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Abstract
In this paper, we show the exponential decay result of the quasilinear von Karman
equation of memory type with acoustic boundary conditions. This work is devoted to
investigating the influence of kernel function g and the effect of the nonlinear term
|u′|ρu′′ and to proving exponential decay rates of solutions when g does not
necessarily decay exponentially. This result improves on earlier ones concerning the
exponential decay.
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1 Introduction
Let � ⊂ R be a bounded domain with sufficiently smooth boundary ∂�, � ∪ � = ∂�,
� ∩ � = ∅, � and � have positive measure and ν = (ν,ν) be the outward unit normal
vector, and by τ = (–ν,ν) we denote the corresponding unit tangent vector on ∂�. We
define u′ = ∂u

∂t , �u =
∑

i=
∂u
∂x

i
, �u =

∑
i=

∂u
∂x

i
, where x = (x, x) ∈ �. In this paper, we

consider the quasilinear von Karman equation of memory type with acoustic boundary
conditions:

∣
∣u′∣∣ρu′′ – α�u′′ + �u –

∫ t


g(t – s)�u(s) ds = [u, v] in � × (,∞), (.)

�v = –[u, u] in � × (,∞), (.)

v =
∂v
∂ν

=  on � × (,∞), (.)

u =
∂u
∂ν

=  on � × (,∞), (.)

Bu – B

(∫ t


g(t – s)u(s) ds

)

=  on � × (,∞), (.)

Bu – α
∂u′′

∂ν
– B

(∫ t


g(t – s)u(s) ds

)

= –y′ on � × (,∞), (.)

u′ + p(x)y′ + q(x)y =  on � × (,∞), (.)
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u() = u, u′() = u in �, y() = y on �, (.)

where α > , ρ > . The functions g , p and q satisfy some conditions to be specified later,
the von Karman bracket [·, ·] is given by

[u,φ] ≡ uxxφxx + uxxφxx – uxxφxx

and

Bu = �u + ( – μ)Bu,

Bu =
∂

∂ν
�u + ( – μ)Bu,

here μ ∈ (, 
 ) is Poisson’s ratio,

Bu = ννux ux – ν
 uxx – ν

 uxx ,

Bu =
∂

∂τ

[(
ν

 – ν

)
uxx + νν(uxx – uxx )

]
.

The physical applications of the above system are related to the problem of noise con-
trol and suppression in practical applications. In this model, problem (.)-(.) describes
small vibrations of a thin homogeneous isotropic plate of uniform thickness of α with
acoustic boundary conditions on a portion of the boundary and the Dirichlet boundary
condition on the rest, u(x, t) denotes the transversal displacement of the plate, the Airy
stress function, v(x, t) a vibrating plate and y(x, t) the normal displacement to the bound-
ary; and Eq. (.) was interpreted by the stresses at any instant dependent on the complete
history of strains. In this model, the portion of the boundary denoted by � is a locally re-
acting plate, with each point on the plate acting like a damped harmonic oscillator in the
response to excess stress from the fluid in the interior Eq. (.). The coupling between the
acoustic stress and the displacement of the boundary is given by Eqs. (.)-(.). The noise
sound propagates through some acoustic medium, for example, through air, in a room
which is characterized by a bounded domain � and whose walls, ceiling and floor are de-
scribed by the boundary conditions. This is the description of Wu in []. For more physical
explanation of wave equations with acoustic boundary, we refer the reader to [–]. The
acoustic boundary conditions were introduced by Beale and Rosencrans in [, ], where
the authors proved the global existence and regularity of solutions in a Hilbert space of
the linear problem

utt = �u in � × (,∞),

∂u
∂ν

= zt on ∂� × (,∞),

ut + m(x)ztt + p(x)zt + q(x)z =  on ∂� × (,∞),

where m, p and q are nonnegative functions on the boundary with m and q being strictly
positive.
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Frota and Larkin [] eliminated the term ztt and established global solvability and decay
estimates for a linear wave equation with boundary conditions

u′ + p(x)z′ + q(x)z =  in � × (,∞),

∂u
∂ν

= h(x)z′ on � × (,∞),

u =  on � × (,∞).

