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Abstract
In this paper we consider the semilinear parabolic equation∑m

i,j=1 aijXiXju – ∂tu + Vup = 0 with a general class of potentials V = V(ξ , t), where
A = {aij}i,j is a positive definite symmetric matrix and the Xi ’s denotes a system of
left-invariant vector fields on a Carnot group G. Based on a fixed point argument and
by establishing some new estimates involving the heat kernel, we study the existence
and large-time behavior of global positive solutions to the preceding equation.
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1 Introduction
Global existence and asymptotic behavior of solutions to nonlinear parabolic equations
have been followed with interest over the past years [–].

In this paper we are concerned with the existence and asymptotic behavior of global
positive solutions for the semilinear parabolic equation

{
Hu =

∑m
i,j= aijXiXju – ∂

∂t u + V (ξ , t)up = , (ξ , t) ∈ G × (, +∞),
u(ξ , ) = u(ξ ), ξ ∈ G.

(.)

Here p > , X, . . . , Xm are left-invariant vector fields on a Carnot group G, and the matrix
A = {aij}i,j is symmetric and positive definite, that is,

�–|Z| ≤ 〈AZ, Z〉 ≤ �|Z| (.)

for some constant � > , every Z ∈ R
m. For a fixed � ≥ , we denote by M� the set of

m × m symmetric matrices A satisfying (.).
It is well known that the Euclidean space R

n, with its usual Abelian group structure, is
a trivial Carnot group. In the Euclidean case, we first recall that Zhang [] studied the
global existence for a parabolic problem in divergence form analogous to (.) when the
potential V is in parabolic Kato class at infinity P∞, the asymptotic behavior of solutions
for the problem was studied by Zhang and Zhao []. Riahi [] extended the results in []

© 2015 Yuan. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-015-0383-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0383-8&domain=pdf
mailto:yuanzixia@uestc.edu.cn


Yuan Boundary Value Problems  (2015) 2015:119 Page 2 of 18

and [] to a new functional class P∞
loc more general than the parabolic Kato class P∞ and

proved that the problem a�u – ∂tu + V (x, t)up =  has a global continuous solution. The
author in [] also gave the asymptotic behavior of the global solutions when V = V (x) is
independent of time. The proofs in [–] rely on some heat kernel estimates. We see that
the fundamental solutions to the parabolic operators on the Euclidean space have explicit
expression. A natural question to ask is whether the results in [–] can be generalized
to general degenerate parabolic operators whose fundamental solutions are not known
explicitly.

One of the most important degenerate parabolic operators is the heat operator associ-
ated with the subelliptic operator on a Carnot group. These classes of operators naturally
arise in many different settings: geometry in several complex variables, curvature problem
for CR-manifolds, sub-Riemannian geometry, diffusion processes, control theory, human
vision (see [, ] and the references therein). In recent years many authors have under-
taken the research on degenerate heat equation on Carnot groups; see for example [, ]
and [–].

In the present paper we will generalize the global existence and asymptotic results of
[] and [] to the degenerate heat equation on the Carnot group G. Let us briefly dis-
cuss the method we are going to adopt. We will use a fixed point argument to achieve
existence. This requires us to obtain a number of new estimates involving the heat ker-
nel, which are based on the Gaussian bounds for fundamental solutions for the operator
LA =

∑m
i,j= aijXiXj – ∂t (see []). The asymptotic behavior of the global solutions are ob-

tained by establishing global Gaussian upper bounds for the fundamental solution of cer-
tain linear degenerate parabolic operators on Carnot groups. The result will serves as a
bridge between the degenerate parabolic problem and the corresponding subelliptic sta-
tionary problem.

The paper is organized as follows. In the next section, we first present the necessary
background material concerning homogeneous structures on Carnot groups and intro-
duce some basic definitions. Then we summarize our results in Theorem . and The-
orem .. Section  is devoted to the proof of some heat kernel estimates which will be
used in the following sections. Theorem . and Theorem . will be proved in Section 
and Section , respectively. In the Appendix, we present two results as regards the class of
potentials P∞

loc.

2 Main results
We start by giving the definition of a Carnot group. We will consider G = (RN , ·) as a Carnot
group with a group operation · and a family of dilations, compatible with the Lie structure.
A Carnot group G of step r ≥  is a simply connected nilpotent Lie group whose Lie algebra
g admits a stratification g =

⊕r
j= Vj, with [V, Vj] = Vj+, for  ≤ j < r, [V, Vr] = {}. We

assume that a scalar product 〈·, ·〉 is given on g for which the Vj ’s are mutually orthogonal.
Via the exponential map, it is possible to induce on G a family of non-isotropic dilations

defined by

δλ

(
x(), x(), . . . , x(r)) =

(
λx(),λx(), . . . ,λrx(r)).

Here x(i) ∈ R
Ni for i = , . . . , r and N + · · · + Nr = N . The topological dimension of G is

N , whereas the homogeneous dimension of G, attached to the dilations {δλ}λ>, is given
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by Q =
∑r

j= jNj. Let m = N and X = {X, . . . , Xm} be the dimension and a basis of V, re-
spectively. Let Xu = (Xu, . . . , Xmu) denote the horizontal gradient for a function u and
|Xu| = [

∑m
i= (Xiu)] 

 .
Let e be the identity on G. For ξ ∈ G, we denote by ξ– the inverse of ξ with respect to

the group operation. In the sequel, ρ will denote the Carnot-Carathéodory control dis-
tance generated on G by the Xi’s (see []). There is a remarkable link between the control
distance ρ and the homogeneous Lie group structure on G. Indeed, we have

ρ(ξ · η, ξ · ζ ) = ρ(η, ζ ), ξ ,η, ζ ∈ G,

ρ
(
e, δλ(ξ )

)
= λρ(e, ξ ), ξ ∈ G,λ > .

