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Abstract
Motivated by (Xu et al. in Bound. Value Probl. 2013:262, 2013) and (Yang and Ren in
Proc. Indian Acad. Sci. Math. Sci. 124(2):175-178, 2014), in this paper we aim to
construct a modified Green function in the upper-half space of the n-dimensional
Euclidean space, which generalizes the boundary property of general Green potential.
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1 Introduction and main results
Let Rn (n ≥ ) denote the n-dimensional Euclidean space. The upper half-space H is the
set H = {x = (x, x, . . . , xn) ∈ Rn : xn > }, whose boundary and closure are ∂H and H re-
spectively.

For x ∈ Rn and r > , let B(x, r) denote the open ball with center at x and radius r.
Set

Eα(x) =

{
– log |x| if α = n = ,
|x|α–n if  < α < n.

Let Gα be the Green function of order α for H , that is,

Gα(x, y) = Eα(x – y) – Eα

(
x – y∗), x, y ∈ H , x �= y,  < α ≤ n,

where ∗ denotes reflection in the boundary plane ∂H just as y∗ = (y, y, . . . , –yn).
In case α = n = , we consider the modified kernel function, which is defined by

En,m(x – y) =

{
En(x – y) if |y| < ,
En(x – y) + �(log y –

∑m–
k= ( xk

kyk )) if |y| ≥ .

In case  < α < n, we define

Eα,m(x – y) =

{
Eα(x – y) if |y| < ,
Eα(x – y) –

∑m–
k=

|x|k
|y|n–α+k C

n–α


k ( x·y
|x||y| ) if |y| ≥ ,
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where m is a non-negative integer, Cω
k (t) (ω = n–α

 ) is the ultraspherical (or Gegenbauer)
polynomial (see []). The expression arises from the generating function for Gegenbauer
polynomials

(
 – tr + r)–ω =

∞∑
k=

Cω
k (t)rk , (.)

where |r| < , |t| ≤  and ω > . The coefficient Cω
k (t) is called the ultraspherical (or

Gegenbauer) polynomial of degree k associated with ω, the function Cω
k (t) is a polyno-

mial of degree k in t.
Then we define the modified Green function Gα,m(x, y) by

Gα,m(x, y) =

{
En,m+(x – y) – En,m+(x – y∗) if α = n = ,
Eα,m+(x – y) – Eα,m+(x – y∗) if  < α < n,

where x, y ∈ H and x �= y. We remark that this modified Green function is also used to give
unique solutions of the Neumann and Dirichlet problem in the upper-half space [–].

Write

Gα,m(x,μ) =
∫

H
Gα,m(x, y) dμ(y),

where μ is a non-negative measure on H . Here note that G,(x,μ) is nothing but the
general Green potential.

Let k be a non-negative Borel measurable function on Rn × Rn, and set

k(y,μ) =
∫

E
k(y, x) dμ(x) and k(μ, x) =

∫
E

k(y, x) dμ(y)

for a non-negative measure μ on a Borel set E ⊂ Rn. We define a capacity Ck by

Ck(E) = supμ
(
Rn), E ⊂ H ,

where the supremum is taken over all non-negative measures μ such that Sμ (the support
of μ) is contained in E and k(y,μ) ≤  for every y ∈ H .

For β ≤ , δ ≤  and β ≤ δ, we consider the kernel function

kα,β ,δ(y, x) = x–β
n y–δ

n Gα(x, y).

Now we prove the following result. For related results in a smooth cone and tube, we
refer the reader to the papers by Qiao (see [, ]) and Liao-Su (see []), respectively. The
readers may also find some related interesting results with respect to the Schrödinger op-
erator in the papers by Su (see []), by Polidoro and Ragusa (see []) and the references
therein.

Theorem Let n + m – α + δ +  ≥ . If μ is a non-negative measure on H satisfying

∫
H

yδ+
n

( + |y|)n+m–α+δ+ dμ(y) < ∞, (.)

RETRACTED A
RTIC

LE



Zhang and Piskarev Boundary Value Problems  (2015) 2015:114 Page 3 of 7

then there exists a Borel set E ⊂ H with properties:

() lim
xn→,x∈H–E

xn–α–β+δ+
n

( + |x|)n+m–α+δ+ Gα,m(x,μ) = ;

()
∞∑
i=

i(n–α+β+δ)Ckα,β ,δ (Ei) < ∞,

where Ei = {x ∈ E : –i ≤ xn < –i+}.

