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Abstract
This paper deals with blow-up properties of solutions to a nonlocal parabolic system
with nonlocal boundary conditions. The global existence and finite time blow-up
criteria are obtained. Moreover, for some special cases, we establish the precise
blow-up rate estimates.
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1 Introduction
In this article, we consider the positive solution of the following parabolic equations with
nonlocal boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = f (u)(�u + a
∫

�
v dx), x ∈ �, t > ,

vt = g(v)(�v + b
∫

�
u dx), x ∈ �, t > ,

u(x, t) =
∫

�
φ(x, y)u(y, t) dy, x ∈ ∂�, t > ,

v(x, t) =
∫

�
ψ(x, y)v(y, t) dy, x ∈ ∂�, t > ,

u(x, ) = u(x), v(x, ) = v(x), x ∈ �,

(.)

where � is a bounded domain in RN (N ≥ ) with smooth boundary ∂�, a, b > , while
φ(x, y), ψ(x, y) are nonnegative and continuous on ∂� × �, u(x), v(x) ∈ C,θ (�) with
 < θ < , u(x), v(x) ≥ , u(x) �≡ , v(x) �≡ , and satisfy the compatibility conditions

u(x) =
∫

�

φ(x, y)u(y) dy, v(x) =
∫

�

ψ(x, y)v(y) dy, x ∈ ∂�,

respectively.
There have been many articles dealing with properties of solutions to degenerate

parabolic equations with homogeneous Dirichlet boundary condition (see [–] and ref-
erences therein). For example, Deng et al. [] studied the parabolic equation with nonlocal
source

ut = f (u)
(

�u + a
∫

�

u dx
)

, x ∈ �, t > , (.)
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which is subjected to homogeneous Dirichlet boundary condition. They proved that there
exists no global positive solution if

∫ ∞ /(sf (s)) ds < ∞ and
∫

�
ϕ(x) dx > /a, where ϕ is the

unique positive solution of the linear elliptic problem

–�ϕ = , x ∈ �; ϕ(x) = , x ∈ ∂�.

In [], Chen and Wang extended the problem (.) to the following system:

ut = f (u)
(

�u + a
∫

�

v dx
)

, vt = g(v)
(

�v + b
∫

�

u dx
)

, x ∈ �, t > , (.)

with homogeneous Dirichlet boundary condition. Under some conditions, they proved
the solution of (.) blows up in finite time and even blows up globally.

However, parabolic equations with both nonlocal source and nonlocal boundary condi-
tion have been studied as well. For instance, the problem of the following form:

⎧
⎪⎨

⎪⎩

ut = f (u)(�u +
∫

�
g(u) dx), x ∈ �, t > ,

u(x, t) =
∫

�
K(x, y)ul(y, t) dy, x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �,
(.)

was considered by Lin and Liu [] for the case l =  and by Zhong and Tian [] for the
case g(u) = u. They established global existence and nonexistence of solutions, and they
discussed the blow-up properties of solutions.

Porous medium equations with local sources or with nonlocal sources subjected to non-
local boundary conditions were also studied (see [–]). They discussed the conditions of
existence and blow-up. For other works on parabolic equations and systems with nonlocal
boundary conditions, we refer readers to [–] and the references therein.

Motivated by those works above, we will study the problem (.) and want to understand
how the functions f (u), g(v) and the weight functions φ(x, y), ψ(x, y) in the boundary con-
dition play substantial roles in determining the blow-up or not of the solutions.

In this article, we make some assumptions on f (s), g(s) as follows:
(H) f , g ∈ C([,∞)) ∩ C((,∞)), f () = g() = , and f , g > , f ′, g ′ ≥  in (,∞).
(H) Either lim infs→∞ f (s)

g(s) >  or lim infs→∞ g(s)
f (s) >  holds.

In view of the symmetry of the problem, we may suppose that lim infs→∞ f (s)
g(s) >  in (H)

throughout this paper. For any η > , we can get a constant K >  such that (see [])

f (s) > Kg(s) for s > η. (.)

