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Abstract
In this paper, we address the question of the dynamics of the systems for two
competing species in general heterogeneous environment with lethal boundary
conditions. The existence and uniqueness of the positive steady-state solution are
established under suitable conditions. Finally, we obtain global asymptotic stability of
the positive steady-state solution for weak competition situation.
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1 Introduction
The model we consider has the general form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t = μ�u + u[a(x) – b(x)u – c(x)v] in � × [,∞),
∂v
∂t = μ�v + v[d(x) – e(x)u – f (x)v] in � × [,∞),
u = v =  on ∂� × [,∞),
u(x, ) = u(x), v(x, ) = v(x) in ∂�,

(.)

where a(x), b(x), d(x), f (x) > , c(x), e(x) ≥ , all belong to the Hölder space Cα(�) for some
constant  < α < , and � ⊆ R

N is a bounded domain with C+α a smooth boundary. The
variables u, v represent population densities of the competing species. The boundary con-
dition describes the situation that the boundary of � is lethal to the species.

When the coefficients a(x), b(x), c(x), d(x), e(x), f (x) are constants (homogeneous en-
vironment), the system (.) has been studied extensively in past years; see, for example,
[–] and the references therein. But in the real world, the environments are usually het-
erogenous, and so it is more reasonable to assume that the coefficients in the system (.)
are more general functions []. Recently, He and Ni studied the dynamics of a compe-
tition model in some heterogeneous environments with Neumann boundary conditions
[, ]. Álvarez-Caudevilla et al. considered a cooperative reaction-diffusion system in a
spatiotemporally degenerate environment [].

To study the dynamics of the system (.), we will consider its steady-state equation,
⎧
⎪⎨

⎪⎩

μ�u + u[a(x) – b(x)u – c(x)v] =  in � × [,∞),
μ�v + v[d(x) – e(x)u – f (x)v] =  in � × [,∞),
u = v =  on ∂� × [,∞).

(.)
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Let λ >  denote the principal eigenvalue for the problem

{
�φ + λφ =  in �,
φ =  on ∂�.

(.)

For any A(x) ∈ Cα(�), it is well known that

{
μ�θ + θ (A(x) – θ ) =  in �,
θ =  on ∂�,

(.)

has a unique positive solution θ ∈ C+α(�) if A(x) > μλ for all x ∈ � []. We denote this
unique positive solution by θμ,A(x).

In the rest of the paper, we always assume that

a(x) > μλ, d(x) > μλ for all x ∈ �, (.)

and denote

ū(x) =
θμ,a(x)

minx∈� b(x)
, v̄(x) =

θμ,d(x)

minx∈� f (x)
, x ∈ �. (.)

Now we state the existence result for steady-state solutions.

Theorem . (Existence) If

a(x) > μλ + c(x)v̄(x), d(x) > μλ + e(x)ū(x), (.)

for all x ∈ �, then the system (.) has a positive steady-state solution (ũ(x), ṽ(x)) with
ũ(x), ṽ(x) ∈ C+α(�).

Now we suppose further that the two competitors in (.) are under weak competition
in the sense that c(x), e(x) >  are small such that

c(x)
minx∈� f (x)

<
a(x)
d(x)

,
e(x)

minx∈� b(x)
<

d(x)
a(x)

for all x ∈ �. (.)

We denote

ζ̄ = θμ,a(x), η̄ = θμ,d(x),

ζ = θ
μ,(a(x)–c(x) d(x)

minx∈�
f (x) ), η = θ

μ,(d(x)–e(x) a(x)
minx∈�

b(x) ),
(.)

which are all positive functions in �.
The following theorem gives a sufficient conditions for uniqueness of coexistence solu-

tion in suitable weak competition situations.

