk)γ dλ)
. (.)

By duality, (.) equals

sup
‖d‖L((dk)γ dλ)=


γ 

∑

k,k

∫

R
d(k,λ)(χAII Q)(k,λ, k,λ)Pf Pg dλ dλ. (.)
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Fubini’s theorem and the Cauchy-Schwarz inequality can be used to control (.) by

sup
‖d‖L((dk)γ dλ)=


γ 

(∑

k

∫

R

[∑

k

∫

R

(χAII Q)(k,λ, k,λ) dλ

]

×
[∑

k

∫

R

d(k,λ)P
f dλ

]

dλ

)/

‖g‖Xs .

Write

S
II =


γ

sup
k,λ

∑

k

∫

R

(χAII Q)(k,λ, k,λ) dλ.

Next, one only needs to show that, for s ≥ –/,

S
II < ∞, (.)

which is similar to the previous analysis of (.). For (k,λ, k,λ) ∈ AII, Q could be written
as

Q =
|k|s+|k(k – k)|–s

〈λ + φ(k)〉


〈λ + φ(k)〉〈λ – λ + φ(k – k)〉
≈ Qs


〈λ + φ(k)〉〈λ – λ + φ(k – k)〉 .

Using Lemma ., S
II can be estimated by

S
II �


γ

sup
k,λ

∑

k

∫

λ

dλ

〈λ + φ(k)〉〈λ – λ + φ(k – k)〉 .

Let

β = λ + φ(k), α = λ + φ(k) – φ(k – k) = τ – R(k, k), τ = –λ – φ(k).

Then (.) and (.) can be used to obtain (.). The proof of (.) is completed.
Next, we proceed the proof of Theorem . by showing (.). We first rewrite (.) as

∥
∥
∥
∥


γ

∫

R

∑

k

∫

R

(χAQ)(·,λ, k,λ)Pf Pg dλ dλ

∥
∥
∥
∥

L((dk)γ )
� ‖f ‖Xs‖g‖Xs ,

where

Q(k,λ, k,λ) =
|k|s+|k(k – k)|–s

〈λ + φ(k)〉〈λ + φ(k)〉/〈λ – λ + φ(k – k)〉/ .

As in the proof of (.), (.) can be considered by two cases.
Case I. |λ + φ(k)| ≤ |λ + φ(k)|. In this case, the set A is replaced by

AI =
{∣
∣λ – λ + φ(k – k)

∣
∣ ≤ ∣

∣λ + φ(k)
∣
∣ ≤ ∣

∣λ + φ(k)
∣
∣
}

.
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By duality of L((dk)γ ), one only needs to estimate

sup
‖d‖L((dk)γ )=


γ 

∑

k

d(k)
∫

R

∑

k

∫

R

(χAI Q)(k,λ, k,λ)Pf Pg dλ dλ,

which can be bounded by

sup
‖d‖L((dk)γ )=


γ /

[∑

k

∫

R

(∑

k

∫

R

(χAI Q)(k,λ, k,λ) dλ

)

×
(∑

k

∫

R

d(k)P
f dλ

)

dλ

]/

‖g‖Xs

by Cauchy-Schwarz’s inequality. Therefore, it is sufficient to show that for s ≥ –/,

S
I = sup

k


γ

∑

k

∫

R

∫

R

(χAI Q)(k,λ, k,λ) dλdλ � C.

For some  < r < /,

S
I = sup

k


γ

∑

k

∫

R

∫

R


〈λ + φ(k)〉r (χAI Qr)(k,λ, k,λ) dλdλ,

where

Q
r =

|k|s+|k(k – k)|–s

〈λ + φ(k)〉(–r) · 
〈λ + φ(k)〉〈λ – λ + φ(k – k)〉

= Qs,r


〈λ + φ(k)〉〈λ – λ + φ(k – k)〉 .

By Lemma ., S
I could be controlled by

sup
k


γ

∑

k

∫

R

∫

R


|k|–r · dλ dλ

〈λ + φ(k)〉+r〈λ – λ + φ(k – k)〉+r .