The decay rate estimated for wave equations of memory type with acoustic boundary
conditions was studied by Park and Park [], and Park et al. [] investigated the general
decay for a von Karman equation of memory type with acoustic boundary conditions. Park
and Ha [] considered the Klein-Gordon equation with damping |ut|ρut and acoustic
boundary conditions. Wu [] also proved the well-posedness for variable-coefficient wave
equation with nonlinear damped acoustic boundary conditions. Recently Boukhatem and
Benabderrahmane [] proved the existence and decay of solutions for a viscoelastic wave
equation with acoustic boundary conditions. The semilinear wave equation with porous
acoustic boundary conditions was studied by Graber and Said-Houari [], and Graber []
investigated the strong stability and uniform decay of solutions to a wave equation with
semilinear porous acoustic boundary conditions. The uniform decay for a von Karman
plate equation with a boundary memory condition was studied by Park and Park [].
Park and Kang [] considered the uniform decay of solutions for von Karman equations
of dynamic viscoelasticity with memory. The asymptotic behavior and energy decay of the
solutions for a quasilinear viscoelastic problems were studied by many authors [–],
and Kang [] proved the exponential decay for quasilinear von Karman equation with
memory.

Motivated by [] and [], in this paper we prove the exponential decay of a quasilinear
von Karman equation of memory type with acoustic boundary conditions for problem
(.)-(.) satisfying

d
dt

L(t) ≤ –Cξ (t)L(t) for some C >  and for all t ≥ t.

This is done by applying the idea presented in [, ] with some necessary modification
due to the nature of the problem treated here. To the best of our knowledge, there are no
results for a quasilinear von Karman equation of memory type with acoustic boundary
conditions. Thus this work is meaningful. In particular, the nonlinear term |u′|ρu′′ is dif-
ficult to analyze, and the result of the energy decay is dependent on the kernel g . So we
overcome the issue using the change of Lyapunov functional. The structure of this paper
is as follows. In Section , we give some notation and material needed for our work. In
Section , we prove the main results.

2 Preliminaries
In this section, we present some material needed in the proof of our result. Throughout
this paper, we define

V =
{

u ∈ H(�) : u =  on �
}

,

W =
{

u ∈ H(�) : u =
∂u
∂ν

=  on �

}

,
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(u, v) =
∫

�

u(x)v(x) dx,

(u, v)� =
∫

�

u(x)v(x) d�.

For a Banach space X, ‖ · ‖X denotes the norm of X. For simplicity, we denote ‖ · ‖L(�) by
norm ‖ · ‖ and ‖ · ‖L(�) by ‖ · ‖� , respectively. We define, for all  ≤ p < ∞,

‖u‖p
p =

∫

�

∣
∣u(x)

∣
∣p dx.

For  < μ < 
 , the bilinear form a(·, ·) is defined by

a(u, v) =
∫

�

{
uxx vxx + uxx vxx + μ(uxx vxx

+uxx vxx ) + ( – μ)uxx vxx

}
dx. (.)

A simple calculation, based on the integration by part formula, yields

∫

�

�uv dx = a(u, v) –
(

Bu,
∂v
∂ν

)

�

+ (Bu, v)� .

Thus, for (u, v) ∈ (H(�) ∩ W ) × W , it holds

∫

�

�uv dx = a(u, v) –
(

Bu,
∂v
∂ν

)

�

+ (Bu, v)� .

Since � = ∅, we have (see []) that
√

a(u, u) is equivalent to the H(�) norm in W , that
is,

C‖u‖
H(�) ≤ a(u, u) ≤ C‖u‖

H(�) for some C, C > . (.)

