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Abstract
In this paper, the spectrum and resolvent of the operator Lλ generated by the
differential expression �λ(y) = y′′ + q1(x)y′ + [λ2 + λq2(x) + q3(x)]y and the boundary
condition y′(0) – hy(0) = 0 are investigated in the space L2(R+). Here the coefficients
q1(x), q2(x), q3(x) are periodic functions whose Fourier series are absolutely convergent
and Fourier exponents are positive. It is shown that continuous spectrum of the
operator Lλ consists of the interval (–∞, +∞). Moreover, at most a countable set of
spectral singularities can exists over the continuous spectrum and at most a
countable set of eigenvalues can be located outside of the interval (–∞, +∞).
Eigenvalues and spectral singularities with sufficiently large modulus are simple and
lie near the points λ =± n

2 , n ∈N.
MSC: 34L05; 47E05
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1 Introduction
In this study, the spectrum and resolvent of the maximal differential operator Lλ generated
by the linear differential expression

�λ(y) = y′′ + q(x)y′ +
[
λ + λq(x) + q(x)

]
y

and the boundary condition y′() – hy() =  have been investigated in the space L(R+).
Here λ, h are complex parameters, R+ = (, +∞) and

qj(x) =
∞∑

n=

qjneinx, j = , , , ()

with complex coefficients qjn for which

∞∑

n=

n|qjn| < +∞,
∞∑

n=

|qn| < +∞, j = , . ()

The domain of the operator Lλ is

D(Lλ) =
{

y(x) | y(x), y′(x) ∈ AC[, R] for all R > ,

y′() – hy() = , y(x),�λ(y) ∈ L
(
R

+)}
.
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Let Q be the class of periodic functions q(x) =
∑∞

n= qneinx with ‖q(x)‖ =
∑∞

n= |qn| < +∞,
then Q is a complex normed space and q′

(x), q′
(x), q(x) ∈ Q.

It is clear that if at least one of the functions qj(x), j = , , , is not zero, then the operator
Lλ is non-self-adjoint for each λ ∈C.

In the study [], the Floquet solutions of equation �λ(y) =  in the case q(x) ≡ q(x) ≡ 
were constructed, and using these solutions direct and inverse spectral problems were
investigated for the operator L = – d

dx + q(x) in the space L(R). Later, using some differ-
ent methods, the inverse problem for the operator L = – d

dx + q(x) with periodic poten-
tial q(x) ∈ L(, π ) was investigated in [], the spectrum and resolvent operator were
studied in []. Some results of [] were generalized for the n order linear differen-
tial operators with almost periodic coefficients from class AP+ of functions of the form
p(x) =

∑∞
n= pneiαnx with ‖p(x)‖ =

∑∞
n= |pn| < +∞ in [, ]. Here (αn)∞n= is an increasing

sequence of positive numbers and the set {αn : n ∈ N} is an additive semigroup. The spec-
trum and resolvent of a pencil of high order differential operators with periodic and almost
periodic coefficients were investigated in [] and [, ], respectively. The inverse problem
for a pencil of n order differential operators with periodic coefficients from the class Q
was studied in []. The pencil of the second order differential operators with periodic coef-
ficients was investigated in [, ]. Afterwards, the spectrum and resolvent for the pencil
of the second order differential operators with almost periodic coefficients from the class
AP+ under more general conditions on the coefficients were investigated in []. In all of
these studies, the examined operators have a pure continuous spectrum, and the contin-
uous spectrum consists of a half-line or union of lines pass from origin; moreover, there
may be at most a countable number of spectral singularities on the continuous spectrum
of the examined operators.

In the present study the operator Lλ is investigated in the space L(R+). It is proved
that the continuous spectrum of the operator pencil Lλ consists of the interval (–∞, +∞)
and there may be at most a countable set of spectral singularities on the continuous spec-
trum. Moreover, there may be a countable set σp(Lλ) of eigenvalues outside the interval
(–∞, +∞), singular values λ±

n (eigenvalues or spectral singularities) with sufficiently large
modulus are simple, lie in the neighborhood of points λ = ± n

 , n ∈ N and satisfy the asymp-
totic formula

λ±
n = ±n


+ O

(

n

)
, n → ∞.

Note that the analogous problem was investigated in [] for the operator pencil Lλ gen-
erated by the differential expression �λ(y) and the condition y() =  in the space L(R+)
in case q(x) = iq(x).

2 Floquet solutions of the equation �λ(y) = 0
The system of linear independent solutions of an equation of type �λ(y) =  with almost
periodic coefficient from the class AP+ was investigated in []. According to Theorem 
in the study [], we can formulate the following theorem related with the equation

y′′ + q(x)y′ +
[
λ + λq(x) + q(x)

]
y = , –∞ < x < +∞. ()
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Theorem  If the functions qj(x), j = , , , satisfy conditions () and (), then for ∀λ ∈ C,
λ 	= ± n

 , n ∈ N the differential equation () has the solutions

f(x,λ) = eiλx

(

 +
∞∑

n=

U ()
n (λ)einx

)

, f(x,λ) = e–iλx

(

 +
∞∑

n=

U ()
n (λ)einx

)

, ()

where the series
∞∑

n=

∣
∣U (s)

n (λ)
∣
∣n, s = , ,

is uniform convergent in each compact set S ⊆ C which does not contain the numbers λ =

– n
 , n ∈ N in case s =  and λ = n

 , n ∈ N in case s = . Here U ()
n (λ) = U ()

n +
∑n

k=
U()

kn
k+λ

,

U ()
n (λ) = U ()

n +
∑n

k=
U()

kn
k–λ

, n ∈N.

