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Abstract
In this paper, we investigate the asymptotic behavior of the solutions for the
equations of Benjamin-Bona-Mahony’s type with a time delay. We prove the global
existence of solutions and energy decay. By using the Liapunov function method, we
shall show that the solution is exponentially decay if the delay parameter τ is
sufficiently small.
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1 Introduction
In this paper, we consider a family of dispersive equations of Benjamin-Bona-Mahony’s
type under the effect of dissipation, and we will investigate the asymptotic behavior of the
solutions. Our model can be written in the abstract form

Mut(x, t) + αLu(x, t) + u(x, t – τ )ux(x, t) = , (.)

u(x, t) = u(x + , t), (.)

u(x, s) = u(x, s), (.)

where x ∈ R
, t > , –τ ≤ s ≤ , α > , and we set � = (, ). The operators M and L

can be differential operators or pseudo-differential operators, and the orders of pseudo-
differential operators M and L are μ and s with s ≥ μ ≥ .

In the simplest case, when M and L are the differential operators M = I – ∂

∂x , L = – ∂

∂x ,
(.) is the well-known Benjamin-Bona-Mahony model []:

ut(x, t) – uxxt(x, t) – αuxx(x, t) + u(x, t)ux(x, t) =  (.)

which describes the unidirectional propagation of weakly nonlinear dispersive long waves
where Burger’s type dissipation is considered. The existence of global solutions and
asymptotic behavior in time have been studied by several authors. The asymptotic be-
havior of solutions to the generalized Korteweg-de Vries-Burgers and Benjamin-Bona-
Mahony-Burgers equations in one space dimension was studied by Amick, Bona and
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Schonbek in [], by Wang and Yang in [], and by Bona and Luo in []. These results were
generalized by Zhang [] to multiple spatial dimensions. In [–] the authors considered a
family of equations of KdV and BBM’s type described by pseudo-differential operators, and
studied the asymptotic behavior in one space dimension. In [] study the Cauchy problem
for a class of nonlinear dissipative equations of Benjamin-Bona-Mahony’s type and dis-
cuss the existence of a global attractor and estimate its Hausdorff and fractal dimensions.
But few of the equations involving delay.

To explain our motivation of introducing a time delay into Benjamin-Bona-Mahony
equation, we consider the rate of change of u, which we denote by Du

Dt , is

Du
Dt

=
d
dt

u
[
x(t), t

]
=

∂

∂t
u(x, t) +

dx(t)
dt

∂

∂x
u(x, t)

=
∂

∂t
u(x, t) + u(x, t)

∂

∂x
u(x, t),

where x(t) is understood to change with time at u = dx
dt . However, we might have a delay τ

to u. In this case the rate of change of u with the delay τ should be

Du
Dt

=
d
dt

u
[
x(t – τ ), t

]
=

∂

∂t
u(x, t) +

dx(t – τ )
dt

∂

∂x
u(x, t)

=
∂

∂t
u(x, t) + u(x, t – τ )

∂

∂x
u(x, t).

This clearly shows how we obtain the time-delay term u(x, t –τ )ux(x, t) in Benjamin-Bona-
Mahony equation (.). There is literature about delay reaction-diffusion equations [–
], on which our work is based. Recently, the asymptotic behavior of solutions of time-
delayed Burgers equation was studied by Liu in []. Subsequently, exponentially decay
rate of solutions for Benjamin-Bona-Mahony equation (.) with a time decay was stud-
ied in [], and in [] author have obtained the exponentially decay rate of solutions for
the time-Delayed Kuramoto-Sivashinsky equation. Here, by using the Liapunov function
method, we shall show that the solution of problems (.)-(.) is exponentially decay if
the delay parameter τ is sufficiently small.

We shall use standard notation. By Lp(�) we shall denote the space of functions in �

whose pth power is integrable, with the norm ‖g‖p
Lp =

∫
�

|g(x)|p dx,  ≤ p < +∞. The norm
in L(�) we will denote by ‖ · ‖L = ‖ · ‖. By L∞(�) we denote the space of measurable
essentially bounded functions in � with the norm

‖g‖L∞ = ess sup
x∈�

∣
∣g(x)

∣
∣.

For each σ ∈R we shall denote by Hσ (�) the usual Sobolev space of order σ . By Hσ
per(�),

σ ≥  we shall indicate the space of functions periodic in the sense of (.). If g ∈ Hσ
per(�)

then g has an expansion in a Fourier series,

g(x) =
∑

k∈Z
gk exp(kiπx).

The norm of g in Hσ
per(�) will be denoted by

‖g‖
Hσ =

∑

k∈Z

(
 + |k|)σ |gk|,
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which is equivalent to Hσ (�) norm, σ ≥ , according to Temam []. We shall denote by
L̇(�) and Ḣσ (�) the space of functions g ∈ L(�) or Hσ (�) such that

∫

�

g(x) dx = . (.)