By denoting ρ(ξ , e) simply by ρ(ξ ), we define a norm function ρ(ξ ) ∈ C∞(G\{e}) ∩ C(G)
such that

() ρ(ξ ) =  if and only if ξ = e;
() ρ(ξ ) = ρ(ξ–);
() ρ(δλ(ξ )) = λρ(ξ ), λ > .

Moreover, ρ(·) satisfies the triangle inequality

ρ(ξ · η) ≤ ρ(ξ ) + ρ(η), ξ ,η ∈ G. (.)

We recall that this Carnot-Carathéodory distance is equivalent to any quasi-distance
induced by a homogeneous norm on G.

We denote by

Bρ(ξ , R) =
{
η ∈ G : ρ(ξ ,η) < R

}
(.)

the open ball of center ξ and radius R. Since the Lebesgue measure is a Haar measure on
G, we have |Bρ(ξ , R)| = |Bρ(e, )|RQ. The following polar coordinates formula holds:

∫

Bρ (e,R)
f
(
ρ(ξ )

)
dξ = Q

∣
∣Bρ(e, )

∣
∣
∫ R


f (ρ)ρQ– dρ (.)

for every measurable function f .
Following [], we next briefly recall some well-known results on the fundamental solu-

tion for the operator LA =
∑m

i,j= aijXiXj – ∂t in (.). There exists a positive function �A in
G × (, +∞) such that the fundamental solution for LA is given by �A(ξ , t;η, s) := �A(η– ·
ξ , t – s). It is �A(ξ , t) =  for t ≤ , �A(ξ , t) = �A(ξ–, t) and �A(δλ(ξ ),λt) = λ–Q�A(ξ , t). In
particular, �A vanishes at infinity. For every t > ,

∫
G �A(ξ , t) dξ = . For every ξ ∈ G, t > 

and τ > , the following reproduction property holds (see []):

�A(ξ , t + τ ) =
∫

G
�A

(
η– · ξ , t

)
�A(η, τ ) dη. (.)

One of the main tools we shall use in the paper is the following remarkable uniform
Gaussian estimates (see []): there exist positive constants C�, C�, C� such that, for
every i, j = , . . . , m and for every A ∈ M�, we have

C–
� t– Q

 exp

(

–
C�ρ(ξ )

t

)

≤ �A(ξ , t) ≤ C�t– Q
 exp

(

–
ρ(ξ )
C�t

)

, (.)
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∣
∣Xi�A(ξ , t)

∣
∣ ≤ C�t– Q+

 exp

(

–
ρ(ξ )
C�t

)

(.)

and

∣
∣XiXj�A(ξ , t)

∣
∣ +

∣
∣∂t�A(ξ , t)

∣
∣ ≤ C�t–( Q

 +) exp

(

–
ρ(ξ )
C�t

)

(.)

for every ξ ∈ G, t > .
Let us introduce the class P∞

loc on the Carnot group G.

Definition . A measurable function V = V (ξ , t) on G ×R is said to be in the class P∞
loc

if it satisfies for all c > ,

Nc(V ) = sup
(ξ ,t)∈G×R

∫ t

–∞

∫

G
�c(ξ , t;η, s)

∣
∣V (η, s)

∣
∣dη ds

+ sup
(η,s)∈G×R

∫ +∞

s

∫

G
�c(ξ , t;η, s)

∣
∣V (ξ , t)

∣
∣dξ dt < +∞,

and, for any compact subset K ⊂ G ×R,

lim
r→

{

sup
(ξ ,t)∈K

∫ t

t–r

∫

ρ(ξ ,η)<
√

r
�c(ξ , t;η, s)

∣
∣V (η, s)

∣
∣dη ds

+ sup
(η,s)∈K

∫ s+r

s

∫

ρ(ξ ,η)<
√

r
�c(ξ , t;η, s)

∣
∣V (ξ , t)

∣
∣dξ dt

}

= ,

where �c(ξ , t;η, s) = (t – s)– Q
 e–c ρ(ξ ,η)

t–s , for t > s.

Obviously, P∞
loc ⊂ L

loc(G ×R) and we have the following.

Remark . () As far as time independent V is concerned, we will show in Proposi-
tion A. below the fact that V ∈ P∞

loc if V ∈ L(G) and
∫

G
|V (η)|

ρQ–(ξ ,η) dη is bounded in G. Then
it follows that the function V (ξ ) = 

+ρα (ξ ) , α > Q, belongs to P∞
loc. In fact all functions in

L(G) ∩ L∞(G) belong to P∞
loc.

() In the case when V is independent of ξ , the function V (t) = 
+tβ , β > , also belongs

to P∞
loc. Following a similar argument to the proof of Proposition . in [], we have all

functions in L(R) ∩ L∞(R) belong to P∞
loc.

Let u be a positive function in L∞(G) and c > , we write

hc(ξ , t) =
∫

G
�c(ξ , t;η, )u(η) dη. (.)

Following [], we introduce the following definition of weak solutions.

Definition . A function u = u(ξ , t) is called a weak solution of (.) if u, Xu, . . . , Xmu ∈
L

loc(G × (, +∞)), Vu ∈ L
loc(G × (, +∞)) and

u(ξ , t) =
∫

G
�A(ξ , t;η, )u(η) dη +

∫ t



∫

G
�A(ξ , t;η, s)V (η, s)up(η, s) dη ds

for all (ξ , t) ∈ G × (, +∞).
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The main results of the paper are the next two theorems.

Theorem . (Global existence) Let V ∈ P∞
loc be a nonnegative function. For any M > C� >

, there is a constant b >  such that for each nonnegative u ∈ C(G) satisfying ‖u‖∞ ≤
b, there exists a positive continuous solution of (.) such that

M–hC�
(ξ , t) ≤ u(ξ , t) ≤ Mh 

C�

(ξ , t)

for all (ξ , t) ∈ G × (, +∞).

In the next theorem we present a result about the large-time behavior.