The solutions f(x,λ) and f(x,λ) can be used for the investigation of the structure of
the spectrum and the kernel of the resolvent operator of Lλ, but they are not sufficient
for studying the asymptotic of the singular values of the operator Lλ. For this reason it is
convenient to use the Floquet solutions of the form

{
f(x,λ) = eiλx( +

∑∞
n= U ()

n einx +
∑∞

k=


k+λ

∑∞
n=k U ()

kn einx),
f(x,λ) = e–iλx( +

∑∞
n= U ()

n einx +
∑∞

k=


k–λ

∑∞
n=k U ()

kn einx)
()

with conditions
∑∞

n= n|U (s)
n | < +∞,

∑∞
k=


k
∑∞

n=k n|U (s)
kn | < +∞, s = , . It is clear that

these representations of the solutions are a modified form of formulas ().
The special solutions of type () are used in [, ] under various conditions on the

coefficients of the considered equations. We use the following theorem about existence of
the Floquet solutions of equation ().

Theorem  If q′
(x), q′

(x), q(x) ∈ Q, then for each λ 	= – n
 , n ∈ N the differential equation

() has solutions as

f (x,λ) = eiλx

(

 +
∞∑

n=

uneinx +
∞∑

k=


k + λ

∞∑

n=k

ukneinx

)

, ()

where the sequences {un}, {ukn} of complex numbers are uniquely determined from the sys-
tem of equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–nun – n
∑n

k= ukn + qn +
∑n–

m=(imq,n–m + q,n–m)um

+ 

∑n–

m=(iq,n–m + q,n–m)
∑m

k= ukm = ,
–nun + iqn + qn +

∑n–
m=(iq,n–m + q,n–m)um = , n ∈N,

–n(n – k)ukn +
∑n–

m=k[imq,n–m + q,n–m – 
 (iq,n–m + q,n–m)k]ukm = ,

k, n ∈N, n ≥ k + 

()

and the series
∞∑

n=

n|un|,
∞∑

k=


k

∞∑

n=k

n|ukn| ()

converge.
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Proof If we assume the existence of the solution of equation () of the form (), accord-
ing to convergence of series (), we can find the derivatives of f (x,λ) with respect to x as
follows:

f ′(x,λ) = eiλx

(

iλ +
∞∑

n=

i(λ + n)uneinx +
∞∑

k=


k + λ

∞∑

n=k

i(λ + n)ukneinx

)

,

f ′′(x,λ) = eiλx

(

–λ –
∞∑

n=

(λ + n)uneinx –
∞∑

k=


k + λ

∞∑

n=k

(λ + n)ukneinx

)

.

If we substitute these expressions in equation () and divide both sides by eiλx, according
to uniqueness properties of the Fourier series, we have the following system of equations
for the sequences {un}, {ukn}:

–

(

un +
n∑

k=

ukn

k + λ

)

n(n + λ) + iλqn + λqn + qn

+
∑

s+m=n

(

um +
m∑

k=

ukm

k + λ

)
[
i(λ + m)qs + λqs + qs

]
= , n ∈ N.

From this system we get the system of equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–nun – n
∑n

k= ukn + qn +
∑

s+m=n(imqs + qs)um

+ 

∑

s+m=n(iqs + qs)
∑m

k= ukm = ,
–nun + iqn + qn +

∑
s+m=n(iqs + qs)um = , n ∈N,

–n(n – k)ukn +
∑

s+m=n
m≥k

[imqs + qs – 
 (iqs + qs)k]ukm = , k, n ∈ N, n ≥ k + 

to determine {un}, {ukn}. The last system of equations can be rewritten as (). Therefore the
sequences {un}, {ukn} in the expression of solution () of equation () satisfy system (). On
the contrary, if {un}, {ukn} satisfy the system of equations () and series () converge, then
the function f (x,λ) determined by formula () is a solution of (). Therefore to prove the
theorem, it is sufficient to show the solvability of system () and the convergence of series
(). It is easy to see that the system of equations () has a unique solution. Indeed, from the
second equation of system (), the sequence {un} is determined by the recurrent manner
uniquely. Furthermore, by the known sequence {un}, from the first and third equations of
system (), the sequence {ukn} is also determined by the recurrent manner uniquely. It is
not easy to prove the convergence of series () for the sequences determined from sys-
tem (). However, in the special case q(x) = iq(x) this is proved in [] (see Theorem ).
The existence of solution () can be proved by reducing to this special case. For this rea-
son, we make the substitution y(x) = z(x)eu(x) in equation (). Here, z(x) is a new unknown
function, u(x) = – 


∫

[q(x) + iq(x)] dx = – 

∑∞

n=
qn+iqn

in einx is a twice continuously dif-
ferentiable periodic function such that u′(x) = – 

 [q(x) + iq(x)] and u(x), u′(x), u′′(x) ∈ Q.
If we take into account the expression of the function y(x) in equation (), we have

z′′ + p(x)y′ +
[
λ + iλp(x) + q(x)

]
y = , –∞ < x < +∞, ()



Orujov Boundary Value Problems  (2015) 2015:117 Page 5 of 16

where p(x) = –iq(x), q(x) = u′′ + (u′) + q(x)u′ + q(x) = q(x) – 
 [q′

(x) + iq′
(x)] – 

 [q
 (x) +

q
(x)]. Therefore, because of p(x), p′(x), q(x) ∈ Q by Theorem  in [], we have that equa-

tion () has the solution of the form

z(x,λ) = eiλx

(

 +
∞∑

n=

ũneinx +
∞∑

k=


k + λ

∞∑

n=k

ũkneinx

)