Remark By using Lemma  below, condition () in Theorem with α = , β = , δ = 
means that E is -thin at ∂H in the sense of [].

2 Some lemmas
Throughout this paper, let M denote various constants independent of the variables in
questions, which may be different from line to line.

Lemma  There exists a positive constant M such that Gα(x, y) ≤ M xnyn
|x–y|n–α+ , where  <

α ≤ n, x = (x, x, . . . , xn) and y = (y, y, . . . , yn) in H .

This can be proved by a simple calculation.

Lemma  Gegenbauer polynomials have the following properties:
() |Cω

k (t)| ≤ Cω
k () = �(ω+k)

�(ω)�(k+) , |t| ≤ ;
() d

dt Cω
k (t) = ωCω+

k– (t), k ≥ ;
()

∑∞
k= Cω

k ()rk = ( – r)–ω ;

() |C n–α


k (t) – C
n–α


k (t∗)| ≤ (n – α)C

n–α+


k– ()|t – t∗|, |t| ≤ , |t∗| ≤ .

Proof () and () can be derived from [], p.. Equality () follows from expression (.)
by taking t = ; property () is an easy consequence of the mean value theorem, () and
also (). �

Lemma  For x, y ∈ Rn (α = n = ), we have the following properties:
() |�∑m

k=
xk

yk+ | ≤
∑m–

k=
k xn|x|k
|y|k+ ;

() |�∑∞
k=

xk+m+

yk | ≤ m+xn|x|m;

() |Gn,m(x, y) – Gn(x, y)| ≤ M
∑m

k=
kxnyn|x|k–

|y|k+ ;

() |Gn,m(x, y)| ≤ M
∑∞

k=m+
kxnyn|x|k–

|y|k+ .

The following lemma can be proved by using Fuglede (see [], Théorèm .).

Lemma  For any Borel set E in H , we have Ckα (E) = Ĉkα (E), where Ĉkα (E) = infλ(H), kα =
kα,,, the infimum being taken over all non-negative measures λ on H such that kα(λ, x) ≥ 
for every x ∈ E.

Following [], we say that a set E ⊂ H is α-thin at the boundary ∂H if

∞∑
i=

i(n–α)Ckα (Ei) < ∞,

where Ei = {x ∈ E : –i ≤ xn < –i+}.
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3 Proof of Theorem
We write

Gα,m(x,μ) =
∫

G

Gα(x, y) dμ(y) +
∫

G

Gα(x, y) dμ(y) +
∫

G

[
Gα,m(x, y) – Gα(x, y)

]
dμ(y)

+
∫

G

Gα,m(x, y) dμ(y) +
∫

G

Gα,m(x, y) dμ(y)

= U(x) + U(x) + U(x) + U(x) + U(x),

where

G =
{

y ∈ H : |x – y| ≤ xn



}
, G =

{
y ∈ H : |y| ≥ ,

xn


< |x – y| ≤ |x|

}
,

G =
{

y ∈ H : |y| ≥ , |x – y| ≤ |x|}, G =
{

y ∈ H : |y| ≥ , |x – y| > |x|},

G =
{

y ∈ H : |y| < , |x – y| >
xn



}
.

We distinguish the following two cases.
Case .  < α < n.
By assumption (.) we can find a sequence {ai} of positive numbers such that limi→∞ai =

∞ and
∑∞

i= aibi < ∞, where

bi =
∫

{y∈H:–i–<yn<–i+}
yδ+

n
( + |y|)n+m–α+δ+ dμ(y).

Consider the sets

Ei =
{

x ∈ H : –i ≤ xn < –i+,
xn–α–β+δ+

n

( + |x|)n+m–α+δ+ U(x) ≥ a–
i (i–)β

}

for i = , , . . . . Set

G =
⋃
x∈Ei

B
(

x,
xn



)
.