This and the Sobolev imbedding theorem imply that for some positive constants Cp, C̃p

and Cs,

‖u‖ ≤ Cpa(u, u), ‖u‖
� ≤ C̃pa(u, u) and

‖∇u‖ ≤ Csa(u, u) for all u ∈ W .
(.)

And since V ↪→ Lρ+(�), ρ > , there exists a positive constant K such that

‖u‖ρ+ ≤ K‖∇u‖, u ∈ V . (.)

By (.) and Young’s inequality, we deduce that

a(u, v) ≤ δ‖u‖
H(�) +


δ

‖v‖
H(�) for all δ > .

From this and (.), it holds that

a(u, v) ≤ δ‖u‖
H(�) +


Cδ

a(v, v) for all δ > . (.)
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Now we introduce the relative results of the Airy stress function and von Karman bracket
[·, ·].

Lemma . [] Let u, w be functions in H(�) and v in H
(�), where � is an open

bounded and connected set of R with regular boundary. Then
∫

�

w[u, v] dx =
∫

�

v[w, u] dx.

Lemma . [] Let u ∈ H(�) and v be the Airy stress function satisfying (.) and (.).
Then the following relations hold:

[u, v] ∈ L(�) and
∥
∥[u, v]

∥
∥ ≤ C‖u‖H(�)‖v‖W ,∞(�) ≤ C′‖u‖H(�)‖u‖

H(�), (.)

where C and C′ are some positive constants.

Now we state the assumptions for problem (.)-(.). For the relaxation function g , we
assume that g : R+ → R+ is continuously differentiable verifying that

g() > , l :=
∫ ∞


g(s) ds <  (.)

and

g ′(t) ≤ –ξ (t)g(t) for t ≥ , (.)

where ξ : R+ → R+ is a nonincreasing differentiable function. Condition (.) was con-
sidered by Messaoudi and Mustafa [] when studying the stability of a memory-type
Timoshenko system. For the functions p and q, we assume that p, q ∈ C(�) and p(x), q(x) >
 on �. This assumption implies that there exist positive constants pi, qi (i = , ) such
that

p ≤ p(x) ≤ p, q ≤ q(x) ≤ q for all x ∈ �. (.)

The existence of solution can be proved by the Faedo-Galerkin method (see [, , ]).

Theorem . Let the initial data (u, u, y) ∈ (H(�) ∩ W ) × (H(�) ∩ W ) × L(�) and
the conditions above on g , p and q hold. Then problem (.)-(.) admits a unique solution
(u, y) in the class

u ∈ C
(
, T ; W ∩ H(�)

) ∩ C(, T ; V ∩ H(�)
)
, y, y′ ∈ L(, T ; L(�)

)
.

3 Main result
In this section, we shall prove the general decay rate of the solution for problem (.)-(.).
For simplicity of notation, we define

(g ∗ u)(t) =
∫ t


g(t – s)u(s) ds,

(g � u)(t) =
∫ t


g(t – s)

∥
∥u(t) – u(s)

∥
∥ ds
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and

(
g � ∂u

)
(t) =

∫ t


g(t – s)a

(
u(t) – u(s), u(t) – u(s)

)
ds.

From (.), we deduce

(g � u)(t) ≤ Cp
(
g � ∂u

)
(t) for some constant Cp. (.)

From (.)-(.), we have

E′(t) = a
(
(g ∗ u)(t), u′(t)

)
–

∫

�

p(x)
(
y′(x, t)

) d�, (.)

where

E(t) =


ρ + 
∥
∥u′(t)

∥
∥ρ+

ρ+ +



a
(
u(t), u(t)

)
+

α


∥
∥∇u′(t)

∥
∥

+



∥
∥�v(t)

∥
∥ +




∫

�

q(x)
(
y(x, t)

) d�. (.)

A direct calculation gives

a
(
(g ∗ u)(t), u′(t)

)
= –




g(t)a
(
u(t), u(t)

)
+



(
g ′ � ∂u

)
(t)

–



d
dt

[
(
g � ∂u

)
(t) –

(∫ t


g(s) ds

)

a
(
u(t), u(t)

)
]

. (.)