Applying (.) with α = λ + φ(k) + φ(k – k), one has

∫

R

dλ

〈λ + φ(k)〉+r〈λ – λ + φ(k – k)〉+r

� 
( + |λ + φ(k) + φ(k – k)|)+r ;

hence

S
I � sup

k


γ

∑

k


|k|–r

∫

R


( + |λ + φ(k) + φ(k – k)|)+r dλ,

and finally S
I < ∞ for r < /.

Case II. |λ + φ(k)| < |λ + φ(k)|. In this case, A is replaced by

AII =
{∣
∣λ – λ + φ(k – k)

∣
∣ <

∣
∣λ + φ(k)

∣
∣,

∣
∣λ + φ(k)

∣
∣ <

∣
∣λ + φ(k)

∣
∣
}

.
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Write

 +
∣
∣λ + φ(k)

∣
∣ =

(
 +

∣
∣λ + φ(k)

∣
∣
)r( +

∣
∣λ + φ(k)

∣
∣
)–r ,

where / < r < . As in Case I, let

Qr =
|k|s+|k(k – k)|–s

〈λ + φ(k)〉/〈λ + φ(k)〉–r〈λ – λ + φ((k – k))〉/ .

Then it suffices to estimate

[

γ

∑

k

(∫

R


γ

∑

k

∫

R


〈λ + φ(k)〉r (χAII Qr)(k,λ, k,λ)Pf Pg dλ dλ

)]/

. (.)

Applying the Cauchy-Schwarz inequality in λ, (.) can be bounded by

[

γ

∑

k

(∫

R

dλ

〈λ + φ(k)〉r

)(∫

R

{
Pf Pg

γ

∑

k

∫

R

(χAII Qr)(k,λ, k,λ) dλ

}

dλ

)]/

.

Since r > , (.) is dominated by

[

γ

∑

k

∫

R

{

γ

∑

k

∫

R

(χAII Qr)(k,λ, k,λ)Pf Pg dλ

}

dλ

]/

.

By the definition of the L
((dk)γ dλ)-norm, (.) can be further controlled by

sup
‖d‖

L((dk)γ dλ)=


γ

∑

k

∫

R

d(k,λ)

γ

∑

k

∫

R

(χAII Qr)(k,λ, k,λ)Pf Pg dλ dλ. (.)

By the Cauchy-Schwarz inequality, we can obtain the following estimate for (.):

sup
‖d‖

L((dk)γ dλ)=

[

γ

∑

k

∫

R

(

γ

∑

k

∫

R

(χAI Qr)(k,λ, k,λ) dλ

)

×
(


γ

∑

k

∫

R

d(k,λ)P
f dλ

)

dλ

]/

‖g‖Xs .

For s ≥ –/, we claim that

S
II = sup

k,λ


γ

∑

k

∫

R

(χAI Qr)(k,λ, k,λ) dλ < ∞.

In fact, by Lemma ., we have

S
II = sup

k,λ


γ

∑

k

∫

R

dλ

〈λ + φ(k)〉(–r)〈λ – λ + φ(k – k)〉 .

Applying (.) with ρ = ( – r), β = λ + φ(k), and α = λ + φ(k) – φ(k – k) for some / <
r < , we get S

II < ∞ as a result of (.). Theorem . has thus been proved.
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Having disposed of the proof for Theorem ., we can now prove Theorem .. Taking
Fourier transform with respect to x in (.) gives

∂t û(k, t) – ik|k|û(k, t) + ikû(k, t) = –ŵ(k, t), û(k, ) = ϕ̂(k), (.)

where ŵ(k, t) = û∂xu(k, t). The Y s norm cannot be calculated directly on the equation since
the function has no integrability in time. A cutting off according to time is necessary. Let
ψ(t) be a bump function with support in {|t| < } and ψ(t) =  for |t| < /. Then the fol-
lowing can be shown:

ψ(t)u(x, t) =

γ

ψ(t)
∑

k∈Ż/γ

ϕ̂(k)ei(kx–tφ(k))

+
i

γ 

∞∑

n=

intn

n!
ψ(t)

∑

k∈Ż/γ

ei(kx–tφ(k))

×
∫ ∞

–∞
ψ

(
λ + φ(k)

)(
λ + φ(k)