Let us introduce the following elliptic problem:

⎧
⎪⎨

⎪⎩

–�ϕ(x) = –�ϕ(x) = , x ∈ �,
ϕ(x) =

∫

�
φ(x, y)ϕ(y) dy, x ∈ ∂�,

ϕ(x) =
∫

�
ψ(x, y)ϕ(y) dy, x ∈ ∂�,

(.)

where
∫

�
φ(x, y) dy < ,

∫

�
ψ(x, y) dy < . Then there exists a unique positive solution

(ϕ(x),ϕ(x)) of (.) (see []).
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Define

μ =
∫

�

ϕ(x) dx, μ =
∫

�

ϕ(x) dx.

The main results of this paper are the following theorems.

Theorem . Suppose that
∫

�
φ(x, y) dy < ,

∫

�
ψ(x, y) dy <  for any x ∈ ∂�. If ab ≤ 

μμ
or

∫ ∞
s

ds
sf (s) = ∞ or

∫ ∞
s

ds
sg(s) = ∞ for some s > , then the solution (u, v) of (.) exists globally.

Theorem . Suppose that
∫

�
φ(x, y) dy < ,

∫

�
ψ(x, y) dy <  for any x ∈ ∂�. If ab > 

μμ
and

∫ ∞
s

ds
sg(s) < ∞ for some s > , then the solution (u, v) of (.) blows up in finite time.

Theorem . Suppose that
∫

�
φ(x, y) dy ≥  or

∫

�
ψ(x, y) dy ≥  for any x ∈ ∂�. If

∫ ∞
s

ds
sg(s) <

∞ for some s > , then the solution (u, v) of (.) blows up in finite time.

To estimate the blow-up rate, we need an additional assumption on the initial data u(x),
v(x):

(H) There exists a constant ε ≥ max{ε, ε}, such that

�u + a
∫

�

v dx – εuk+–p
 ≥ , �v + b

∫

�

u dx – εvk+–q
 ≥ ,

where  < p, q <  and ε, ε, k, k are given in Section .

Theorem . Suppose that
∫

�
φ(x, y) dy < ,

∫

�
ψ(x, y) dy <  for any x ∈ ∂�. Let f (u) = up,

g(v) = vq ( < p, q < ). If (H) holds and the solution (u, v) of (.) blows up in finite time T∗.
Then there exist positive constants ci (i = , , , ) such that

c ≤ max
x∈�

u(x, t)
(
T∗ – t

)(–q)/(p+q–pq) ≤ c,

c ≤ max
x∈�

v(x, t)
(
T∗ – t

)(–p)/(p+q–pq) ≤ c.

This paper is organized as follows. In Section , we establish the comparison principle.
In Sections  and , some criteria regarding to global existence and finite time blow-up
for (.) are given, respectively. In the last section, for some special cases, the blow-up rate
estimate is established.

2 Comparison principle
We start with the definition of a subsolution and a supersolution of (.) and then get to
the comparison principle. Set QT = � × (, T), ST = ∂� × (, T) and QT = � × [, T).

Definition . A vector function (u(x, t), v(x, t)) defined on QT , for some T > , is called
a subsolution of problem (.), if u(x, t), v(x, t) ∈ C(QT ) ∩ C,(QT ) and satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut ≤ f (u)(�u + a
∫

�
v dx), x ∈ �, t > ,

vt ≤ g(v)(�v + b
∫

�
u dx), x ∈ �, t > ,

(u, v) ≤ (
∫

�
φ(x, y)u(y, t) dy,

∫

�
ψ(x, y)v(y, t) dy), x ∈ ∂�, t > ,

(u(x, ), v(x, )) ≤ (u(x), v(x)), x ∈ �.

(.)
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Similarly, a vector function (u(x, t), v(x, t)) ∈ [C(QT ) ∩ C,(QT )] is a supersolution of
(.) if the reversed inequalities hold in (.). A solution of problem (.) is a vector function
which is both a subsolution and a supersolution of (.).

The following comparison principle plays a crucial role in our proofs, which can be ob-
tained by similar arguments to [, ], and its proof is given here for the sake of com-
pleteness.