Theorem . Let V (ξ , t) = V (ξ ) ∈ P∞
loc be a nonnegative function. If u ∈ C(G),

∑m
i,j= aij ×

XiXju ∈ P∞
loc, and  < α ≤ u ≤ α for some positive constants α, α, then the problem

(.) has a global positive solution which converges pointwise to a positive solution of the
subelliptic problem

m∑

i,j=

aijXiXju + V (ξ )up = . (.)

Throughout this paper, the letter C denotes a positive constant which may vary from
line to line but is independent of the terms which will take part in any limit process.

3 Preliminaries and auxiliary estimates
For α,β ≥  we use α ∨ β and α ∧ β to mean max{α,β} and min{α,β}, respectively. We
also need to use the inequality

e–θ ≤  ∨ ( m
e )m

( ∨ θ )m for all θ ≥  and m > . (.)

For (ξ , t), (η, s) ∈ G × R, we can define on G × R the parabolic distance corresponding
to ρ as

d
(
(ξ , t), (η, s)

) ≡ ρ(ξ ,η) ∨ |t – s| 
 , (.)

where | · | denotes the Euclidean distance on R. In particular d satisfies the triangle in-
equality via (.). For r > , we can also define the ball with center (ξ , t) and radius r with
respect to the parabolic distance and its complement as B((ξ , t), r) and Bc((ξ , t), r), respec-
tively.

For any β ≤ , the parabolic CC-Hölder space �β (G ×R) related to d is defined by

�β (G ×R) :=
{

f ∈ L∞ ∩ C : sup
(ξ ,t) �=(η,s)

|f (ξ , t) – f (η, s)|
d((ξ , t), (η, s))β

< ∞
}

.

We refer the readers to [] for more information.
The following two lemmas concern the continuity of the potentials

∫∫
�A|V |dη ds when

V ∈ P∞
loc, which will be used in the proof of Theorem .. The proof of the results in the

Euclidean case was given in [].
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Lemma . Let A ∈ M�. Then there exist constants C = C(�) >  and c = c(�) >  such
that for all r ∈ (, ), (ξ, t) ∈ G×R, (ξ , t) ∈ B((ξ, t),

√
r

 ), t ≥ t and (η, s) ∈ Bc((ξ, t),
√

r
 ),

we have

∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣ ≤ C

d((ξ , t), (ξ, t))
r 


�c(ξ , t;η, s). (.)

Proof Case : s ≥ t. The left-hand side term is equal to zero and so the inequality is trivial.
Case : t > s ≥ t. From the assumptions we have  < t – s ≤ t – t and ρ(ξ ,η) ∨ |t – s| 

 ≥


√

r. By noting that �A(ξ, t;η, s) =  and applying (.) and (.) with m = 
 , we have

∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣ ≤ C�(t – s)– Q

 e– ρ(ξ ,η)
C�(t–s)

≤ C(t – s) 


(t – s) 
 ∨ ρ(ξ ,η)

(t – s)– Q
 e– ρ(ξ ,η)

C�(t–s)

≤ C
(t – t) 



r 


� 
C�

(ξ , t;η, s).

Case : t > s. We get

∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣

≤ ∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣ +

∣
∣�A(ξ, t;η, s) – �A(ξ, t;η, s)

∣
∣. (.)

Thus, from (.) and (.) with m = 
 , we have

∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣

≤ ρ(ξ , ξ) sup
ζ :ρ(ζ ,ξ)≤ρ(ξ ,ξ)

∣
∣X�A(ζ , t;η, s)

∣
∣

≤ ρ(ξ , ξ) sup
ζ :ρ(ζ ,ξ)≤ρ(ξ ,ξ)


ρ(ζ ,η) ∨ (t – s) 



C

(t – s)
Q


e– ρ(ζ ,η)
C�(t–s) , (.)

where we have used the Lagrange mean value theorem on G (see Theorem .. in []).
On the other hand, for the previous ζ we have

ρ(ζ ,η) ∨ (t – s)

 ≥ ρ(ξ ,η) ∨ (t – s)


 – ρ(ξ , ζ )

≥ 

ρ(ξ ,η) ∨ (t – s)


 ≥

√
r


, (.)

which yields ρ(ζ ,η) + t – s ≥ 
 (ρ(ξ ,η) + t – s) and therefore

ρ(ζ ,η)
t – s

≥ 


ρ(ξ ,η)
t – s

–



. (.)

Substituting (.) and (.) into (.) leads to

∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣ ≤ C

ρ(ξ , ξ)
r 


� 

C�

(ξ , t;η, s). (.)
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Analogously, there exists a τ ∈ (t, t) such that

∣
∣�A(ξ, t;η, s) – �A(ξ, t;η, s)

∣
∣ ≤ |t – t| ·

∣
∣
∣
∣

∂

∂τ
�A(ξ, τ ;η, s)

∣
∣
∣
∣. (.)

Moreover, by applying (.) and (.) with m = Q
 + , and using the inequality  < τ – s <

t – s, we obtain

∣
∣
∣
∣

∂

∂τ
�A(ξ, τ ;η, s)

∣
∣
∣
∣ ≤ C

(ρ(ξ,η) ∨ (τ – s) 
 )Q+

e– ρ(ξ,η)
C�(t–s) .

Since ρ(ξ,η) ∨ (τ – s) 
 ≥ ρ(ξ ,η) ∨ (t – s) 

 – ρ(ξ , ξ) ∨ (t – τ ) 
 ≥ 

ρ(ξ ,η) ∨ (t – s) 
 ≥

√
r

 ,
and ρ(ξ,η)

t–s ≥ 


ρ(ξ ,η)
t–s – 

 , we find

∣
∣
∣
∣

∂

∂τ
�A(ξ, τ ;η, s)

∣
∣
∣
∣ ≤ C

r
� 

C�

(ξ , t;η, s). (.)

Substituting (.) into (.) gives

∣
∣�A(ξ, t;η, s) – �A(ξ, t;η, s)

∣
∣ ≤ C

(
t – t

r

) 

� 

C�

(ξ , t;η, s). (.)