Then G ⊂ {y ∈ H : –i– < yn < –i+}. Let ν be a non-negative measure on H such that
Sν ⊂ Ei, where Sν is the support of ν . Then we have kα,β ,δ(y,ν) ≤  for y ∈ H and

∫
H

dν ≤ ai(–i+)β
∫

H

xn–α–β+δ+
n

( + |x|)n+m–α+δ+ U(x) dν(x)

≤ Mai(–i+)β(–i+)(n–α+δ+)
∫

G
kα,β ,δ(y,ν)

yδ
n

( + |y|)n+m–α+δ+ dμ(y)

≤ Mai(–i+)β(–i+)(n–α+δ+)i+
∫

{y∈H:–i–<yn<–i+}
yδ+

n
( + |y|)n+m–α+δ+ dμ(y)

≤ Mn–α+β+δ+–i(n–α+β+δ)aibi.
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So that

Ckα,β ,δ (Ei) ≤ M–i(n–α+β+δ)aibi,

which yields

∞∑
i=

i(n–α+β+δ)Ckα,β ,δ (Ei) < ∞.

Setting E =
⋃∞

i= Ei, we see that () in Theorem is satisfied and

lim
xn→,x∈H–E

xn–α–β+δ+
n

( + |x|)n+m–α+δ+ U(x) = . (.)

For U(x), by Lemma  we have

∣∣U(x)
∣∣ ≤ Mxn

∫
G

yn

|x – y|n–α+ dμ(y)

≤ Mxα–n–
n |x|n+m–α+δ+

∫
G


yδ

n

yδ+
n

( + |y|)n+m–α+δ+ dμ(y)

≤ Mxα–n–
n |x|n+m–α+

∫
G

yδ+
n

( + |y|)n+m–α+δ+ dμ(y). (.)

Note that Cω
 (t) ≡ . By () and () in Lemma , we take t = x·y

|x||y| , t∗ = x·y∗
|x||y∗| in Lemma ()

and obtain

∣∣U(x)
∣∣ ≤

∫
G

m∑
k=

|x|k
|y|n–α+k (n – α)C

n–α+


k– ()
xnyn

|x||y|
|y|n+m–α+δ+

( + |y|)n+m–α+δ+ dμ(y)

≤ Mxn|x|m
m∑

k=


k– C

n–α+


k– ()
∫

G

yδ+
n

( + |y|)n+m–α+δ+ dμ(y)

≤ Mxn|x|m. (.)

Similarly, we have by () and () in Lemma 

∣∣U(x)
∣∣ ≤

∫
G

∞∑
k=m+

|x|k
|y|n–α+k (n – α)C

n–α+


k– ()
xnyn

|x||y|
|y|n+m–α+δ+

( + |y|)n+m–α+δ+ dμ(y)

≤ Mxn|x|m
∞∑

k=m+


k– C

n–α+


k– ()
∫

G

yδ+
n

( + |y|)n+m–α+δ+ dμ(y)

≤ Mxn|x|m. (.)

Finally, by Lemma , we have

∣∣U(x)
∣∣ ≤ Mxα–n–

n

∫
G

yδ+
n

( + |y|)n+m–α+δ+ dμ(y). (.)
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Combining (.), (.), (.), (.) and (.), by Lebesgue’s dominated convergence the-
orem, we prove Case .

Case . α = n = .
In this case, U(x), U(x) and U(x) can be proved similarly as in Case . Here we omit

the details and state the following facts:

lim
xn→,xn∈H–E

xδ–β+
n

( + |x|)m+δ+ U(x) = , (.)

where E =
⋃∞

i= Ei and
∑∞

i= i(β+δ)Ckα,β ,δ (Ei) < ∞,

lim
xn→,xn∈H

xδ–β+
n

( + |x|)m+δ+

[
U(x) + U(x)

]
= . (.)

By Lemma (), we obtain

∣∣U(x)
∣∣ ≤

∫
G

m∑
k=

kxnyn|x|k–

|y|k+
|y|m+δ+

yδ+
n

yδ+
n

( + |y|)m+δ+ dμ(y)

≤ Mxn|x|m
m∑

k=

k
k–

∫
G

yδ+
n

( + |y|)m+δ+ dμ(y)

≤ Mxn|x|m. (.)

By Lemma (), we have

∣∣U(x)
∣∣ ≤

∫
G

∞∑
k=m+

kxnyn|x|k–

|y|k+
|y|m+δ+

yδ+
n

yδ+
n

( + |y|)m+δ+ dμ(y)

≤ Mxn|x|m
∞∑

k=m+

k
k–

∫
G

yδ+
n

( + |y|)m+δ+ dμ(y)

≤ Mxn|x|m. (.)

Combining (.), (.), (.) and (.), we prove Case .
Hence the proof of the theorem is completed.
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