Lemma . Suppose that w(x, t), z(x, t) ∈ C,(QT ) ∩ C(QT ) and satisfy
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wt – d�w ≥ ∑n
j= ajwxj + cw + c

∫

�
cz(x, t) dx, (x, t) ∈ QT ,

zt – d�z ≥ ∑n
j= ajzxj + cz + c

∫

�
cw(x, t) dx, (x, t) ∈ QT ,

w(x, t) ≥ ∫

�
c(x, y)w(y, t) dy, (x, t) ∈ ST ,

z(x, t) ≥ ∫

�
c(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) > , z(x, ) > , x ∈ �,

(.)

where di = di(x, t), aij = aij(x, t) (i = , , j = , , . . . , n) and cij = cij(x, t) (i = , , j = , , )
are bounded continuous functions, di(x, t), cij(x, t) ≥  (i = , , j = , ) in QT , cj(x, y) ≥ 
(j = , ) on ∂� × � and

∫

�
cj(x, y) dy >  on ∂�. Then w(x, t), z(x, t) >  on QT .

Proof Let ĉi = sup(x,t)∈QT
|ci|, i = , . Set U = e–γ tw, V = e–γ tz with γ > max{ĉ, ĉ}. Then,

for (x, t) ∈ QT , we have

Ut – d�U ≥
n∑

j=

ajUxj + (c – γ )U + c

∫

�

cV (x, t) dx,

Vt – d�V ≥
n∑

j=

ajVxj + (c – γ )V + c

∫

�

cU(x, t) dx.

(.)

Also

U ≥
∫

�

c(x, y)U(y, t) dy, V ≥
∫

�

c(x, y)V (y, t) dy, (x, t) ∈ ST ,

U(x, ) = w(x, ) > , V (x, ) = z(x, ) > , x ∈ �.
(.)

It suffices to show that U , V >  on QT . Since U(x, ), V (x, ) > , there exists δ >  such
that U , V >  for (x, t) ∈ � × (, δ). Suppose for a contradiction that t = sup{t ∈ (, T) :
U , V >  on � × [, t)} < T . Then U , V ≥  on Qt , and at least one of U , V vanishes at
(x, t) for x ∈ �. Without loss of generality, we assume that U(x, t) =  = inf(x,t)∈Qt

U(x, t). If
(x, t) ∈ Qt , by virtue of the first inequality of (.), we get

Ut – d�U ≥
n∑

j=

ajUxj + (c – γ )U , (x, t) ∈ Qt .

Then the strong maximum principle implies that U ≡  in Qt , and this is a contradiction.
If (x, t) ∈ St , this results in the contradiction by (.) that

 = U(x, t) = e–γ tw(x, t) >
∫

�

c(x, y)U(y, t) dy > 

due to
∫

�
c(x, y) dy >  on ∂�. This proves U , V > , and in turn w, z >  on QT . �
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Lemma . Suppose that w(x, t), z(x, t) ∈ C,(QT ) ∩ C(QT ) and satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wt – d�w ≥ ∑n
j= ajwxj + cw + c

∫

�
cz(x, t) dx, (x, t) ∈ QT ,

zt – d�z ≥ ∑n
j= ajzxj + cz + c

∫

�
cw(x, t) dx, (x, t) ∈ QT ,

w(x, t) ≥ ∫

�
c(x, y)w(y, t) dy, (x, t) ∈ ST ,

z(x, t) ≥ ∫

�
c(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) ≥ , z(x, ) ≥ , x ∈ �,

(.)

where di = di(x, t), aij = aij(x, t) (i = , , j = , , . . . , n) and cij = cij(x, t) (i = , , j = , , )
are bounded continuous functions, di(x, t), cij(x, t) ≥  (i = , , j = , ) in QT , cj(x, y) ≥ 
(j = , ) on ∂� × � and

∫

�
cj(x, y) dy >  on ∂�. Then w(x, t), z(x, t) ≥  on QT .

Proof Set w(x, t) = α(x)U(x, t), z(x, t) = α(x)V (x, t), where α(x) ∈ C(�) satisfies

α(x) >  on �;

α(x) = ,
∫

�

α(y)cj(x, y) dy ≤ 


on ∂�, j = , .