,

where the series

∞∑

n=

n |̃un| and
∞∑

k=


k

∞∑

n=k

n |̃ukn|

converge. Consequently,

y(x,λ) = eu(x)eiλx

(

 +
∞∑

n=

ũneinx +
∞∑

k=


k + λ

∞∑

n=k

ũkneinx

)

is a solution of equation (). Here, we can write eu(x) = +u(x), where u(x) ∈ Q by Wiener
and Levy’s theorem (see [], p.). Hence, we obtain

f (x,λ) = y(x,λ) = eiλx

(

 + u(x) +
(
 + u(x)

) ∞∑

n=

ũneinx +
∞∑

k=

 + u(x)
k + λ

∞∑

n=k

ũkneinx

)

= eiλx

(

 +
∞∑

n=

uneinx +
∞∑

k=


k + λ

∞∑

n=k

ukneinx

)

,

where
∑∞

n= uneinx = u(x) + ( + u(x))
∑∞

n= ũneinx ∈ Q and uk(x) =
∑∞

n=k ukneinx = ( +
u(x))

∑∞
n=k ũkneinx with uk(x), u′

k(x), u′′
k (x) ∈ Q for k ≥ . If we use the inequality

‖p(x)q(x)‖ ≤ ‖p(x)‖‖q(x)‖, ∀p(x), q(x) ∈ Q which is satisfied in the normed space Q, the
convergence of the series ‖(

∑∞
n= uneinx)′′‖ =

∑∞
n= |un|n and

∑∞
k=


k ‖u′′

k (x)‖ =
∑∞

k=

k ×

∑∞
n=k n|ukn| can be easily proved. Therefore we have that series () converge for solution

f (x,λ) of equation (). The theorem is proved. �

In order to find the second solution of equation () which is linearly independent with
the solution f (x,λ), we put μ = –λ in equation (). Then equation () is written as

y′′ + q(x)y′ +
[
μ – μq(x) + q(x)

]
y = , –∞ < x < +∞. ()

By Theorem , equation () has the solution

g(x,μ) = eiμx

(

 +
∞∑

n=

vneinx +
∞∑

k=


k + μ

∞∑

n=k

vkneinx

)

.

Then, for each λ 	= n
 , n ∈N, the function

f̃ (x,λ) = g(x, –λ) = e–iλx

(

 +
∞∑

n=

vneinx +
∞∑

k=


k – λ

∞∑

n=k

vkneinx

)
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is the second solution of () where the series
∑∞

n= |vn|n and
∑∞

k=

k
∑∞

n=k n|vkn| con-
verge.

In what follows we use representations () for the solutions f (x,λ), f̃ (x,λ).

Corollary  If the functions q′
(x), q′

(x), q(x) ∈ Q, then for ∀λ 	= ± n
 , λ ∈C, n ∈N, equation

() has the Floquet solutions

f(x,λ) = eiλx

(

 +
∞∑

n=

U ()
n einx +

∞∑

k=


k + λ

∞∑

n=k

U ()
kn einx

)

,

f(x,λ) = e–iλx

(

 +
∞∑

n=

U ()
n einx +

∞∑

k=


k – λ

∞∑

n=k

U ()
kn einx

)

,

in R for which the series of type () converge.

Corollary  For each x ∈ R, the functions fj(x,λ), j = , , and their derivatives f ′
j (x,λ),

f ′′
j (x,λ) with respect to x are meromorphic functions with respect to λ, and they may have

only simple poles λ = (–)jn/, n ∈ N, and they are also continuous functions of pair (x,λ)
for all x ∈ R, λ ∈C, λ 	= (–)jn/, n ∈ N.

Corollary  The solutions f(x,λ), f(x,λ) for ∀λ 	= , ± n
 , λ ∈ C, n ∈ N are linearly inde-

pendent in each interval and their Wronskian is W (x,λ) = W [f, f](x,λ) = –iλe–
∫

q(x) dx,
where

∫
q(x) dx =

∑∞
n=

qn
in einx (see [], p.).

Note that if at most one of the functions q(x), q(x), q(x) is distinct from zero, then the
functions fj(x,λ) have at most one pole. Namely, if U (j)

nn 	= , then λ = (–)jn/, j = , , is
the simple pole of the function fj(x,λ), if U (j)

nn = , then the function fj(x,λ) is regular at the
point λ = (–)jn/, j = , .

The linearly independent solutions of equation () for λ =  or λ = ∓ n
 , n ∈N have been

constructed in []. These solutions are the functions f̃n(x) = e– n
 x(ψn(x) + xφn(x)) and

f(x, – n
 ) when λ = – n

 , f(x, n
 ) and f̃n(x) = ei n

 x(ψn(x) + xφn(x)) when λ = n
 , and f̃(x) =

ψ(x), f̃(x) = xψ(x) + φ(x) when λ = . Here the functions ψn(x), φn(x), ψn(x), φn(x),
ψ(x), φ(x) belong to the class Q.

3 The spectrum and resolvent of the operator Lλ

Theorem  The operator Lλ does not have real eigenvalues, i.e. σp(Lλ) ∩R = ∅.