Moreover, (.) gives

a
(
(g ∗ u)(t), u(t)

)
=

∫ t


g(t – s)a

(
u(s) – u(t), u(t)

)
ds +

(∫ t


g(s) ds

)

a
(
u(t), u(t)

)

≤ la
(
u(t), u(t)

)
+


C

(
g � ∂u

)
(t). (.)

Define a modified energy by

E(t) =


ρ + 
∥
∥u′(t)

∥
∥ρ+

ρ+ +
α


∥
∥∇u′(t)

∥
∥ +




(

 –
∫ t


g(s) ds

)

a
(
u(t), u(t)

)

+
(
g � ∂u

)
(t) +




∥
∥�v(t)

∥
∥ +




∫

�

q(x)
∣
∣y(x, t)

∣
∣ d�. (.)

Then applying (.) to (.), we derive

E ′(t) = –



g(t)a
(
u(t), u(t)

)
+



(
g ′ � ∂u

)
(t) –

∫

�

p(x)
(
y′(x, t)

) d� < . (.)

This and the assumptions g and p imply that E(t) is nonincreasing and one easily sees that

E(t) ≤ CE(t) for any t >  and for some positive constant C. (.)
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Therefore, it is enough to obtain the desired energy decay for the modified energy E(t),
which will be done in what follows. For this object, let us define the functional

L(t) = NE(t) + ε�(t) + �(t), (.)

where

�(t) =
(


ρ + 

∣
∣u′(t)

∣
∣ρu′(t), u(t)

)

+ α
(∇u′(t),∇u(t)

)

+
(
u(t), y(t)

)
�

+



∫

�

p(x)y(x, t) d� (.)

and

�(t) = –
∫ t


g(t – s)

(

u(t) – u(s),


ρ + 
∣
∣u′(t)

∣
∣ρu′(t)

)

ds

– α

∫ t


g(t – s)

(∇u(t) – ∇u(s),∇u′(t)
)

ds. (.)

Lemma . For N >  large enough, there exist β >  and β >  such that

βE(t) ≤ L(t) ≤ βE(t) for any t ≥ . (.)

Proof From (.), we have

L(t) – NE(t) =
ε

ρ + 

∫

�

∣
∣u′(t)

∣
∣ρu′(t)u(t) dx + εα

∫

�

∇u′(t)∇u(t) dx

+ ε

∫

�

u(t)y(t) d� + ε

∫

�

p(x)
(
y(x, t)

) d�

–


ρ + 

∫

�

∣
∣u′(t)

∣
∣ρu′(t)

(∫ t


g(t – s)

(
u(t) – u(s)

)
ds

)

dx

– α

∫

�

∇u′(t)
(∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds
)

dx

= J + J + J + J + J + J.

Using Hölder’s inequality and Young’s inequality, (.), (.), (.), (.), (.) and after
some calculation, we obtain

J =
ε

ρ + 

∫

�

∣
∣u′(t)

∣
∣ρu′(t)u(t) dx

≤ ε

ρ + 

(∫

�

∣
∣u′(t)

∣
∣ρ+ dx

) ρ+
ρ+

(∫

�

∣
∣u(t)

∣
∣ρ+ dx

) 
ρ+

≤ ε

ρ + 
∥
∥u′(t)

∥
∥ρ+

ρ+ +
ε

(ρ + )(ρ + )
∥
∥u(t)

∥
∥ρ+

ρ+

≤ ε

ρ + 
∥
∥u′(t)

∥
∥ρ+

ρ+ +
ε

(ρ + )(ρ + )
Kρ+C

ρ+


s
(
E()

) ρ
 a

(
u(t), u(t)

)
,

J = εα

∫

�

∇u′(t) · ∇u(t) dx ≤ εα


∥
∥∇u′(t)

∥
∥ +

εα


∥
∥∇u(t)

∥
∥
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≤ εα


∥
∥∇u′(t)

∥
∥ +

εαCs


a
(
u(t), u(t)

)
,

J = ε

∫

�

u(t)y(t) d� ≤ ε



∫

�

∣
∣u(t)

∣
∣ d� +

ε



∫

�

y(t) d�

≤ εC̃p


a
(
u(t), u(t)

)
+

ε

q

∫

�

q(x)
(
y(x, t)

) d�

and

J = ε

∫

�

p(x)
(
y(x, t)

) d� ≤ εp

q

∫

�

q(x)
(
y(x, t)

) d�.