A direct computation yields

Ut – d�U ≥
n∑

j=

(

aj + d
αxj

α

)

Uxj +

(

c + d
�α

α
+

n∑

j=

aj
αxj

α

)

U

+
c

α(x)

∫

�

cα(x)V (x, t) dx, (x, t) ∈ QT ,

Vt – d�V ≥
n∑

j=

(

aj + d
αxj

α

)

Vxj +

(

c + d
�α

α
+

n∑

j=

aj
αxj

α

)

V

+
c

α(x)

∫

�

cα(x)U(x, t) dx, (x, t) ∈ QT , (.)

U ≥
∫

�

c(x, y)α(y)U(y, t) dy, (x, t) ∈ ST ,

V ≥
∫

�

c(x, y)α(y)V (y, t) dy, (x, t) ∈ ST ,

U(x, ) = w(x, )/α(x) ≥ , V (x, ) = z(x, )/α(x) ≥ , x ∈ �.

Define

bi = sup
(x,t)∈QT

∣
∣
∣
∣
∣
ci + di

�α

α
+

n∑

j=

aij
αxj

α

∣
∣
∣
∣
∣
,

ci = sup
(x,t)∈QT

ci

α(x)
, di = sup

(x,t)∈QT

ciα(x), i = , ,

and set

Ũ = U + ε̃eγ t , Ṽ = V + ε̃eγ t ,

with γ > max{b + cd|�|, b + cd|�|}, ε̃ > .
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Using (.), we have

Ũt – d�Ũ ≥
n∑

j=

(

aj + d
αxj

α

)

Ũxj +

(

c + d
�α

α
+

n∑

j=

aj
αxj

α

)

Ũ

+
c

α(x)

∫

�

cα(x)Ṽ (x, t) dx, (x, t) ∈ QT ,

Ṽt – d�Ṽ ≥
n∑

j=

(

aj + d
αxj

α

)

Ṽxj +

(

c + d
�α

α
+

n∑

j=

aj
αxj

α

)

Ṽ

+
c

α(x)

∫

�

cα(x)Ũ(x, t) dx, (x, t) ∈ QT ,

Ũ ≥
∫

�

c(x, y)α(y)Ũ(y, t) dy, (x, t) ∈ ST ,

Ṽ ≥
∫

�

c(x, y)α(y)Ṽ (y, t) dy, (x, t) ∈ ST ,

Ũ(x, ) = w(x, )/α(x) + ε̃ > , Ṽ (x, ) = z(x, )/α(x) + ε̃ > , x ∈ �.

By Lemma ., we know that Ũ , Ṽ > , i.e. U + ε̃eγ t > , V + ε̃eγ t >  on QT . It follows by
ε̃ → + that U , V ≥  and hence w, z ≥  on QT . �

By the above lemmas, we obtain the following comparison principle of problem (.).

Lemma . Let (u, v) and (u, v) be a nonnegative subsolution and supersolution of (.) on
QT , respectively. Then (u, v) ≥ (u, v) on QT , if u, v ≥ η or u, v ≥ η for some small positive
constant η hold.

The existence of positive classical solutions of (.) local in time can be obtained by
using the fixed point theorem in [], and the representation formula and the contraction
mapping principle as in []. By the above comparison principle, we get the uniqueness of
the solution to the problem. The proof is more or less standard, so is omitted here.

3 Global existence
In this section, we will give some sufficient conditions for the existence of solution and
prove Theorem ..

Proof of Theorem . Case : we assume that ab ≤ 
μμ

holds. Since the functions ϕ(x),
ϕ(x) are positive and continuous, we can find two large positives constants k and k such
that

u(x) ≤ kϕ(x), v(x) ≤ kϕ(x), x ∈ �,

aμ ≤ k/k ≤ /(bμ).
(.)

Set

w(x, t) = kϕ(x), z(x, t) = kϕ(x).
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Applying (.) and (.), we get

wt – f (w)
(

�w + a
∫

�

z dx
)

= –f (kϕ)(–k + akμ) ≥ , (x, t) ∈ QT ,

zt – g(z)
(

�z + b
∫

�

w dx
)

= –g(kϕ)(–k + bkμ) ≥ , (x, t) ∈ QT ,

w(x, t) = kϕ(x) =
∫

�

φ(x, y)w(y, t) dy, (x, t) ∈ ST ,

z(x, t) =
∫

�

ψ(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) ≥ u(x), z(x, ) ≥ v(x), x ∈ �.