Proof Let us show that the equation Lλy =  has only a trivial solution which belongs to
L(R+) for ∀λ ∈ R. In case λ 	= , ± n

 , n ∈ N this follows from the properties of solutions
f(x,λ) and f(x,λ). Indeed, if y(x,λ) = cf(x,λ) + cf(x,λ) is the solution of the equation
lλ(y) =  belonging to L(R+) and satisfying the condition y′() – hy() = , then y(x,λ) is
an almost periodic function and necessarily y(x,λ) ≡ , thus λ is not eigenvalue. If linearly
independent solutions of () according to λ = ± n

 , n ∈ N or λ =  are taken instead of
f(x,λ) and f(x,λ), then similar result is also valid. Hence σp(Lλ) ∩R = ∅. The theorem is
proved. �

Theorem  The operator Lλ has at most a countable set of eigenvalues in C\R.
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Proof It is easy to see that f(x,λ) ∈ L(R+), f(x,λ) /∈ L(R+) for Imλ >  and f(x,λ) /∈
L(R+), f(x,λ) ∈ L(R+) for Imλ < . These relations imply

y(x,λ) = cf(x,λ) + cf(x,λ) ∈ L(, +∞), y′(,λ) – hy(,λ) = , λ ∈C\R,

if and only if the eigenvalue equations

	(λ) = f ′
 (,λ) – hf(,λ) =  when Imλ >  or

	(λ) = f ′
(,λ) – hf(,λ) =  when Imλ < 

are satisfied.
Since 	(λ) and 	(λ) are holomorphic functions in the upper and lower half planes

respectively, these equations have at most a countable set of roots in C\R, i.e. σp(Lλ) is a
countable set. The theorem is proved. �

Theorem  The residual spectrum of the operator Lλ is an empty set, i.e. σr(Lλ) = ∅.

Proof Since the operator Lλ is one to one for every λ ∈ C\σp(Lλ), then λ ∈ σr(Lλ) if and
only if when the range R(Lλ) is not dense in L(R+). It means the equation L∗

λ(z) =  has a
nontrivial solution z(x), in other words λ ∈ σ (L∗

λ). In here, if we take into account that the
operator L∗

λ is generated by the linear differential expression

�∗
λ(z) = z′′ – q(x)z′ +

[
λ + λq(x) – q′

(x) + q(x)
]
z

and the boundary condition z′() – [h + q()]z() =  in the domain

D
(
L∗

λ

)
=

{
z(x) | z(x), z′(x) – q(x)z ∈ AC[, R] for all R > ,

z′() –
[
h + q()

]
z() = , z(x),�∗

λ(z) ∈ L
(
R

+)}
,

there exists a nontrivial solution z(x) ∈ L(R+) satisfying the condition z′() – [h + q()] ×
z() =  of the conjugate equation

z′′(x) – q(x)z′(x) +
[
λ + λq(x) – q′

(x) + q(x)
]
z(x) = ,  < x < +∞. ()

Since equation () is an equation of type (), then according to Theorem  equation ()
for λ ∈R does not have a nontrivial solution z(x) ∈ L(R+), i.e. λ /∈ σp(L∗

λ) or σr(Lλ)∩R = ∅.
In general, if λ ∈ C, λ 	= , ± n

 , n ∈ N, then according to Corollary , equation () has
the solutions as

ϕ(x,λ) = eiλx

(

 +
∞∑

n=

V ()
n einx +

∞∑

k=


k + λ

∞∑

n=k

V ()
kn einx

)

and

ϕ(x,λ) = e–iλx

(

 +
∞∑

n=

V ()
n einx +

∞∑

k=


k – λ

∞∑

n=k

V ()
kn einx

)
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in R. Clearly the functions (see [], pp.-)

z(x,λ) = –
iλf(x,λ)

W [f, f](x,λ)
= –

iλf(x,λ)
W (x,λ)

,

z(x,λ) = –
iλf(x,λ)

W [f, f](x,λ)
= –

iλf(x,λ)
W (x,λ)

are linearly independent solutions of equation () for λ 	= , ± n
 , n ∈N. By the uniqueness

theorems for the analytic and almost periodic functions, it is easy to see that

ϕ(x,λ) = –
iλf(x,λ)
W (x,λ)

, ϕ(x,λ) = –
iλf(x,λ)

W (x,λ)
. ()

From the explicit form of functions ϕi(x,λ), i = , , we have ϕ(x,λ) ∈ L(R+), ϕ(x,λ) /∈
L(R+) for Imλ >  and ϕ(x,λ) /∈ L(R+), ϕ(x,λ) ∈ L(R+) for Imλ < . Consequently, the
solution z(x) = cϕ(x,λ)+cϕ(x,λ) of equation () with conditions z′()–[h+q()]z() =
 and z(x) ∈ L(R+) only exists for values of the parameter λ satisfying the equation
ϕ′

(,λ) – [h + p()]ϕ(,λ) =  when Imλ >  or the equation ϕ′
(,λ) – [h + q()]ϕ(,λ) =

 when Imλ < . From () we get

ϕ′
i(x,λ) –

[
h + q(x)

]
ϕi(x,λ)

=
(

–
iλfi(x,λ)
W (x,λ)

)′
+

[
h + q(x)

]iλfi(x,λ)
W (x,λ)

= –
iλf ′

i (x,λ)W (x,λ) – iλfi(x,λ)W ′(x,λ)
(W (x,λ)) +

[
h + q(x)

]iλfi(x,λ)
W (x,λ)

= –
iλ[f ′

i (x,λ) – hfi(x,λ)]
W (x,λ)

and

ϕ′
i(,λ) –

[
h + q()

]
ϕi(,λ) = –

iλ[f ′
i (,λ) – hfi(,λ)]

W (,λ)

= –
iλ	i(λ)
W (,λ)

= 	i(λ)e
∑∞

n=
qn
in , i = , .

Thus ϕ′
i(,λ)–[h+q()]ϕi(,λ) =  is equivalent to 	i(λ) = , i = , . By this, we have that

if λ ∈ C\R is an eigenvalue of the operator L∗
λ, then λ is an eigenvalue of the operator Lλ.