Using Fubini’s theorem, Hölder’s inequality and Young’s inequality, (.), (.), (.), (.),
and after some calculation, we obtain

J = –


ρ + 

∫

�

∣
∣u′(t)

∣
∣ρu′(t)

∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx

= –


ρ + 

∫ t


g(t – s)

∫

�

∣
∣u′(t)

∣
∣ρu′(t)

(
u(t) – u(s)

)
dx ds

≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+

∫ t


g(t – s)

∥
∥u(t) – u(s)

∥
∥

ρ+ ds

≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+ +


(ρ + )(ρ + )

(∫ t


g(t – s)

∥
∥u(t) – u(s)

∥
∥

ρ+ ds
)ρ+

≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+

+


(ρ + )(ρ + )

[(∫ t


g(t – s) ds

) 

(∫ t


g(t – s)

∥
∥u(t) – u(s)

∥
∥

ρ+ ds
) 


]ρ+

≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+

+


(ρ + )(ρ + )
l

ρ+
 Kρ+

(∫ t


g(t – s)

∥
∥∇u(t) – ∇u(s)

∥
∥ ds

) ρ+


≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+

+


(ρ + )(ρ + )
l

ρ+
 Kρ+C

ρ+


s

(∫ t


g(t – s)a

(
u(t) – u(s)

)
ds

) ρ+


≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+

+


(ρ + )(ρ + )
l

ρ+
 Kρ+C

ρ+


s
(
E()

) ρ

(
g � ∂u

)
(t)

and

J = –α

∫

�

∇u′(t) ·
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

≤ α


∥
∥∇u′(t)

∥
∥ +

α


l
∫ t


g(t – s)

∥
∥∇u(t) – ∇u(s)

∥
∥ ds

≤ α


∥
∥∇u′(t)

∥
∥ +

αlCs


(
g � ∂u

)
(t).
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From the results of J, J, . . . , J, we get

∣
∣L(t) – NE(t)

∣
∣ ≤ ε + 

ρ + 
∥
∥u′(t)

∥
∥ρ+

ρ+ +
α


(ε + )

∥
∥∇u′(t)

∥
∥

+
[

ε

(ρ + )(ρ + )
Kρ+C

ρ+


s
(
E()

) ρ
 +

εαCs


+

εC̃p



]

a
(
u(t), u(t)

)

+
[


(ρ + )(ρ + )

l
ρ+

 Kρ+C
ρ+


s

(
E()

) ρ
 +

αlCs



]
(
g � ∂u

)
(t)

+
(

ε

q
+

pε

q

)∫

�

q(x)
(
y(x, t)

) d�.

Therefore, for N is sufficiently large,

∣
∣L(t) – NE(t)

∣
∣ ≤ CE(t).

Here we can take

C := max

(

ε + ,


 – l

[
ε

(ρ + )(ρ + )
Kρ+C

ρ+


s
(
E()

) ρ
 +

εαCs


+

εC̃p



]

,

[


(ρ + )(ρ + )
l

ρ+
 Kρ+C

ρ+


s
(
E()

) ρ
 +

αlCs



]

,
[

ε

q
( + p)

])

> .

So that we have

βE(t) ≤ L(t) ≤ βE(t),

where β = N – C, β = N + C. We complete the proof of Lemma .. �

Lemma . For any t >  and sufficiently large N > , there exist positive constants α

and α such that

L′(t) ≤ –αE(t) + α
(
g � ∂u

)
(t) for all t ≥ t. (.)