The above inequalities show that (w, z) is a supersolution of (.), and Lemma . asserts
that (w, z) ≥ (u, v) for (x, t) ∈ QT . Therefore, the solution (u, v) of (.) exists globally.

Case : we assume that
∫ ∞

s
ds

sf (s) = ∞ holds. It follows from (.) that there exists K > 
such that

f (s) ≥ Kg(s) for s > M = max
{

max
x∈�

u(x), max
x∈�

v(x)
}

.

Choose A = max{a|�|, b|�|/K}, and consider the ordinary differential equation (ODE)

s′(t) = Af
(
s(t)

)
s(t), t > ; s() = M. (.)

By the hypothesis (H) and the theory of ODE, there exists a unique solution s(t) to (.),
and s(t) is increasing. Since

∫ ∞
s

ds
sf (s) = ∞ for some s > , s(t) exists globally and s(t) ≥ s.

Let w(x, t) = z(x, t) = s(t), and note that
∫

�
φ(x, y) dy < ,

∫

�
ψ(x, y) dy <  on ∂�. Then we

have

wt – f (w)
(

�w + a
∫

�

z dx
)

= s′(t) – f
(
s(t)

)
a|�|s(t) =

(
A – a|�|)f

(
s(t)

)
s(t) ≥ , (x, t) ∈ QT ,

zt – g(z)
(

�z + b
∫

�

w dx
)

= s′(t) – g
(
s(t)

)
b|�|s(t) ≥ (

AK – b|�|)g
(
s(t)

)
s(t) ≥ , (x, t) ∈ QT ,

w(x, t) = s(t) >
∫

�

φ(x, y)w(y, t) dy, (x, t) ∈ ST ,

z(x, t) >
∫

�

ψ(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) = s() ≥ u(x), z(x, ) = s() ≥ v(x), x ∈ �.

The above inequalities show that (w, z) is a supersolution of problem (.). By using
Lemma ., we see that the solution (u, v) of (.) exists globally.

Case : we assume that
∫ ∞

s
ds

sg(s) = ∞ holds. We choose two positive constants l, l such
that

a|�|l

l
< , r = max

{

/(

l min
x∈�

ϕ(x)
)

, /l

}
.
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Consider the following ODE:

s′(t) =
blμ

l
g
(
ls(t)

)
s(t), t > ; s() = r(M + ). (.)

Here M = max{maxx∈� u(x), maxx∈� v(x)}. In view of
∫ ∞

s
ds

sg(s) = ∞ for some s > , we
know that s(t) exists globally.

Let

w(x, t) = lϕ(x)s(t), z(x, t) = ls(t).

Then by (.) we have

wt – f (w)
(

�w + a
∫

�

z dx
)

= lϕs′(t) – f
(
lϕs(t)

)(
–l + al|�|)s(t)

= lϕ
blμ

l
g
(
ls(t)

)
s(t) + f

(
lϕs(t)

)
s(t)

(
l – al|�|) ≥ , (x, t) ∈ QT ,

zt – g(z)
(

�z + b
∫

�

w dx
)

= ls′(t) – g
(
ls(t)

)
blμs(t) = , (x, t) ∈ QT ,

w(x, t) = ls(t)
∫

�

φ(x, y)ϕ(y) dy =
∫

�

φ(x, y)w(y, t) dy, (x, t) ∈ ST ,

z(x, t) >
∫

�

ψ(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) = lϕ(x)s() > u(x), z(x, ) = ls() > v(x), x ∈ �.

These formulas show that (w, z) is a supersolution of (.). Therefore, (w, z) ≥ (u, v). Since
(w, z) exists globally, so does (u, v). This completes the proof. �

4 Blow-up results
In this section, we assume that (u, v) is a positive solution of (.) on QT , where T is the
maximal existence time.