However it contradicts the fact that λ ∈ C\σp(Lλ). Consequently, all λ ∈ C\R do not be-
long to residual spectrum of the operator Lλ, i.e. σr(Lλ) ∩C\R = ∅. Since σr(Lλ) ∩R = ∅,
consequently we get σr(Lλ) = ∅. The theorem is proved. �

According to Theorem , for each λ ∈C\σp(Lλ), the inverse operator L–
λ is defined in a

dense subset of the space L(R+). Let us show that for each λ ∈C\[σp(Lλ)∪R] the operator
L–

λ is bounded on L(R+). For this reason, let us investigate the solution y(x,λ) ∈ L(R+)
of

y′′ + q(x)y′ +
[
λ + λq(x) + q(x)

]
y = f (x) ()
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satisfying the condition y′() – hy() = , where f (x) ∈ L(R+). If we apply the Lagrange
method by using Floquet solutions of equation (), we find the solution of () as

y(x,λ) =
∫ +∞


G(x, t,λ)f (t) dt, ()

where

G(x, t,λ) =


	(λ)W (t,λ)

{
f(x,λ)f(t,λ),  ≤ t < x,
f(x,λ)f(t,λ), t ≥ x,

if Imλ > , 	(λ) 	= ,

G(x, t,λ) =


	(λ)W (t,λ)

{
f(x,λ)f(t,λ),  ≤ t < x,
f(x,λ)f(t,λ), t ≥ x,

if Imλ < , 	(λ) 	= , where

f(x,λ) = 	()f(x,λ) – 	()f(x,λ)

is the solution of equation () in (–∞, +∞) with initial conditions f(,λ) = W (,λ) =
–iλw, f ′

(,λ) = –iλhw, w = e–
∑∞

n=
qn
in . It is easy to see that the function

ϕ̂(x,λ) =
f(x,λ)
W (x,λ)

=
	()ϕ(x,λ) – 	()ϕ(x,λ)

–iλ

is the solution of equation () with the conditions ϕ̂(,λ) = , ϕ̂′(,λ) = h + q() and the
function

f̂ (x,λ) =
f(x,λ)
–iλ

=
	()f(x,λ) – 	()f(x,λ)

–iλ

is the solution of equation () with the conditions f̂ (,λ) = w, f̂ ′(,λ) = hw. Therefore,
these solutions are holomorphic functions of λ in C. Using these expressions we can write

G(x, t,λ) =


	(λ)

{
f(x,λ)ϕ̂(t,λ),  ≤ t < x,
f̂ (x,λ)ϕ(t,λ), t ≥ x

if Imλ > , 	(λ) 	= ,

G(x, t,λ) =


	(λ)

{
f(x,λ)ϕ̂(t,λ),  ≤ t < x,
f̂ (x,λ)ϕ(t,λ), t ≥ x

if Imλ < , 	(λ) 	= . By these formulas the function G(x, t,λ) is analytic with respect to
λ at point λ for which 	(λ) 	=  and 	(λ) 	= . From the explicit expression of functions
fi(x,λ) and ϕi(x,λ) it follows that for ∀λ ∈C\σp(Lλ), Imλ 	= 

∣∣G(x, t,λ)
∣∣ ≤ C(λ)e–τ |x–t|, ()
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where C(λ) > , τ = | Imλ|, ∀x, t ∈ (, +∞). From here we have that

∫ +∞



∣
∣G(x, t,λ)

∣
∣ dx < +∞ and

∫ +∞



∣
∣G(x, t,λ)

∣
∣ dt < +∞.

By considering formulas (), () it can be proved by the standard method (see [],
pp.-) that for each f (x) ∈ L(R+) the function

y(x,λ) =
∫ +∞


G(x, t,λ)f (t) dt,

belongs to L(R+) and satisfies the condition y′(,λ) – hy(,λ) = . Further the integral
operator L–

λ : L(R+) → L(R+) defined by

(Rλf )(x) =
(
L–

λ f
)
(x) =

∫ +∞


G(x, t,λ)f (t) dt

is bounded for ∀λ ∈ C\[σp(Lλ) ∪ R] and ‖Rλ‖ ≤ |C(λ)|
τ

. It means that λ ∈ ρ(Lλ). On the
other hand, for Imλ = , the operator L–

λ is a closed operator defined on a dense proper
subset of L(R+), and so L–

λ is an unbounded operator, which means λ ∈ σc(Lλ).
It is clear that root λ of the equations 	(λ) = , Imλ ≥  or 	(λ) = , Imλ ≤  may be a

pole of the kernel G(x, t,λ). If Imλ 	= , then these poles are eigenvalues of the operator Lλ.
If Imλ = , since Lλ does not have λ ∈ R as an eigenvalue, then the kernel G(x, t,λ) of the
resolvent operator has poles at these points which are called spectral singularities (in the
sense of [], p.) of the operator Lλ.

Thus the following theorem is true.

Theorem  Lλ has a continuous spectrum σc(Lλ) = R, a countable set of eigenvalues
σp(Lλ) ⊆ C\R and the resolvent set ρ(Lλ) = C\(R ∪ σp(Lλ)). The resolvent operator L–

λ

is an integral operator in L(R+) with the kernel G(x, t,λ) of Carleman type for λ ∈ ρ(Lλ).