Proof Using (.), (.) and (.), we have

�′(t) =
∫

�

(∣
∣u′(t)

∣
∣ρu′′(t) – α�u′′(t)

)
u(t) dx +


ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+ + α
∥
∥∇u′(t)

∥
∥

+ α

(
∂u′′(t)

∂ν
, u(t)

)

�

+
(
u′(t), y(t)

)
�

+
(
u(t), y′(t)

)
�

+
∫

�

p(x)y(x, t)y′(x, t) d�

=


ρ + 
∥
∥u′(t)

∥
∥ρ+

ρ+ + α
∥
∥∇u′(t)

∥
∥ – a

(
u(t), u(t)

)

+
(

Bu(t),
∂u(t)
∂ν

)

�

–
(
Bu(t), u(t)

)
�

+ a
(
(g ∗ u)(t), u(t)

)

–
∫ t


g(t – s)

[(

Bu(s),
∂u(t)
∂ν

)

�

–
(
Bu(s), u(t)

)
�

]

ds
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+
([

u(t), v(t)
]
, v(t)

)
+ α

(
∂u′′(t)

∂ν
, u(t)

)

�

+
(
u′(t), y(t)

)
�

+
(
u(t), y′(t)

)
�

+
∫

�

p(x)y(x, t)y′(x, t) d�

=


ρ + 
∥
∥u′(t)

∥
∥ρ+

ρ+ + α
∥
∥∇u′(t)

∥
∥ – a

(
u(t), u(t)

)
+ a

(
(g ∗ u)(t), u(t)

)

+ 
(
u(t), y′(t)

)
�

–
(
�v(t), v(t)

)
+

(
u′(t), y(t)

)
�

+
∫

�

p(x)y(x, t)y′(x, t) d�

≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+ + α
∥
∥∇u′(t)

∥
∥ – ( – δC̃p)a

(
u(t), u(t)

)

+ a
(
(g ∗ u)(t), u(t)

)
–

∥
∥�v(t)

∥
∥ +


δ

∥
∥y′(t)

∥
∥

�

–
∫

�

q(x)
∣
∣y(x, t)

∣
∣ d�. (.)

Adapting (.) to (.), we get

�′(t) ≤ 
ρ + 

∥
∥u′(t)

∥
∥ρ+

ρ+ + α
∥
∥∇u′(t)

∥
∥ – ( – l – δC̃p)a

(
u(t), u(t)

)

+

δ

∥
∥y′(t)

∥
∥

�
–

∫

�

q(x)
(
y(x, t)

) d� +


C

(
g � ∂u

)
(t) –

∥
∥�v(t)

∥
∥. (.)

Moreover, from (.) and (.), we derive

� ′(t) = –
(

∣
∣u′(t)

∣
∣ρu′′(t),

∫ t


g(t – s)

(
u(t) – u(s)

)
ds

)

– α

(

∇u′′(t),
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds
)

–
(


ρ + 

∣
∣u′(t)

∣
∣ρu′(t),

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds

)

– α

(

∇u′(t),
∫ t


g ′(t – s)

(∇u(t) – ∇u(s)
)

ds
)

– α

(

∇u′(t),
∫ t


g(t – s)∇u′(t) ds

)

–
(


ρ + 

∣
∣u′(t)

∣
∣ρu′(t),

∫ t


g(t – s)u′(t) ds

)

=
(

�u(t) –
∫ t


g(t – s)�u(s) ds – [u, v],

∫ t


g(t – s)

(
u(t) – u(s)

)
ds

)

– α

(
∂u′′(t)

∂ν
,
∫ t


g(t – s)

(
u(t) – u(s)

)
ds

)

–
(


ρ + 

∣
∣u′(t)

∣
∣ρu′(t),

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds

)

–


ρ + 

(∫ t


g(s) ds

)
∥
∥u′(t)