Proof of Theorem . Set Ki = minx∈� ϕi(x), Ki = maxx∈� ϕi(x), i = , . In view of ab > 
μμ

,
then there exist positive constants l, l >  such that

lK , lK ≥  and


bμ
<

l

l
< aμ. (.)

Taking δ = 
 min{minx∈� u(x), minx∈� v(x)} and r = min{ 

lK
, 

lK
}, it follows from (.)

that there exists K ′
 >  such that

f (s) ≥ K ′
g(s) for s > rδ.

Choose B = min{K ′
(alμ–l)

lK
, blμ–l

lK
}, and consider the following ODE:

s′(t) = Bg
(
s(t)

)
s(t), t > ; s() = rδ. (.)

Since
∫ ∞

s
ds

sg(s) < ∞ for some s > , s(t) blows up in finite time.
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Let

w(x, t) = lϕ(x)s(t), z(x, t) = lϕ(x)s(t).

Then (.) and (.) imply that

wt – f (w)
(

�w + a
∫

�

z dx
)

= lϕs′(t) – f
(
lϕs(t)

)
(–l + alμ)s(t)

≤ lK Bg
(
s(t)

)
s(t) – K ′

g
(
lϕs(t)

)
(–l + alμ)s(t)

≤ (
lK B – K ′

(alμ – l)
)
g
(
s(t)

)
s(t) ≤ , (x, t) ∈ QT ,

zt – g(z)
(

�z + b
∫

�

w dx
)

= lϕs′(t) – g
(
lϕs(t)

)
(–l + blμ)s(t)

≤ lKBg
(
s(t)

)
s(t) – g

(
lϕs(t)

)
(blμ – l)s(t)

≤ (
lKB – (blμ – l)

)
g
(
s(t)

)
s(t) ≤ , (x, t) ∈ QT ,

w(x, t) =
∫

�

φ(x, y)w(y, t) dy, z(x, t) =
∫

�

ψ(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) = lϕ(x)s() < u(x), z(x, ) = lϕ(x)s() < v(x), x ∈ �.

The above inequalities imply that (w, z) is a subsolution of (.), so (w, z) ≤ (u, v). Due
to (w, z) blowing up in finite time, (u, v) blows up in finite time, and this completes the
proof. �

Proof of Theorem . (i) Suppose that
∫

�
φ(x, y) dy ≥ ,

∫

�
ψ(x, y) dy ≥  on ∂�. By (.),

there exists a positive constant K ′′
 >  such that

f (s) ≥ K ′′
 g(s) for s > m =




min
{

min
x∈�

u(x), min
x∈�

v(x)
}

.

Let C = min{aK ′′
 |�|, b|�|}, and consider the following ODE:

s′(t) = Cg
(
s(t)

)
s(t), t > ; s() = m. (.)

Since
∫ ∞

s
ds

sg(s) < ∞ for some s > , the solution s(t) of (.) blows up.
Let w(x, t) = z(x, t) = s(t), then we obtain

wt – f (w)
(

�w + a
∫

�

z dx
)

= s′(t) – f
(
s(t)

)
a|�|s(t) = Cg

(
s(t)

)
s(t) – a|�|f (s(t)

)
s(t)

≤ (
C – aK ′′

 |�|)g
(
s(t)

)
s(t) ≤ , (x, t) ∈ QT ,

zt – g(z)
(

�z + b
∫

�

w dx
)
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= s′(t) – g
(
s(t)

)
b|�|s(t) =

(
C – b|�|)g

(
s(t)

)
s(t) ≤ , (x, t) ∈ QT ,

w(x, t) = s(t) ≤
∫

�

φ(x, y)w(y, t) dy, (x, t) ∈ ST ,

z(x, t) ≤
∫

�

ψ(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) = s() ≤ u(x), z(x, ) = s() ≤ v(x), x ∈ �.

The above inequalities show that (w, z) is a subsolution of problem (.), and Lemma .
shows that (w, z) ≤ (u, v), so the solution (u, v) of (.) blows up in finite time.