Combining (.), (.), and (.), we obtain the inequality stated in the lemma. �

Remark . If we replace t ≥ t by t ≤ t, we obtain the same inequality provided that
�c(ξ , t;η, s) is replaced by �c(ξ, t;η, s).

We now set, for every (ξ , t), (ξ, t) ∈ G ×R,

KA(ξ , t; ξ, t) =
∫ t∨t

–∞

∫

G

∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣ · ∣∣V (η, s)

∣
∣dη ds.

We can prove the following lemma.

Lemma . Let V ∈ P∞
loc. Then for every A ∈ M� we have

lim
ρ(ξ ,ξ)∨|t–t| 

 →
KA(ξ , t; ξ, t) = .

Proof Let (ξ, t) ∈ G × R be fixed. Set K = B̄((ξ, t), ). Since V ∈ P∞
loc for ε > , there

exists r >  sufficiently small such that

 < sup
(ξ ,t)∈K

∫ t

t–r

∫

ρ(ξ ,η)<
√

r
�A(ξ , t;η, s)

∣
∣V (η, s)

∣
∣dη ds

≤ C� sup
(ξ ,t)∈K

∫ t

t–r

∫

ρ(ξ ,η)<
√

r
(t – s)– Q

 e– ρ(ξ ,η)
C�(t–s)

∣
∣V (η, s)

∣
∣dη ds < ε. (.)
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For ρ(ξ , ξ) ∨ |t – t| 
 ≤

√
r

 , we have

KA(ξ , t; ξ, t) =
∫ t∨t

–∞

∫

G

∣
∣�A(ξ , t;η, s) – �A(ξ, t;η, s)

∣
∣ · ∣∣V (η, s)

∣
∣dη ds

=
∫∫

B((ξ,t),
√

r
 )

· · · dη ds +
∫∫

Bc((ξ,t),
√

r
 )

· · · dη ds

� I(ξ , t; ξ, t) + I(ξ , t; ξ, t).

When ρ(ξ , ξ) ∨ |t – t| 
 ≤

√
r

 , one gets from (.)

I(ξ , t; ξ, t) ≤
∫∫

B((ξ ,t),
√

r)
�A(ξ , t;η, s)

∣
∣V (η, s)

∣
∣dη ds

+
∫∫

B((ξ,t),
√

r)
�A(ξ, t;η, s)

∣
∣V (η, s)

∣
∣dη ds < ε.

By Lemma ., for ρ(ξ , ξ) ∨ |t – t| 
 ≤

√
r

 , we have

I(ξ , t; ξ, t) ≤ C
d((ξ , t)(ξ, t))

r 


Nc(V ),

which vanishes as ρ(ξ , ξ) ∨ |t – t| 
 → . This ends the proof. �

Remark . Similarly, for (η, s), (η, s) ∈ G ×R and A ∈ M�, let

K∗
A(η, s;η, s) =

∫ +∞

s∧s

∫

G

∣
∣�∗

A(η, s; ξ , t) – �∗
A(η, s; ξ , t)

∣
∣ · ∣∣V (ξ , t)

∣
∣dξ dt.

If V ∈ P∞
loc, then lim

ρ(η,η)∨|s–s| 
 →

K∗
A(η, s;η, s) = , where �∗

A(η, s; ξ , t) = �A(ξ , t;η, s) is
the fundamental solution of the formal adjoint operator to LA.

We will use the following lemma established in Lemma . of [].

Proposition . Suppose  < a < b. There exist positive constants Ca,b and c depending
only on a and b such that

(i)
∫ t

s

∫

G
�a(ξ , t; ζ , τ )

∣
∣V (ζ , τ )

∣
∣�b(ζ , τ ;η, s) dζ dτ ≤ Ca,bNc(V )�a(ξ , t;η, s);

(ii)
∫ t

s

∫

G
�b(ξ , t; ζ , τ )

∣
∣V (ζ , τ )

∣
∣�a(ζ , τ ;η, s) dζ dτ ≤ Ca,bNc(V )�a(ξ , t;η, s).

Applying an analogous proof to that of Lemma .(a) in [], we obtain the following
result, which in the Euclidean setting was first given by Zhang [].

Lemma . Given a > , let ha(ξ , t) be as in (.), where u is a bounded nonnegative
function. Then for every given p >  and  < γ < , there exists a constant C(p,γ ) such that

hp
a(ξ , t) ≤ C(p,γ )‖u‖p–

∞ ha

(

ξ ,
t

pγ

)

(.)

for all t > .
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Proof Clearly

ha(ξ , t) =
∫

G
t– Q

p e– aγρ(ξ ,η)
t u(η)t– Q

q e– a(–γ )ρ(ξ ,η)
t dη,

where q is the conjugate of p. Using the Hölder inequality and the fact that

∫

G
t– Q

 e– aq(–γ )ρ(ξ ,η)
t dη ≤ C,

we have

hp
a(ξ , t) ≤

∫

G
t– Q

 e– paγρ(ξ ,η)
t up

(η) dη

[∫

G
t– Q

 e– aq(–γ )ρ(ξ ,η)
t dη

] p
q

≤ C(p,γ )‖u‖p–
∞ ha

(

ξ ,
t

pγ

)

.

The last inequality implies (.). This proves the claim. �

4 Proof of the existence result
In this section we shall first prove Theorem ..

Proof Suppose that the initial value u ∈ C(G) is nonnegative and satisfies ‖u‖∞ ≤ b

for some constant b > . Let

h(ξ , t) =
∫

G
�A(ξ , t;η, )u(η) dη.

Then the function h is continuous on G × [, +∞) and  ≤ h ≤ ‖u‖∞. In fact, for any
ε > , there exists a constant r >  sufficiently small such that

∫

Bρ (ξ ,
√

r)
�A(ξ , t;η, )u(η) dη < ε. (.)