Theorem . (Uniqueness) Assume that all the hypotheses of Theorems . and (.) are
satisfied. If
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c(x)ζ̄
b(x)η

+ 
c(x)e(x)
b(x)f (x)

+
e(x)η̄
f (x)ζ

< , x ∈ �, (.)

then the steady-state solution (ũ(x), ṽ(x)) of (.) is unique.

Remark . For fixed functions a(x) > , d(x) > , hypothesis (.) will be satisfied for
c(x), e(x) ≥  sufficiently small. This is true because ζ (resp. η) increases as c(x) (resp. e(x))
decreases for x ∈ �. Thus e(x)η̄

f (x)ζ (resp. c(x)ζ̄
b(x)η ) decreases as c(x) (resp. e(x)) decreases.

Finally, we state our dynamics results for the system (.).

Theorem . (Global asymptotic stability) Assume that the hypotheses of Theorem . are
satisfied. Let (u(x, t), v(x, t)) be a solution of the initial boundary value problem (.) with
both u, v ≥ , �≡  in Cα(�),  < α < , and vanishing on ∂�, then

(
u(x, t), v(x, t)

) → (
ũ(x), ũ(x)

)
as t → ∞

uniformly in �.

This paper is organized as follows: Theorem . and Theorem . are proved in Section .
Theorem . is established in Section  by proving a more general theorem.

2 Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem . Let φ(x) be a positive eigenfunction of the principal eigenvalue λ

for the eigenvalue problem (.). Choose r >  sufficiently small,

μ�
(
rφ(x)

)
+ rφ(x)

[
(a(x) – b(x)rφ(x) – c(x)v

]

≥ rφ(x)
[
(a(x) – μλ – b(x)rφ(x) – c(x)v̄

] ≥ 

and

μ�ū + ū
[
a(x) – b(x)ū – c(x)v

]

= ū
[(

 –
b(x)

minx∈� b(x)

)

θμ,a(x) – c(x)v
]

≤ 

for all  ≤ v ≤ v̄. So, (ū, rφ(x)) is a set of upper and lower solutions for u in (.).
Similarly, choose r >  sufficiently small, (v̄, rφ(x)) is a set of upper and lower solutions

for v in (.). By the coupled upper and lower theorem [], the system (.) has a steady-
state solution (ũ(x), ṽ(x)) with ũ(x), ṽ(x) >  for x ∈ �. �

Proof of Theorem . Assume that (ũ(x), ṽ(x)), (ũ(x), ṽ(x)) are two strictly positive
steady-state solutions of the system (.) in �.

Let

p(x) = ũ(x) – ũ(x), q(x) = ṽ(x) – ṽ(x),

I = b(x)ũ(x)p(x) + c(x)ũ(x)q(x),
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I = e(x)ṽ(x)p(x) + f (x)ṽ(x)q(x),

then
⎧
⎪⎨

⎪⎩

μ�p(x) + [a(x) – b(x)ũ(x) – c(x)ṽ(x)]p(x) – I =  in �,
μ�q(x) + [d(x) – e(x)ũ(x) – f (x)ṽ(x)]q(x) – I =  in �,
p(x) = q(x) =  on ∂�.

(.)

Since ũ(x) is a strictly positive solution of

{
μ�ψ + [a(x) – b(x)ũ(x) – c(x)ṽ(x)]ψ + αψ =  in �,
ψ =  on ∂�,

with α = , the number α =  must be the smallest eigenvalue of the above problem. More-
over, by the variational properties, we have

∫

�

z
(
–μ�z –

[
a(x) – b(x)ũ(x) – c(x)ũ(x)

]
z
)

dx ≥ , (.)

for any z ∈ C(�) which vanishes on ∂�. Similarly, since ṽ(x) is strictly positive solution
of

{
μ�ψ + [d(x) – e(x)ũ(x) – f (x)ṽ(x)]ψ + αψ =  in �,
ψ =  on ∂�,

with α = , the number α =  must be the smallest eigenvalue of the above problem. More-
over,

∫

�

z
(
–μ�z –

[
d(x) – e(x)ũ(x) – f (x)ṽ(x)

]
z
)

dx ≥ , (.)

for any z ∈ C(�) which vanishes on ∂�. Multiplying the first equation of (.) by –p(x),
the second by –q(x), integrating over �, and adding, we deduce from (.) and (.) that

∫

�

[
b(x)ũ(x)p(x) +

(
c(x)ũ(x) + e(x)ṽ(x)

)
p(x)q(x) + f (x)ṽ(x)q(x)

]
dx ≤ . (.)