(ii) Suppose that
∫

�
φ(x, y) dy < ,

∫

�
ψ(x, y) dy ≥  on ∂�. Let λ >  be the first eigenvalue

of the eigenvalue problem

–�� = λ�, x ∈ �; �(x) = , x ∈ ∂�, (.)

and �(x) be the corresponding eigenfunction with maxx∈� �(x) = , �(x) >  in �. Set
K = minx∈� �(x) > , ε∗ is a small enough positive constant such that ε∗ < min{ a|�|

λ
, 

K } and
s(t) is the solution of ODE as follows:

s′(t) = Dg
(
ε∗Ks(t)

)
s(t), t > ; s() = ε∗Km, (.)

where D = min{ a|�|–ε∗λ

ε∗K ′′′


, bε∗K |�|}, m is given at the beginning of this proof, and K ′′′
 >  is

determined by (.) and satisfies f (s) > K ′′′
 g(s) for s ≥ ε∗Km. Since

∫ ∞
s

ds
sg(s) < ∞ for some

s > , the solution to (.) blows up in finite time.
Let

w(x, t) = ε∗�(x)s(t), z(x, t) = s(t).

By (.), we have

wt – f (w)
(

�w + a
∫

�

z dx
)

= ε∗�(x)s′(t) – f
(
ε∗�(x)s(t)

)(
–ε∗λ�(x)s(t) + a|�|s(t)

)

= ε∗�(x)Dg
(
ε∗Ks(t)

)
s(t) –

(
a|�| – ε∗λ�(x)

)
f
(
ε∗�(x)s(t)

)
s(t)

≤ [
ε∗DK ′′′

 –
(
a|�| – ε∗λ

)]
f
(
ε∗�(x)s(t)

)
s(t) ≤ , (x, t) ∈ QT ,

zt – g(z)
(

�z + b
∫

�

w dx
)

= s′(t) – g
(
s(t)

)
bε∗s(t)

∫

�

�dx

≤ Dg
(
ε∗Ks(t)

)
s(t) – bε∗K |�|g(

s(t)
)
s(t)

≤ (
D – bε∗K |�|)g

(
s(t)

)
s(t) ≤ , (x, t) ∈ QT ,

w(x, t) =  ≤
∫

�

φ(x, y)w(y, t) dy, z(x, t) ≤
∫

�

ψ(x, y)z(y, t) dy, (x, t) ∈ ST ,

w(x, ) = ε∗�(x)s() ≤ ε
∗Km ≤ u(x), z(x, ) = s() ≤ v(x), x ∈ �.
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All the above inequalities show that (w, z) = (ε∗�(x)s(t), s(t)) is a subsolution of (.). By
Lemma ., we know (u, v) ≥ (w, z). Since (w, z) blows up in finite time, so does (u, v).

(iii) Suppose that
∫

�
φ(x, y) dy ≥ ,

∫

�
ψ(x, y) dy <  on ∂�. In this case, the proof can be

treated as case (ii), so we omit it here. This completes the proof of Theorem .. �

5 Blow-up rate estimates
Now, we will consider the blow-up rate of the solution to (.) in the special case that
f (u) = up, g(v) = vq ( < p, q < ) and

∫

�
φ(x, y) dy < ,

∫

�
ψ(x, y) dy <  for any x ∈ ∂�, i.e.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = up(�u + a
∫

�
v dx), x ∈ �, t > ,

vt = vq(�v + b
∫

�
u dx), x ∈ �, t > ,

u(x, t) =
∫

�
φ(x, y)u(y, t) dy, x ∈ ∂�, t > ,

v(x, t) =
∫

�
ψ(x, y)v(y, t) dy, x ∈ ∂�, t > ,

u(x, ) = u(x), v(x, ) = v(x), x ∈ �.

(.)

It can be seen from Theorem . that the solution (u, v) to (.) blows up in finite time T∗.
Denote U(t) = maxx∈� u(x, t), V (t) = maxx∈� v(x, t), which are Lipschitz continuous (see
[] or []). From (.), we have U(t), V (t) satisfying

Ut ≤ a|�|UpV , Vt ≤ b|�|UV q, a.e. t ∈ (
, T∗). (.)

Let ρ =  – p, ρ =  – q, by virtue of Young’s inequality, there exists C >  such that

(
Uρ + V ρ

)

t ≤ (aρ + bρ)|�|(Uρ
)/ρ(V ρ

)/ρ ≤ C
(
Uρ + V ρ

)(ρ+ρ)/ρρ .