For any (ξ , t), (ξ, t) ∈ G × [, +∞) satisfying ρ(ξ , ξ) ∨ |t – t| 
 ≤

√
r

 , we have

∣
∣h(ξ , t) – h(ξ, t)

∣
∣ ≤

∫

G

∣
∣�A(ξ , t;η, ) – �A(ξ, t;η, )

∣
∣u(η) dη

=
∫

Bρ (ξ,
√

r
 )

· · · dη +
∫

Bc
ρ (ξ,

√
r

 )
· · · dη

� Ī(ξ , t; ξ, t) + Ī(ξ , t; ξ, t).

By (.) we obtain

Ī ≤
∫

Bρ (ξ ,
√

r)
�A(ξ , t;η, )u(η) dη +

∫

Bρ (ξ,
√

r)
�A(ξ, t;η, )u(η) dη < ε.

Further, using Lemma . we have clearly that Ī(ξ , t; ξ, t) →  as ρ(ξ , ξ) ∨ |t – t| 
 → .

It follows that h is continuous on G × [, +∞).
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We denote by Cb(G × [, +∞)) the set of all bounded continuous functions on G ×
[, +∞) and note that (Cb(G × [, +∞)),‖ · ‖∞) is a Banach space. For M > C� > , let
us define the set

S =
{

u ∈ Cb
(
G × [, +∞)

)
: M–hC�

≤ u ≤ Mh 
C�

}
.

Obviously S is a nonempty closed subset of Cb(G × [, +∞)). We define an integral oper-
ator T on Cb(G × [, +∞)) by

Tu(ξ , t) = h(ξ , t) +
∫ t



∫

G
�A(ξ , t;η, s)V (η, s)up(η, s) dη ds. (.)

Since u is bounded, it follows from Lemma . that Tu ∈ Cb(G× [, +∞)). Moreover, since
u ≤ Mh 

C�

(ξ , t), according to Lemma . one has

up(η, s) ≤ Mp[h 
C�

(η, s)
]p ≤ C(p,γ )Mp‖u‖p–

∞ h 
C�

(

η,
s

pγ

)

≤ C(p,γ )Mpbp–
 h 

C�

(

η,
s

pγ

)

(.)

for every γ ∈ (, ).
Now taking γ <  such that pγ > , we obtain

up(η, s) ≤ C(p,γ )Mpbp–


∫

G
� 

C�

(

η,
s

pγ
; ζ , 

)

u(ζ ) dζ . (.)

Substituting (.) into (.) and using Proposition .(i), we have

Tu(ξ , t) – h(ξ , t)

≤ C(p,γ )Mpbp–


∫

G

∫ t



∫

G
�A(ξ , t;η, s)V (η, s)� 

C�

(

η,
s

pγ
; ζ , 

)

dη ds u(ζ ) dζ

≤ C(p,γ )C�(pγ )
Q
 Mpbp–

 C 
C�

, pγ
C�

Nc(V )h 
C�

(ξ , t). (.)

It follows that, for b sufficiently small,

Tu(ξ , t) ≤ Mh 
C�

(ξ , t). (.)

In addition,

Tu(ξ , t) ≥ h(ξ , t) ≥ M–hC�
(ξ , t) (.)

since V ≥ . Equations (.) and (.) show that Tu ∈ S and so TS ⊂ S.
Moreover, for all u, v ∈ S, we have

Tu – Tv =
∫ t



∫

G
�A(ξ , t;η, s)V (η, s)

[
up(η, s) – vp(η, s)

]
dη ds.
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By a straightforward computation using (.),
∣
∣up(η, s) – vp(η, s)

∣
∣ ≤ p

∣
∣u(η, s) – v(η, s)

∣
∣ · ∣∣up–(η, s) + vp–(η, s)

∣
∣

≤ pMp–∣∣u(η, s) – v(η, s)
∣
∣
[
h 

C�

(η, s)
]p–

≤ CpMp–‖u‖p–
∞

∣
∣u(η, s) – v(η, s)

∣
∣,

and hence

‖Tu – Tv‖∞ ≤ CpMp–bp–
 ‖u – v‖∞

∫ t



∫

G
�A(ξ , t;η, s)V (η, s) dη ds

≤ Cp(Mb)p–N 
C�

(V )‖u – v‖∞.

In particular for b small enough, we obtain ‖Tu – Tv‖∞ ≤ 
‖u – v‖∞, which means

that T is a 
 -Lipschitz mapping form S into itself. Therefore, according to the fixed point

theorem there exists u ∈ S such that Tu = u. This completes the proof. �

The next theorem shows that when V ≥ , the condition Nc(V ) < +∞ in the definition
of class P∞

loc is optimal for Theorem . to hold.

Theorem . Assume that V is defined on G × (, +∞), V ≥ , and the result of Theo-
rem . holds for all A ∈ M�. Then we have, for all c ≥ C�,

sup
(ξ ,t)∈G×(,+∞)

∫ t



∫

G
�c(ξ , t;η, s)

∣
∣V (η, s)

∣
∣dη ds < +∞.

Proof According to the assumptions, for all M > C� >  there is a constant b such that
for each nonnegative u ∈ C(G) with ‖u‖∞ ≤ b, there exists a solution u of the integral
equation

u(ξ , t) =
∫

G
�A(ξ , t;η, )u(η) dη +

∫ t



∫

G
�A(ξ , t;η, s)V (η, s)up(η, s) dη ds

satisfying

M–
∫

G
hC�

(ξ , t;η, )u(η) dη ≤ u(ξ , t) ≤ M
∫

G
h 

C�

(ξ , t;η, )u(η) dη.

For u ≡ b, we obtain u(ξ , t) = b +
∫ t


∫

G �A(ξ , t;η, s)V (η, s)up(η, s) dη ds and M–bC ≤
u(ξ , t) ≤ MbC, which implies

(
M–bC

)p
∫ t



∫

G
�A(ξ , t;η, s)V (η, s) dη ds

≤
∫ t



∫

G
�A(ξ , t;η, s)V (η, s)up(η, s) dη ds ≤ (MC – )b.