∥
∥ρ+

ρ+ – α

(∫ t


g(s) ds

)
∥
∥∇u′(t)

∥
∥
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– α

(

∇u′(t),
∫ t


g ′(t – s)

(∇u(t) – ∇u(s)
)

ds
)

=
∫ t


g(t – s)a

(
u(t), u(t) – u(s)

)
ds

–
∫ t


g(t – s)

∫ t


g(t – τ )a

(
u(τ ), u(t) – u(s)

)
dτ ds

–
(

y′,
∫ t


g(t – s)

(
u(t) – u(s)

)
ds

)

�

– α

(

∇u′(t),
∫ t


g ′(t – s)

(∇u(t) – ∇u(s)
)

ds
)

–
(


ρ + 

∣
∣u′(t)

∣
∣ρu′(t),

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds

)

–
(

[u, v],
∫ t


g(t – s)

(
u(t) – u(s)

)
ds

)

– α

(∫ t


g(s) ds

)
∥
∥∇u′(t)

∥
∥ –


ρ + 

(∫ t


g(s) ds

)
∥
∥u′(t)

∥
∥ρ+

ρ+

= I + I + · · · + I

– α

(∫ t


g(s) ds

)
∥
∥∇u′(t)

∥
∥ –


ρ + 

(∫ t


g(s) ds

)
∥
∥u′(t)

∥
∥ρ+

ρ+. (.)

In what follows we will estimate the terms on the right-hand side of (.). From (.) and
(.) we deduce that

|I| ≤ ηla
(
u(t), u(t)

)
+


Cη

(
g � ∂u

)
(t)

and

|I| ≤
∣
∣
∣
∣

∫ t


g(t – s)

∫ t


g(t – τ )a

(
u(t) – u(τ ), u(t) – u(s)

)
dτ ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t


g(t – s)

∫ t


g(t – τ )a

(
u(t), u(t) – u(s)

)
dτ ds

∣
∣
∣
∣

≤
∫ t


g(t – s)

∫ t


g(t – τ )

[

a
(
u(t) – u(τ ), u(t) – u(τ )

)

+


C
a
(
u(t) – u(s), u(t) – u(s)

)
]

dτ ds

+
(∫ t


g(τ ) dτ

)∣
∣
∣
∣

∫ t


g(t – s)a

(
u(t), u(t) – u(s)

)
ds

∣
∣
∣
∣

≤ ηla
(
u(t), u(t)

)
+

(

l +
l

C
+

l
Cη

)
(
g � ∂u

)
(t).

Also, using Young’s inequality, (.) and (.), we obtain

|I| ≤ η
∥
∥y′(t)

∥
∥

�
+

Cpl
η

(
g � ∂u

)
(t),

|I| ≤ ηα
∥
∥∇u′(t)

∥
∥ +

α

η

∫ t


–g ′(s) ds

∫ t


–g ′(t – s)

∥
∥∇u(t) – ∇u(s)

∥
∥ ds
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≤ ηα
∥
∥∇u′(t)

∥
∥ –

αg()Cs

η

(
g ′ � ∂u

)
(t),

|I| ≤ η

ρ + 
∥
∥u′(t)

∥
∥(ρ+)

(ρ+) –
g()Cs

η(ρ + )
(
g ′ � ∂u

)
(t)

≤ ηK(ρ+)

ρ + 
(
α–E()

)ρ∥∥∇u′(t)
∥
∥ –

g()Cs

η(ρ + )
(
g ′ � ∂u

)
(t),

|I| ≤ η
∥
∥
[
u(t), v(t)

]∥
∥ +


η

∥
∥
∥
∥

∫ t


g(t – s)

(
u(t) – u(s)

)
ds

∥
∥
∥
∥



≤ ηC′∥∥u(t)
∥
∥

H(�)

∥
∥v(t)

∥
∥

H(�) +
Cpl
η

(
g � ∂u

)
(t)

≤ C–
 ηC′E()a

(
u(t), u(t)

)
+

Cpl
η

(
g � ∂u

)
(t).