4 The asymptotic formulas for singular values of the operator Lλ

In this section we specify the location of the singular values of the operator Lλ on the
λ complex plane and show that the singular values with sufficiently large modulus are
located close to the points λ = ± n

 , n ∈N. Note that by the singular values of the operator
Lλ we mean the eigenvalues and spectral singularities of the operator Lλ. For this reason
we show that the singular values are located on the set Eα = {λ|λ ∈C, | Imλ| < α, Reλ < α}
for some α > . Let us prove this fact for the case Imλ ≥ , 	(λ) = f ′

 (,λ) – hf(,λ) = ;
when Imλ ≤ , 	(λ) = f ′

(,λ) – hf(,λ) = , it is proved in a similar way.
Let U(x) =  +

∑∞
n= U ()

n einx. According to the second equation of system (), the func-
tion U(x) is the nontrivial solution of the equation iy′ + [iq(x) + q(x)]y = , and so
U(x) = e 


∫

[iq(x)–q(x)] dx, U = U() =  +
∑∞

n= U ()
n 	= . First, we show that there exists

α > max{, |h|,∑∞
k=

∑∞
n=k |U ()

kn |�|U|} such that the equation 	(λ) does not have a root
outside the set Eα . For this purpose, we use the representation

	(λ) = f ′
 (,λ) – hf(,λ) = (iλ – h)f(,λ) +

∞∑

n=

inU ()
n +

∞∑

k=


k + λ

∞∑

n=k

inU ()
kn .
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Because of |k + λ| ≥ α >  and |λ| ≥ α > |h| for each λ ∈ C\Eα , k ∈ N, the following
inequalities

∣
∣	(λ)

∣
∣ ≥ ∣

∣(iλ – h)f(,λ)
∣
∣ –

∣
∣∣
∣∣

∞∑

n=

inU ()
n

∣
∣∣
∣∣

–

∣
∣∣
∣∣

∞∑

k=


k + λ

∞∑

n=k

inU ()
kn

∣
∣∣
∣∣

≥ (|λ| – |h|)∣∣f(,λ)
∣∣ –

∞∑

n=

n
∣∣U ()

n
∣∣ –

∞∑

k=


|k + λ|

∞∑

n=k

n
∣∣U ()

kn
∣∣

≥ (|λ| – |h|)∣∣f(,λ)
∣
∣ –

∞∑

n=

n
∣
∣U ()

n
∣
∣ –




∞∑

k=

∞∑

n=k

n
∣
∣U ()

kn
∣
∣

and

∣∣f(,λ)
∣∣ =

∣
∣∣
∣∣
 +

∞∑

n=

U ()
n +

∞∑

k=


k + λ

∞∑

n=k

U ()
kn

∣
∣∣
∣∣
≥

∣
∣∣
∣∣
 +

∞∑

n=

U ()
n

∣
∣∣
∣∣

–

∣
∣∣
∣∣

∞∑

k=


k + λ

∞∑

n=k

U ()
kn

∣
∣∣
∣∣

≥ |U| –
∞∑

k=


|k + λ|

∞∑

n=k

∣
∣U ()

kn
∣
∣ ≥ |U| –


α

∞∑

k=

∞∑

n=k

∣
∣U ()

kn
∣
∣

> |U| –
|U|


=

|U|


are satisfied. According to above inequalities, we get

∣∣	(λ)
∣∣ >

(|λ| – |h|) |U|


–
∞∑

n=

n
∣∣U ()

n
∣∣ –




∞∑

k=

∞∑

n=k

n
∣∣U ()

kn
∣∣

≥ α
|U|


– |h| |U|


–

∞∑

n=

n
∣
∣U ()

n
∣
∣ –




∞∑

k=

∞∑

n=k

n
∣
∣U ()

kn
∣
∣ > 

for each

α > max

{
,

∑∞
k=

∑∞
n=k n|U ()

kn | + 
∑∞

n= n|U ()
n | + |h||U|

|U|
}

.

For some α satisfying this condition, the equation 	(λ) =  does not have any root outside
the set Eα . On the other hand, the function 	(λ) is holomorphic at every interior point
λ 	= – k

 (k ∈N) of the set Eα and on the boundary of this set. Then the equation 	(λ) = 
may have at most a countable set of roots in the set Eα , and all these roots may have the
unique limit point at infinity. Let us show that the roots of the equation 	(λ) =  with
sufficiently large modulus are located close to the points λ = – n

 , n ∈ N. For this, taking
into account the absolute convergence of the series

∑∞
k=

∑∞
n=k n|U ()

kn |, we can choose the
smallest number k ∈ N, k >  such that

∑∞
k=k

∑∞
n=k n|U ()

kn | < |U|
 . Further, because of

limλ→∞
∑k–

k=


k+λ

∑∞
n=k U ()

kn = , we can take the number k ∈ N, k > max{k, |h| + 
 }

such that the inequality

∣∣
∣∣
∣

k–∑

n=


n + λ

∞∑

k=n

U ()
nk

∣∣
∣∣
∣

<
|U|
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is satisfied for all r ≥ k, r ∈N and all λ ∈ C, | Imλ| < α, Reλ ≤ – r
 + 

 . Thus, for λ ∈ Eα ,
Reλ ≤ – r

 + 
 , |λ + k| ≥ 

 , k ≥ r, we have |λ| > 
 |h|, |λ + k| ≥ 

 , k ≥  and because of

∣∣f(,λ)
∣∣ ≥ |U| –

∣∣∣
∣∣

∞∑

k=


k + λ

∞∑

n=k

U ()
kn

∣∣∣
∣∣

≥ |U| –

∣
∣∣∣
∣

k–∑

k=


k + λ

∞∑

n=k

U ()
kn

∣
∣∣∣
∣

–
∞∑

k=k


|k + λ|

∞∑

n=k

∣
∣U ()

kn
∣
∣

≥ |U| –
|U|


–

∞∑

k=k

k
∞∑

n=k

∣∣U ()
kn

∣∣ =
|U|


–

∞∑

k=k

∞∑

n=k

n
∣∣U ()

kn
∣∣

>
|U|


–

|U|


=
|U|


> , ()

we have the inequality

∣∣	(λ)
∣∣ ≥ |iλ – h|∣∣f(,λ)