Integrating the above inequality over (t, T∗), we can get

Uρ (t) + V ρ (t) ≥ C
(
T∗ – t

)–ρρ/d, (.)

where C >  is a constant and d =  – ( – p)( – q). Let k = d/ρ, k = d/ρ.

Lemma . There exists a constant ε > , which is defined in (H) such that

ut – εuk+ ≥ , vt – εvk+ ≥ , (x, t) ∈ � × (
, T∗). (.)

Proof Set J(x, t) = ut – εuk+, J(x, t) = vt – εvk+. A series of computation yields

Jt – up�J – pεuk J – aup
∫

�

J dx

= pu–J
 + ε(k + )kuk+p–|∇u| + pεuk+

+ aεup
∫

�

vk+ dx – aε(k + )uk+p
∫

�

v dx

≥ pεuk+ + aεup
∫

�

vk+ dx – aε(k + )uk+p
∫

�

v dx

= aεup
[

(pε/a)uk+–p +
∫

�

vk+ dx – (k + )uk

∫

�

v dx
]

.
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Since k
k+–p + 

k+ = , then the Hölder inequality and Young’s inequality imply

uk

∫

�

v dx ≤ |�|k/(k+)uk

(∫

�

vk+ dx
)/(k+)

≤ |�|k/(k+)
[

k

k +  – p
(
σuk

)(k+–p)/k +


k + 
σ –(k+)

∫

�

vk+ dx
]

,

where σ = ( k+
k+ )/(k+)|�|k/(k+) . Taking ε = ak

p ( k+
k+ )+(/k)|�|, then

Jt – up�J – pεuk J – aup
∫

�

J dx ≥ pε(ε – ε)uk+ ≥ .

Similarly, we can determine a number ε = bk
q ( k+

k+ )+(/k)|�| satisfying

Jt – vq�J – qεvk J – bvq
∫

�

J dx ≥ qε(ε – ε)vk+ ≥ .

For (x, t) ∈ ∂� × (, T∗), we have

J(x, t) = ut – εuk+

=
∫

�

φ(x, y)ut(y, t) dy – ε

(∫

�

φ(x, y)u(y, t) dy
)k+

=
∫

�

φ(x, y)J(y, t) dy + ε

[∫

�

φ(x, y)uk+(y, t) dy –
(∫

�

φ(x, y)u(y, t) dy
)k+]

.

Using the Hölder inequality and noting that
∫

�
φ(x, y) dy < , we have

∫

�

φ(x, y)uk+(y, t) dy –
(∫

�

φ(x, y)u(y, t) dy
)k+

≥
∫

�

φ(x, y)uk+(y, t) dy
[

 –
(∫

�

φ(x, y) dy
)k]

≥ .

Hence

J(x, t) ≥
∫

�

φ(x, y)J(y, t) dy.

By a similar argument, we have

J(x, t) ≥
∫

�

ψ(x, y)J(y, t) dy.

On the other hand, (H) implies that J(x, ) ≥ , J(x, ) ≥ , x ∈ �. By Lemma ., we
have J ≥ , J ≥ . This completes the proof. �

It follows from (.) that

Ut – εUk+ ≥ , Vt – εV k+ ≥ , (x, t) ∈ � × (
, T∗). (.)
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Integrating (.) from (t, T∗), we conclude that

U(t) ≤ (εk)–/k
(
T∗ – t

)–/k , V (t) ≤ (εk)–/k
(
T∗ – t

)–/k . (.)

Combining (.) with (.), we can obtain

(
ε

a|�|
)ρ

Uρ ≤ V ρ ,
(

ε

b|�|
)ρ

V ρ ≤ Uρ . (.)

From (.) and (.), we conclude that

U(t) ≥ C/ρ


[

 +
(

ε

b|�|
)–ρ]–/ρ(

T∗ – t
)–/k ,

V (t) ≥ C/ρ


[

 +
(

ε

a|�|
)–ρ]–/ρ(

T∗ – t
)–/k .

(.)

By (.) and (.), we can obtain Theorem . immediately.
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