Therefore

sup
(ξ ,t)∈G×(,∞)

∫ t



∫

G
�A(ξ , t;η, s)V (η, s) dη ds ≤ (MC – )b–p

 MpC–p
 < +∞.

Combining this with (.), we deduce the result. �
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5 Proof of the asymptotic behavior
This section is divided into two parts. In the first part we establish the global Gaussian
upper bounds for fundamental solutions of certain linear degenerate parabolic equations.
We emphasize that the parameters in the bounds are independent of time. In the next part
we will prove Theorem . by means of the newly obtained Gaussian estimates.

Lemma . Let A ∈ M�, V (ξ , t) ∈ �β (G ×R) ( < β < ), and � be the fundamental solu-
tion of the degenerate parabolic operator

m∑

i,j=

aijXiXju(ξ , t) –
∂

∂t
u(ξ , t) + V (ξ , t)u(ξ , t).

Suppose that Nc′ (V ) is sufficiently small for a suitable c′ > . Then there exist positive con-
stants a and C such that

�(ξ , t;η, ) ≤ Ct– Q
 e–a ρ(ξ ,η)

t

for all t >  and ξ ,η ∈ G.

Proof Without loss of generality, we assume that V is bounded and supported in G ×
[, T], where T is a positive number. The general case can be covered by a limiting argu-
ment. What is important is to make sure all constants are independent of T .

According to the result in Bramanti et al. [], there are positive constants a < 
C�

and
B = B(T) such that

�(ξ , t;η, s) ≤ B(t – s)– Q
 e–a ρ(ξ ,η)

t–s (.)

for all ξ ,η ∈ G and s < t. We suppose that B is the smallest positive number satisfying (.).
We claim that such a B does exist by our extra assumption that V (ξ , t) =  and thus � = �A

if t > T . For t ≤ T , the claim can be checked by showing that B depends on V only in the
form of Nc′ (V ).

By the Duhamel principle, (.) and (.), we have, for all ξ ,η ∈ G and s < t,

�(ξ , t;η, s) = �A(ξ , t;η, s) +
∫ t

s

∫

G
�(ξ , t; ζ , τ )

∣
∣V (ζ , τ )

∣
∣�A(ζ , τ ;η, s) dζ dτ

≤ �A(ξ , t;η, s) +
∫ t

s

∫

G

B

(t – τ )
Q


e–a ρ(ξ ,ζ )
t–τ

∣
∣V (ζ , τ )

∣
∣

× C�

(τ – s)
Q


e– ρ(ζ ,η)
C�(τ–s) dζ dτ .

We then derive from Proposition .

�(ξ , t;η, s) ≤ C�

(t – s)
Q


e– ρ(ξ ,η)
C�(t–s) + BCa, 

C�

Nc′ (V )


(t – s)
Q


e–a ρ(ξ ,η)
t–s

≤ [
C� + BCa, 

C�

Nc′ (V )
] 

(t – s)
Q


e–a ρ(ξ ,η)
t–s .
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Hence, by the definition of B, we obtain

B ≤ C� + BCa, 
C�

Nc′ (V ).

When Ca, 
C�

Nc′ (V ) < 
 we have B ≤ C�. This finishes the proof. �

Now we are ready to give the proof of Theorem ..

Proof First we recall the assumptions imposed on the initial function u:

u ∈ C(G),  < α ≤ u ≤ α,

where α is a small number so that (.) has global positive solutions by Theorem .. The
reason to impose a positive lower bound α for u is to guarantee that the equilibrium
solution is non-trivial.

Since V ,
∑m

i,j= aijXiXju ∈ P∞
loc by assumption, we have

sup
ξ

∫

G

|∑m
i,j= aijXiXju(η)| + |V (η)|

ρQ–(ξ ,η)
dη < +∞, (.)

which will be proved in Proposition A. in the Appendix.
We temporarily assume that V is smooth. Hence the solution u(ξ , t) of (.) is smooth.

Let us write w = ut . Differentiating (.), we find that w solves

{∑m
i,j= aijXiXjw – ∂

∂t w + pV (ξ )up–(ξ , t)w(ξ , t) = , (ξ , t) ∈ G × (, +∞),
w(ξ , ) =

∑m
i,j= aijXiXju(ξ ) + V (ξ )up

(ξ ), ξ ∈ G, Q ≥ .
(.)

Let V(ξ , t) = pV (ξ )up–(ξ , t) and let �̄ be the fundamental solution of the operator
∑m

i,j= aijXiXj – ∂t + V. Then

w(ξ , t) =
∫

G
�̄(ξ , t;η, )

[ m∑

i,j=

aijXiXju(η) + V (η)up
(η)

]

dη. (.)

When u is small, we know by Theorem . that u is small, and so Nc(V) ≤ p sup |u|p– ×
Nc(V ) is small. From Lemma ., there exist positive constants a, C independent of t, ξ ,
and η such that

�̄(ξ , t;η, ) ≤ Ct– Q
 e–a ρ(ξ ,η)

t . (.)

Substituting (.) into (.), we obtain

∣
∣ut(ξ , t)

∣
∣ ≤

∫

G
Ct– Q

 e–a ρ(ξ ,η)
t

[ m∑

i,j=

aijXiXju(η) + V (η)up
(η)

]

dη. (.)
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For any t > , by integrating the above inequality from t to +∞ we obtain, via the Fubini
theorem and (.),

∫ +∞

t

∣
∣us(ξ , s)

∣
∣ds

≤ C
∫

G


ρ(ξ ,η)Q–

[∣
∣
∣
∣
∣

m∑

i,j=

aijXiXju(η)

∣
∣
∣
∣
∣

+
∣
∣V (η)up

(η)
∣
∣

]

dη < +∞, (.)

where we have used the inequality
∫ +∞

t s– Q
 e–a ρ(ξ ,η)

s ds ≤ C
ρQ–(ξ ,η) .