By a comparison of scalar equations using upper and lower solutions we readily obtain,
for x ∈ �,

ζ

b(x)
≤ ũ, ũ ≤ ζ̄

b(x)
,

η

f (x)
≤ ṽ, ṽ ≤ η̄

f (x)
.

(.)

From (.), we have

f (x)c(x)ζ̄
b(x)η

+ c(x)e(x) +
b(x)e(x)η̄

f (x)ζ
> c(x)

ũ(x)
ṽ(x)

+ c(x)e(x) + e(x)
ṽ(x)
ũ(x)

, (.)
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in �. It follows from (.) that

c(x)
ũ(x)
ṽ(x)

+ c(x)e(x) + e(x)
ṽ(x)
ũ(x)

< b(x)f (x) in �. (.)

Then it is easy to see that the quadratic expression in the integrand of (.) is positive
definite for each x ∈ �. Consequently, we must have p(x) and q(x) identically equal to zero
in �. That is, (ũ(x), ṽ(x)) ≡ (ũ(x), ṽ(x)) in �. �

3 Proof of Theorem 1.3
Now we are in a position to prove Theorem .. Note that, by Theorem . and the as-
sumptions of Theorem ., problem (.) has a unique positive solution (ũ(x), ũ(x)). Then
we will establish Theorem . by proving the following theorem without the assumption
(.).

Theorem . Assume the hypotheses of Theorem . and that problem (.) has a unique
positive solution (ũ(x), ũ(x)) in �, then (ũ(x), ũ(x)) is globally asymptotically stable in the
following sense. Let (u(x, t), v(x, t)) be a solution of the initial boundary value problem (.)
with both u, v ≥ , �≡  in Cα(�),  < α < , and vanishing on ∂�, then

(
u(x, t), v(x, t)

) → (
ũ(x), ũ(x)

)
as t → ∞,

uniformly in �.

Proof For convenience, we introduce the following notation: If w ∈ C(�), w(x) >  for all
x ∈ �, and ∂w/∂ν <  everywhere on ∂�, we write w 
 . If w, z ∈ C(�), we write w � z
if z – w 
 . We first prove the theorem under the additional conditions u, v ∈ C(�),

u 
 , v 
 , (.)

and for all x ∈ �,

u ≤ ū, v ≤ v̄, (.)

where ū and v̄ are defined in (.).
Let φ be the positive eigenfunction of the principal eigenvalue in (.). Choose ε > 

small such that

εφ(x) ≤ u(x), εφ(x) ≤ v(x), (.)

and

a(x) > μλ + c(x)v̄ + b(x)εφ(x),

d(x) > μλ + e(x)ū + f (x)εφ(x),
(.)

for all x ∈ �. If we let u = v = εφ, then

μ�ū + ū
[
a(x) – bū – c(x)v

]
= ū

[(

 –
b(x)

minx∈� b(x)

)

θμ,a(x) – c(x)v
]

< ,
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for all x ∈ �; and from (.), we have

μ�v + v
[
d(x) – eū – f (x)v

]
= v

[
d(x) – μλ – e(x)ū – f (x)v

]
> ,

on �. Similarly, we have

μ�u + u
[
a(x) – b(x)u – c(x)v̄

]
> ,

μ�v̄ + v̄
[
d(x) – e(x)u – f (x)v̄

]
< .