∣∣ –

∣∣∣
∣∣

∞∑

n=

inU ()
n +

∞∑

k=


k + λ

∞∑

n=k

inU ()
kn

∣∣∣
∣∣

≥ |U|


|iλ – h| –
∞∑

n=

n
∣
∣U ()

n
∣
∣ –

∞∑

k=


|k + λ|

∞∑

n=k

n
∣
∣U ()

kn
∣
∣

≥ |U|


∣∣|λ| – |h|∣∣ –
∞∑

n=

n
∣∣U ()

n
∣∣ – 

∞∑

k=

∞∑

n=k

n
∣∣U ()

kn
∣∣

>
|U|



∣∣
∣∣
r


–




∣∣
∣∣ –

|U|


|h| –
∞∑

n=

n
∣
∣U ()

n
∣
∣ – 

∞∑

k=

∞∑

n=k

n
∣
∣U ()

kn
∣
∣ > 

for

r


>




+
|U||h| + 

∑∞
n= n|U ()

n | + 
∑∞

k=
∑∞

n=k n|U ()
kn |

|U|

or for

r >



+
|U||h| + 

∑∞
n= n|U ()

n | + 
∑∞

k=
∑∞

n=k n|U ()
kn |

|U| .

Consequently, for the smallest r > max{k, 
 + |U||h|+

∑∞
n= n|U()

n |+
∑∞

k=
∑∞

n=k n|U()
kn |

|U| }, r ∈N,
the roots of the equation 	(λ) =  satisfying the conditions λ ∈ Eα , Reλ ≤ – r

 + 
 can

be located only in the neighborhood of the points λ = – k
 , k ≥ r with radius δ = 

 . On
the other hand, the equation 	(λ) =  may have a finite number of roots satisfying the
conditions λ ∈ Eα , Reλ > – r

 + 
 . Show that if the point λ = – m

 , m ≥ r is a pole of the
function f(,λ), that is, U ()

mm 	= , then there is a unique simple root of 	(λ) =  in the
neighborhood |λ + m

 | < 
 . Indeed, the equations 	(λ) =  and (m + λ)	(λ) =  have

the same roots in the closed disk |λ + m
 | ≤ 

 . Further if we put

g(λ) = (m + λ)(iλ – h)U,
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h(λ) = (m + λ)

(

(iλ – h)
∞∑

k=


k + λ

∞∑

n=k

U ()
kn +

∞∑

n=

inU ()
n +

∞∑

k=


k + λ

∞∑

n=k

inU ()
kn

)

,

then we have |λ+ k
 | ≥ 

 for each k ≥  on the circle |λ+ m
 | = 

 , and from () it is obtained
that

∣
∣g(λ)

∣
∣ –

∣
∣h(λ)

∣
∣

= |m + λ||iλ – h||U| – |m + λ|

×
∣∣
∣∣∣
(iλ – h)

∞∑

k=


k + λ

∞∑

n=k

U ()
kn +

∞∑

n=

inU ()
n +

∞∑

k=


k + λ

∞∑

n=k

inU ()
kn

∣∣
∣∣∣

≥ 


[

|iλ – h|
(

|U| –

∣∣
∣∣
∣

∞∑

k=


k + λ

∞∑

n=k

U ()
kn

∣∣
∣∣
∣

)

–

∣∣
∣∣
∣

∞∑

n=

inU ()
n +

∞∑

k=


k + λ

∞∑

n=k

inU ()
kn

∣∣
∣∣
∣

]

≥ 


(
(|λ| – |h|) |U|


–

∞∑

n=

n
∣
∣U ()

n
∣
∣ –

∞∑

k=


|k + λ|

∞∑

n=k

n
∣
∣U ()

kn
∣
∣
)

≥ 


((
r


–




– |h|
) |U|


–

∞∑

n=

n
∣
∣U ()

n
∣
∣ –

∞∑

k=


∞∑

n=k

n
∣
∣U ()

kn
∣
∣
)

> ,

i.e. |g(λ)| > |h(λ)|. Therefore, by the Rouché theorem, the functions (m + λ)	(λ) = g(λ) +
h(λ) and g(λ) have the same number of zeros in the disk |λ+ m

 | ≤ 
 . Since the function g(λ)

has the unique simple zero λ = – m
 in this disk, we have that the function (m + λ)	(λ)

also has the unique simple zero λ–
m in this disk. It is obvious that, if λ = – m

 is not a pole
of f(,λ), i.e. U ()

mm = , then the equation 	(λ) =  does not have any root in the disk
|λ + m

 | ≤ 
 . To show this it is sufficient to set

g(λ) = (iλ – h)U,

h(λ) =

(

(iλ – h)
∞∑

k=


k + λ

∞∑

n=k

U ()
kn +

∞∑

n=

inU ()
n +

∞∑

k=


k + λ

∞∑

n=k

inU ()
kn

)

and apply the Rouché theorem to the function 	(λ) = g(λ) + h(λ). Consequently, the
equation 	(λ) =  may have a unique simple root in the δ = 

 -neighborhood of the
point λ = – m

 for all m ≥ r. This implies that λ–
m = – m

 + δm, |δm| < 
 , m ≥ r. We show

that δm = O(/m), m ≥ r. It is easy to see that |iλ–
m – h| ≥ |λ–

m| – |h| ≥ m
 – |δm| – |h| ≥

m
 – 

 – |h| ≥ m( 
 – 

m – |h|
m ) ≥ m( 

 – 
 – |h|

|h| ) = m( 
 – 

 ) = m
 , m ≥ r. Now if we write

the equation 	(λ–
m) =  in the form

(
iλ–

m – h
)
U +

(
iλ–

m – h
) ∞∑

k=


k + λ–

m

∞∑

n=k

U ()
kn +

∞∑

n=

inU ()
n

+
∞∑

k=


k + λ–

m

∞∑

n=k

inU ()
kn = 
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or

(
iλ–

m – h
)
[

U +
∞∑

k=
k 	=m


k + λ–

m

∞∑

n=k

U ()
kn

]