Now we define the function

u∞(ξ ) = lim
t→+∞ u(ξ , t). (.)

We claim that the rate of convergence in (.) depends only on ξ and the rate of conver-
gence of the following limit:

lim
M→+∞ sup

ξ

∫

ρ(η)≥M

|∑m
i,j= aijXiXju(η)| + |V (η)|

ρQ–(ξ ,η)
dη = .

Here is a proof of the claim. Obviously, for a fixed ξ and any ε > , there exists a constant
M >  such that

∫

ρ(ξ ,η)≥M

|∑m
i,j= aijXiXju(η)| + |V (η)|

ρ(ξ ,η)Q– dη <
ε


.

From (.), we have

∣
∣u(ξ , t) – u∞(ξ )

∣
∣ ≤

∫ +∞

t

∣
∣us(ξ , s)

∣
∣ds

≤ C
∫ +∞

t

∫

G
s– Q

 e–a ρ(ξ ,η)
s

[∣
∣
∣
∣
∣

m∑

i,j=

aijXiXju(η)

∣
∣
∣
∣
∣

+
∣
∣V (η)

∣
∣

]

dη ds

≤ C
∫ +∞

t

∫

ρ(ξ ,η)≤M
· · · dη ds + C

∫ +∞

t

∫

ρ(ξ ,η)≥M
· · · dη ds

≤ C
∫ +∞

t

∫

ρ(ξ ,η)≤M
s– Q


MQ–

ρQ–(ξ ,η)

[∣
∣
∣
∣
∣

m∑

i,j=

aijXiXju(η)

∣
∣
∣
∣
∣

+
∣
∣V (η)

∣
∣

]

dη ds

+ C
∫

ρ(ξ ,η)≥M


ρQ–(ξ ,η)

[∣
∣
∣
∣
∣

m∑

i,j=

aijXiXju(η)

∣
∣
∣
∣
∣

+
∣
∣V (η)

∣
∣

]

dη ds

≤ Ct– Q–
 MQ– +

Cε


< Cε, (.)

when t is sufficiently large. This proves the claim.
From (.) we derive a pointwise estimate on |ut|:

∣
∣ut(ξ , t)

∣
∣ ≤ C

t

∫

G


ρQ–(ξ ,η)

[∣
∣
∣
∣
∣

m∑

i,j=

aijXiXju(η)

∣
∣
∣
∣
∣

+
∣
∣V (η)up

(η)
∣
∣

]

dη, (.)

by using the obvious inequality t– Q
 e–a ρ(ξ ,η)

t ≤ C
tρQ–(ξ ,η) .
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It remains to prove that u = u∞(ξ ) is a non-trivial positive solution of the subelliptic
equation. Given any φ ∈ C∞

 (G), we have

∫

G
u(ξ , t)

m∑

i,j=

aijXiXjφ(ξ ) dξ –
∫

G
ut(ξ , t)φ(ξ ) dξ +

∫

G
V (ξ )up(ξ , t)φ(ξ ) dξ = .

Since u is bounded, we obtain by (.), (.), and the dominated convergence theorem

∫

G
u∞(ξ )

m∑

i,j=

aijXiXjφ(ξ ) dξ +
∫

G
V (ξ )up

∞(ξ )φ(ξ ) dξ = .

According to Theorem . we find that u = u(ξ , t) is bounded away from zero when u ≥
α > . Therefore, u∞ is a positive solution of the subelliptic equation.

Now we set V ∈ P∞
loc. We claim that there is a sequence of smooth functions {Vn} such

that Vn → V a.e. as n → ∞, and for any domain D ⊂ G,

sup
ξ∈G

∫

D

|Vn(η)|
ρQ–(ξ ,η)

dη ≤ sup
ξ∈G

∫

D

|V (η)|
ρQ–(ξ ,η)

dη. (.)

We prove the claim as follows. Let J be the standard mollifier. Define

Vn(η) =
∫

ρ(ζ )≤
J(ζ )V

((
δ 

n
(ζ )

)– · η) dζ .

Then we only need to check (.). Clearly

∫

D

|Vn(η)|
ρQ–(ξ ,η)

dη ≤
∫

D


ρQ–(ξ ,η)

∫

ρ(ζ )≤
J(ζ )

∣
∣V

((
δ 

n
(ζ )

)– · η)∣
∣dζ dη

=
∫

ρ(ζ )≤
J(ζ )

∫

D

|V (η)|
ρQ–(ξ , δ 

n
(ζ ) · η)

dη dζ .

Hence

sup
ξ∈G

∫

D

|Vn(η)|
ρQ–(ξ ,η)

dη ≤ sup
ξ∈G

∫

D

|V (η)|
ρQ–(ξ ,η)

dη

∫

ρ(ζ )≤
J(ζ ) dζ .

This proves the claim.
The previous argument implies that, for each n, there is a global solution un of (.) when

V is replaced by the smooth function Vn. Moreover, limt→∞ un(ξ , t) = un,∞(ξ ) pointwise.
The claim about the rate of convergence of (.) and (.) show that the convergence is
uniform with respect to n. Therefore, a subsequence, still called {un}, converges uniformly
to a function u(ξ , t) in any compact subset of G × (, +∞). Following the previous argu-
ment, we find that u is a positive solution of (.) and u = u(ξ , t) converges pointwise to a
u∞(ξ ) as t → +∞, and u∞(ξ ) is a positive solution of (.). �

Appendix
The objective of the section is to give two propositions about the class P∞

loc, among which
Proposition A. was used to obtain (.) in Section . The corresponding results in the
Euclidean case were first given in [].
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For a measurable function V on G ×R, we put

pV
A (ξ , t) =

∫ t

–∞

∫

G
�A(ξ , t;η, s)

∣
∣V (η, s)

∣
∣dη ds (A.)

and

p∗V
A (η, s) =

∫ +∞

s

∫

G
�A(ξ , t;η, s)

∣
∣V (ξ , t)

∣
∣dξ dt. (A.)