Combining these estimates Ii, i = , . . . ,  and (.), we get

� ′(t) ≤ –
(∫ t


g(s) ds

)‖u′(t)‖ρ+
ρ+

ρ + 
+ η

(
l + l + C′C–

 E()
)
a
(
u(t), u(t)

)

–
[

α

(∫ t


g(s) ds

)

– η

(

α +
K(ρ+)

ρ + 
(
α–E()

)ρ

)]
∥
∥∇u′(t)

∥
∥

+
(


Cη

+ l +
l

C
+

l
Cη

+
Cpl
η

)
(
g � ∂u

)
(t)

–
g()Cs

η

(

α +


ρ + 

)
(
g ′ � ∂u

)
(t) + η

∥
∥y′(t)

∥
∥

�
. (.)

Since g is continuous and positive for any t ≥ t > , we have

∫ t


g(s) ds ≥

∫ t


g(s) ds := g > . (.)

Thus, making use of (.) and combining (.), (.), (.) and (.), we arrive at

L′(t) ≤ –
(

g –
ε

ρ + 

)
∥
∥u′(t)

∥
∥ρ+

ρ+

–
[

N


g(t) + ε( – l – δC̃p) – η
(
l + l + C′C–

 E()
)
]

a
(
u(t), u(t)

)

–
[

αg – η

(

α +
K(ρ+)

ρ + 
(
α–E()

)ρ

)

– εα

]
∥
∥∇u′(t)

∥
∥ – ε

∥
∥�v(t)

∥
∥

+
(

ε

C
+


Cη

+ l +
l

C
+

l
Cη

+
Cp · l

η

)
(
g � ∂u

)
(t)

+
[

N


–
g()Cs

η

(

α +


ρ + 

)]
(
g ′ � ∂u

)
(t) – ε

∫

�

q(x)
(
y(x, t)

) d�

–
(

N –
ε

δp
–

η

p

)∫

�

p(x)
(
y′(x, t)

) d� for any t ≥ t. (.)

We first choose ε >  and δ >  so small such that g –ε >  and –l–δC̃p > , respectively.
We also take η >  sufficiently small and N >  large enough so that N

 g(t)+ε(–l –δC̃p)–
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η(l + l + C′C–
 E()) > , αg – η(α + K(ρ+)

ρ+ (α–E())ρ) – εα > , N
 – g()Cs

η
(α + 

ρ+ ) > 
and Np – ε/δ – η >  for any t ≥ t. Then we deduce that desired result. We complete the
proof of Lemma .. �

Our main result is the following.

Theorem . Assume that l < /. Then, for each t > , there exist positive constants C

and C such that

E(t) ≤ Ce–C
∫ t

t
ξ (s) ds for all t ≥ t.

Proof Multiplying (.) by ξ (t), noting that ξ is nonincreasing, and using (.) and (.),
we see that

ξ (t)L′(t) ≤ –αξ (t)E(t) + αξ (t)
(
g � ∂u

)
(t) ≤ –αξ (t)E(t) – α

(
g ′ � ∂u

)
(t)

≤ –αξ (t)E(t) – αE ′(t) for all t ≥ t.

This and the fact ξ ′(t) ≤  yield

d
dt

(
ξ (t)L(t) + αE(t)

) ≤ –αξ (t)E(t) for all t ≥ t. (.)

Now, we define

L(t) = ξ (t)L(t) + αE(t).

Since ξ (t) is a nonincreasing positive function, we can easily observe thatL(t) is equivalent
to E(t). Thus (.) implies that

d
dt

L(t) ≤ –Cξ (t)L(t) for some C >  and for all t ≥ t.

Integrating the above inequality, we get

L(t) ≤L(t)e–C
∫ t

t
ξ (s) ds for all t ≥ t.

Consequently, from the equivalent relations of L, L, E and (.), we obtain the result in
Theorem .. �
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