)n–ŵ(k,λ) dλ

+
i

(γ ) ψ(t)
∑

k∈Ż/γ

ei(kx)
∫ ∞

–∞
 – ψ(λ + φ(k))

λ + φ(k)
eiλtŵ(k,λ) dλ

–
i

(γ ) ψ(t)
∑

k∈Ż/γ

ei(kx–tφ(k))
∫ ∞

–∞
 – ψ(λ + φ(k))

λ + φ(k)
ŵ(k,λ) dλ,

where ŵ(k,λ) = i
γ  kû ∗ û(k,λ). We adopt the idea in [] dealing with the KdV equation

here to prove Theorem .. Let T denote the map defined by the above expressions of
ψ(t)u(x, t). Then the task is to show that the map u �→ Tu is contracted in the space Y s.
To do this, we need the following estimates.

Theorem . Let s ≥ –/. Then there exist constants C = C(ψ) >  such that for all u, v ∈
Y s,

‖Tu‖Y s ≤ C
(‖u‖

Y s + ‖ϕ‖Hs
)
, (.)

‖Tu – Tv‖Y s ≤ C
(‖u + v‖Y s‖u – v‖Y s

)
. (.)

A straightforward application of Theorem . can produce the following proposition.

Proposition . Let C = C(ψ) be the constant appearing in Theorem .. If ‖ϕ‖Hs ≤
/(C), then T is a contraction in the closed ball B(, /(C)) of Y s.

Therefore, the proof of Theorem . for sufficiently small data (‖ϕ‖Hs ≤ /(c)) follows
from Proposition ..

Next, we give the sketch of the proof for Theorem .. Computing the Y s-norm of the
terms in (.), the following estimate can be obtained:

‖Tu‖Y s � ‖ϕ‖Hs +
(

‖w‖
Xs,– 


+

(

γ

∑

k∈Ż/γ

|k|s
[∫

R

|ŵ(k,λ)|
〈λ + (k)〉 dλ

])/)

. (.)
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Then (.) follows from (.) and the bilinear estimates in Theorem . with f = g = u.
Noticing that Tu – Tv is a dispersion Benjamin equation with nonlinear term u∂xu – v∂xv
with initial data ϕ = , (.) can be proved by the bilinear estimates with f = u + v and
g = u – v.

4 Proof of Theorem 1.3
As explained in the above sections, the method used to prove the local well-posedness of
the Benjamin equation is based on the bilinear estimates (.) and (.). In this section, a
counterexample will be given to show that (.) and (.) are not true for s < –/ inspired
by some ideas from [].

For any F = Pf (k,λ) ∈ L((dk)γ dλ), the bilinear form Bs(F , F) can be defined by

ks+

〈λ + φ(k)〉/

∑

k �=,k �=k

∫ ∞

–∞
(k(k – k))–sF(k,λ)F(k – k,λ – λ) dλ

〈λ + φ(k)〉/〈λ – λ + φ(k – k)〉/ .

Then (.) equals

∥
∥Bs(F , F)

∥
∥

L((dk)γ dλ) � c‖F‖
L((dk)γ dλ), (.)

where s ≥ –/. A counterexample will be given next to show that (.) fails for s < –/.
Choosing

F = akχ
(
λ + φ(k)

)
,

where

χb
(
λ + φ(k)

)
=

{
, |λ + φ(k)| ≤ b;
, elsewhere

and

ak =

{
, k = N ,  – N ;
, elsewhere,

then Bs(F , F)(k,λ) at k =  can be evaluated as

Bs(F , F)(,λ) ≈ 
( + |λ + φ(k)|)/ · 

Ns .

For those λ which are in a unit size interval of λ, the following can be shown:

∣
∣λ + φ(N)

∣
∣ ≤ ,

∣
∣λ – λ + φ( – N)

∣
∣ ≤ .

Moreover, the lower bound estimate on the resonance function implies

∣
∣λ + φ()

∣
∣� N.
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Hence, for any N ∈N,


N

· 
Ns ≤ C.

Therefore, s ≥ –/. The same function can be used to show that (.) fails for s < –/.
This completes the proof of Theorem ..
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