By Lemma . and Remark . we obviously have the following result.

Proposition A. Let V ∈ L(G ×R) ∩ P∞
loc. Then for all A ∈ M�, the potentials pV

A , p∗V
A ∈

Cb(G ×R).

Proposition A. Let V (ξ , t) = V (ξ ) ∈ L(G). Then V ∈ P∞
loc if and only if the potential

pV (ξ ) :=
∫

G
|V (η)|

ρQ–(ξ ,η) dη ∈ Cb(G).

Proof We first give the proof of the sufficiency. Assume that V (ξ ) ∈ L(G) and pV (ξ ) ∈
Cb(G). We then obtain

Nc(V ) ≤ C sup
ξ∈G

∫

G

|V (η)|
ρQ–(ξ ,η)

dη + C sup
η∈G

∫

G

|V (ξ )|
ρQ–(ξ ,η)

dξ < C

for some constant C > .
For simplicity we write, for r ∈ (, ),

pV
r (ξ ) =

∫

Bρ (ξ ,
√

r)

|V (η)|
ρQ–(ξ ,η)

dη, qV
r (ξ ) =

∫

Bc
ρ (ξ ,

√
r)

|V (η)|
ρQ–(ξ ,η)

dη.

We will prove that qV
r (ξ ) is continuous. Indeed, for ξ ∈ G, when ρ(ξ , ξ) <

√
r

 ,

∣
∣qV

r (ξ ) – qV
r (ξ)

∣
∣ ≤ J(ξ , ξ) + J(ξ , ξ),

where

J(ξ , ξ) =
∫

Bc
ρ (ξ ,

√
r)

∣
∣
∣
∣


ρQ–(ξ ,η)

–


ρQ–(ξ,η)

∣
∣
∣
∣ · ∣∣V (η)

∣
∣dη

and

J(ξ , ξ) =
∫

|Bc
ρ (ξ ,

√
r) – Bc

ρ (ξ,
√

r)| |V (η)|
ρQ–(ξ,η)

dη.

Recall that Q ≥ , we can calculate via the obvious inequality

∣
∣
∣
∣


ρQ–(ξ ,η)

–


ρQ–(ξ,η)

∣
∣
∣
∣

≤ (Q – )ρ(ξ , ξ)
[


ρQ–(ξ ,η)ρ(ξ,η)

+


ρ(ξ ,η)ρQ–(ξ,η)

]

.
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Therefore

 < J(ξ , ξ) ≤ C(Q – )
ρ(ξ , ξ)√

r

∫

Bc
ρ (ξ ,

√
r)

∣
∣
∣
∣


ρQ–(ξ ,η)

+


ρQ–(ξ,η)

∣
∣
∣
∣ · ∣∣V (η)

∣
∣dη.

On the other hand, by the dominated convergence theorem, we also have

J(ξ , ξ) →  as ρ(ξ , ξ) → .

Hence qV
r (ξ ) is continuous. We then have pV

r (ξ ) = pV (ξ ) – qV
r (ξ ) is continuous and

limr→ pV
r (ξ ) = . So, by the Dini theorem, limr→ supξ∈K ′ pV

r (ξ ) =  for any compact subset
K ′ ⊂ G. It assists us to deduce that

lim
r→

{

sup
(ξ ,t)∈K

∫ t

t–r

∫

ρ(ξ ,η)<
√

r
�c(ξ , t;η, s)

∣
∣V (η)

∣
∣dη ds

+ sup
(η,s)∈K

∫ s+r

s

∫

ρ(ξ ,η)<
√

r
�c(ξ , t;η, s)

∣
∣V (ξ )

∣
∣dξ dt

}

≤ lim
r→

{

C sup
ξ∈K ′

∫

ρ(ξ ,η)<
√

r

|V (η)|
ρQ–(ξ ,η)

dη

+ C sup
η∈K ′

∫

ρ(ξ ,η)<
√

r

|V (ξ )|
ρQ–(ξ ,η)

dξ

}

= 

for any compact K ⊂ G ×R. Thus V ∈ P∞
loc.

We can now proceed to the proof of the necessity. Let V ∈ L(G) ∩ P∞
loc. By (.) and the

general properties of Lebesgue integral, there exists a constant C >  such that

pV (ξ ) ≤
∫

ρ(ξ ,η)≤

|V (η)|
ρQ–(ξ ,η)

dη +
∫

ρ(ξ ,η)≥

∣
∣V (η)

∣
∣dη < C.

Let ε > . Then there exists r >  such that

∫

Bρ (ξ ,
√

r)

|V (η)|
ρQ–(ξ ,η)

dη < ε.

Therefore, when ρ(ξ , ξ) <
√

r
 , it follows that

∣
∣pV (ξ ) – pV (ξ)

∣
∣ ≤

∫

G

∣
∣
∣
∣


ρQ–(ξ ,η)

–


ρQ–(ξ,η)

∣
∣
∣
∣ · ∣∣V (η)

∣
∣dη

≤
∫

Bρ (ξ ,
√

r)
· · · dη +

∫

Bc
ρ (ξ,

√
r

 )
· · · dη

� I(ξ , ξ) + I(ξ , ξ),

where

I(ξ , ξ) ≤
∫

Bρ (ξ ,
√

r)

|V (η)|
ρQ–(ξ ,η)

dη +
∫

Bρ (ξ,
√

r)

|V (η)|
ρQ–(ξ,η)

dη < ε
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and

I(ξ , ξ) ≤ C(Q – )
ρ(ξ , ξ)√

r

∫

Bc
ρ (ξ,

√
r

 )

[


ρQ–(ξ ,η)
+


ρQ–(ξ,η)

]

· ∣∣V (η)
∣
∣dη → 

as ρ(ξ , ξ) → . This finishes the proof. �
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