By Theorem . in [] (also see Pao [], Section .), the conclusion of the theorem fol-
lows from the uniqueness assumption, the inequalities u(x) ≤ u ≤ ū(x), v(x) ≤ v ≤ v̄(x),
x ∈ �, and a comparison with solutions of the differential system (.) with initial condi-
tions replaced at the steady-state upper lower solutions (ū(x), v(x)).

We next remove condition (.) on the initial functions u(x), v(x). First, observe that
there exists large K > , such that

u(x) ≤ Kū, V (x) ≤ Kv̄,

on �. Define (U(x, t), V (x, t)) to be the solution of problem (.) with initial conditions
replaced with

(
U(x, ), V (x, )

)
= (Kū, ).

It is clear that V ≡ , U is non-negative in � × [,∞) and

lim
t→∞ U(x, t) = U�(x) for x ∈ �, (.)

where U�(x) is the unique positive solution of the problem

μ�z + z
[
a(x) – b(x)z

]
=  in �, z =  on ∂�. (.)

Moreover, the convergence above is monotone, because U(x, ), V (x, ) satisfies

μ�U(x, ) + U(x, )
[
a(x) – b(x)U(x, ) – c(x)V (x, )

]

=
(
U(x, )

)
[

minx∈� b(x)
K

– b
]

< ,

μ�V (x, ) + V (x, )
[
d(x) – e(x)U(x, ) – f (x)V (x, )

]
= .

The convergence in (.) is also in C(�) norm by using the W ,p estimates, compact em-
bedding, and (.). Similarly, define (U(x, t), V (x, t)) to be the solution of problem (.) with
initial conditions replaced with

(
U(x, ), V (x, )

)
= (, Kv̄).
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We have U ≡ , V is non-negative in � × [,∞), and we have monotone C(�) conver-
gence,

lim
t→∞ V (x, t) = V �(x), (.)

where V �(x) is the unique positive solution of the problem

μ�z + z
[
d(x) – f (x)z

]
in �, z|∂� = . (.)

On the other hand, one readily verifies that the functions U(x, t), U(x, t), V (x, t), V (x, t)
satisfy

μ�U + U
[
a(x) – b(x)U – c(x)V

]
– ∂U/∂t < ,

μ�V + V
[
d(x) – e(x)U – f (x)V

]
– ∂V /∂t ≥ ,

μ�V + V
[
d(x) – e(x)U – f (x)V

]
– ∂V /∂t < ,

μ�U + U
[
a(x) – b(x)U – c(x)V

]
– ∂U/∂t ≥ ,

(.)

for (x, t) ∈ � × (,∞), and

 = U(x, ) ≤ u(x) ≤ U(x, ) = Kū,

 = V (x, ) ≤ v(x) ≤ V (x, ) = Kv̄,
(.)

for x ∈ �. From the comparison theorems, we assert that

 = U(x, t) ≤ u(x, t) ≤ U(x, t),

 = V (x, t) ≤ v(x, t) ≤ V (x, t),
(.)

for (x, t) ∈ � × [,∞). We next observe that μ�ū + ū[a(x) – b(x)ū] <  in �, ū|∂� = ,
thus ū = θμ,a(x)/ minx∈� b(x) is a strict upper solution of the problem (.). Similarly, v̄ is a
strict upper solution of the problem (.).

By monotone iteration and comparison, we obtain

U� � ū, V � � v̄. (.)

For s > , let us(x) = u(x, s), vs(x) = v(x, s) for x ∈ �. We obtain from (.), (.), (.), and
(.) for s >  sufficiently large

us(x) ≤ ū, vs(x) ≤ v̄, (.)

for x ∈ �. On the other hand for s > , we find from the theory of parabolic equations and
the strong maximum principle that us, vs are in C(�) and

us(x) 
 , vs(x) 
 . (.)

Comparing (.) and (.), respectively, with (.) and (.), we obtain the conclusion of
this theorem by using the first part of the proof. �
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