+
(
iλ–

m – h
) 

m + λ–
m

∞∑

n=m
U ()

mn

+
∞∑

n=

inU ()
n +

∞∑

k=


k + λ–

m

∞∑

n=k

inU ()
kn = ,

we find that

∣∣m + λ–
m
∣∣

∣
∣∣
∣∣
U +

∞∑

k=
k 	=m


k + λ–

m

∞∑

n=k

U ()
kn

∣
∣∣
∣∣

≤
∞∑

n=m

∣
∣U ()

mn
∣
∣ +

|m + λ–
m|

|iλ–
m – h|

∞∑

n=

n
∣
∣U ()

n
∣
∣ +


|iλ–

m – h|
∞∑

k=

|m + λ–
m|

|k + λ–
m|

∞∑

n=k

n
∣
∣U ()

kn
∣
∣

≤ 
m

∞∑

n=m
n
∣∣U ()

mn
∣∣ +

/
m/

∞∑

n=

n
∣∣U ()

n
∣∣ +


m/

∞∑

k=

∞∑

n=k

n
∣∣U ()

kn
∣∣

≤ 
m

{ ∞∑

n=

n
∣
∣U ()

mn
∣
∣ + 

∞∑

n=

n
∣
∣U ()

n
∣
∣ + 

∞∑

k=

∞∑

n=k

n
∣
∣U ()

kn
∣
∣
}

or

|δm|
∣
∣∣
∣∣
U +

∞∑

k=
k 	=m


k + λ–

m

∞∑

n=k

U ()
kn

∣
∣∣
∣∣
≤ 

m

{ ∞∑

n=

n
∣
∣U ()

mn
∣
∣+ 

∞∑

n=

n
∣
∣U ()

n
∣
∣+ 

∞∑

k=

∞∑

n=k

n
∣
∣U ()

kn
∣
∣
}

.

If here we take into account the estimation
∣∣
∣∣
∣
U +

∞∑

k=
k 	=m


k + λ–

m

∞∑

n=k

U ()
kn

∣∣
∣∣
∣

≥ |U| –

∣
∣∣
∣∣

∞∑

k=
k 	=m


|k + λ–

m|
∞∑

n=k

U ()
kn

∣
∣∣
∣∣

≥ |U| –

∣
∣∣∣
∣

k–∑

k=


k + λ–

m

∞∑

n=k

U ()
kn

∣
∣∣∣
∣

–
∞∑

k=k
k 	=m


|k + λ–

m|
∞∑

n=k

∣
∣U ()

kn
∣
∣

≥ |U| –
|U|


–

∞∑

k=k
k 	=m


∞∑

n=k

∣
∣U ()

kn
∣
∣ ≥ |U|


–

∞∑

k=k

∞∑

n=k

n
∣
∣U ()

kn
∣
∣ >

|U|


–
|U|


=

|U|


,

we obtain

|U||δm| ≤ 
m

{ ∞∑

n=

n
∣∣U ()

mn
∣∣ + 

∞∑

n=

n
∣∣U ()

n
∣∣ + 

∞∑

k=

∞∑

n=k

n
∣∣U ()

kn
∣∣
}
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or

|δm| ≤ 
m|U|

{ ∞∑

n=

n
∣
∣U ()

mn
∣
∣ + 

∞∑

n=

n
∣
∣U ()

n
∣
∣ + 

∞∑

k=

∞∑

n=k

n
∣
∣U ()

kn
∣
∣
}

, ∀m ≥ r.

Since the series in brackets converge, the last inequality implies δm = O( 
m ), ∀m ≥ r. Con-

sequently, we prove that λ–
m = – m

 + O( 
m ), ∀m ≥ r.

By a similar way, we can show that the equation 	(λ) =  has the unique simple root
λ+

m in the δ = 
 -neighborhood of the point λ = m

 for all m ≥ r and some r ∈N for which
λ+

m = m
 + O( 

m ), ∀m ≥ r holds. Outside these neighborhoods, the equation 	(λ) =  may
have only a finite set of roots. If we set m = max{r, r}, we have

λ–
n = –

n


+ O
(


n

)
, λ+

n =
n


+ O
(


n

)
, n ≥ m.

Here λ±
n are the simple eigenvalues of the operator Lλ if Imλ–

n >  or Imλ+
n <  and f(x,λ–

n),
f(x,λ+

n) are eigenfunctions corresponding to eigenvalues λ±
n . If Imλ–

n =  or Imλ+
n = , then

λ±
n are the simple spectral singularities of the operator Lλ.
Taking into account the results of the work [], it can easily be shown that all analysis of

this work is also satisfied for the operator generated by the differential expression �λ(y) =
y′′ + q(x)y′ + [λ + λq(x) + q(x)]y and the condition y() =  in L(R+). So the following
theorem is true.

Theorem  The operator Lλ generated by the linear differential expression �λ(y) = y′′ +
q(x)y′ + [λ + λq(x) + q(x)]y and the boundary condition y′() – hy() =  (or y() = )
in the space L(R+) has the continuous spectrum σc(Lλ) = R, may have at most a countable
set of eigenvalues σp(Lλ) ⊆C\R and a countable set of spectral singularities on the contin-
uous spectrum. The resolvent operator L–

λ is an integral operator in L(R+) with the kernel
G(x, t,λ) of the Carleman type for all λ ∈ ρ(Lλ) = C\(R∪σp(Lλ)). Moreover, singular values
λ±

n (eigenvalues or spectral singularities) with sufficiently large modulus are simple, lie in
the neighborhood of points λ = ± n

 , n ∈N and the asymptotic formula

λ±
n = ±n


+ O

(

n

)
, n → ∞

is satisfied.
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