The space Ḣσ (�), σ ∈ R+, is the space of functions g ∈ L(�)) such that g satisfies (.)
and

∑

k∈Z

(
 + |k|)σ |gk| < +∞.

In Ḣ
per(�) the Poincaré inequality holds, that is, if g ∈ Ḣ

per(�) then

‖g‖ ≤ C(�)
∥∥g ′∥∥. (.)

The inequality (.) shows that Ḣ
per(�) is a Hilbert space with scalar product of H

(�),
and ‖u‖H = (u, u)/

H is a norm on this space equivalent to that induced by H(�).
The operators M and L of (.) are pseudo-differential operators of orders μ and s, re-

spectively, with

M : Ḣμ
per(�) → L̇

per(�), μ ≥ ,μ ∈R,

L : Ḣs
per(�) → L̇

per(�), s ≥ , s ∈R,

and

Mg(x) =
∑

k∈Z
m(k)gk exp(kiπx),

Lg(x) =
∑

k∈Z
l(k)gk exp(kiπx),

where m and l are the principal symbols of the operators M and L, respectively. We assume
from now on that the symbols m and l are even functions of k that satisfy the growth
conditions:

(i) There exist constants c, c >  such that

c
(
 + |k|)μ ≤ m(k) ≤ c

(
 + |k|)μ. (.)

(ii) There exist constants c, c >  such that

c|k|s ≤ l(k) ≤ c|k|s. (.)

The domains of operators M and L are given by

D(M) =
{

g ∈ Ḣμ
per(�),

∑

k∈Z

∣∣m(k)
∣∣|gk| < ∞

}
,

D(L) =
{

g ∈ Ḣs
per(�),

∑

k∈Z

∣∣l(k)
∣∣|gk| < ∞

}
.
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Let X be a Banach space and a < b. We denote by Cn([a, b]; X) the space of n times
continuously differentiable functions defined on [a, b] with values in X with the supremum
norm and we write C([a, b]; X) for C([a, b]; X).

The main result of this paper is stated as follows.

Theorem . For any initial condition u = u(x, s) ∈ C([–τ , ], Ḣ
μ


per(�)), μ ≥ , s ≥ , and
suppose M and L satisfy the assumptions (.), (.). Then problem (.)-(.) has a unique
global mild solution u on [–τ ,∞) with

u ∈ C
(
[–τ , +∞), Ḣ

μ


per(�)
)
.

Theorem . Under the assumption of Theorem ., if μ = s, there are τ,ω, K >  such
that, for τ < τ, the solution of (.)-(.) satisfies

∥∥M/u(t)
∥∥ ≤ K


exp{–ωt}, t ≥ . (.)

This paper is organized as follows. In next section, we prove the existence of the solu-
tion. Furthermore, we show that the solution is exponentially decay by using the Liapunov
function method.

2 Exponential decay estimates
Firstly, we briefly show that problem (.)-(.) is well posed. To conveniences, we de-
note ‖u‖ ≤ λ‖L 

 u‖, ‖ux‖ ≤ λ‖L 
 u‖, ‖u‖ ≤ λ‖M 

 u‖, ‖ux‖ ≤ λ‖M 
 u‖, ‖M 

 u‖ ≤
λ‖L 

 u‖.

Proof of Theorem . By the standard methods as in [], it is easy to prove that for ev-
ery initial value u = u(x, s) ∈ C([–τ , ], Ḣ

μ


per(�)), there exists a T = T(u) >  such that
problem (.)-(.) has a unique mild solution u on [–τ , T] with

u(x, t) ∈ C
(
[–τ , T], Ḣ

μ


per(�)
)
.

Furthermore, for any τ > , the solution of (.)-(.) does not blow up in finite time. In-
deed, multiplying (.) by u, integrating by parts, we obtain, for  ≤ t ≤ τ ,

d
dt

∥∥M/u(t)
∥∥ + α

∥∥L/u(t)
∥∥

= –
∫ 


u(t)u(t – τ )ux(t) dx

≤ ‖u‖C([–τ ,],Ḣ
per(�))

∫ 



∣
∣u(t)

∣
∣
∣
∣ux(t)

∣
∣dx

≤ ‖u‖C([–τ ,],Ḣ
per(�))

∥
∥u(t)

∥
∥
∥
∥ux(t)

∥
∥

≤ λ
∥
∥L/u(t)

∥
∥‖u‖C([–τ ,],Ḣ

per(�))
∥
∥ux(t)

∥
∥.
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By the Young inequality, we get

d
dt

∥
∥M/u(t)

∥
∥ ≤ λ


α

‖u‖

C([–τ ,],Ḣ
μ


per(�))

∥
∥ux(t)

∥
∥

≤ λ
λ




α
‖u‖

C([–τ ,],Ḣ
μ


per(�))

∥
∥M/u(t)

∥
∥,

which implies that

∥∥M/u(t)
∥∥ ≤ K

(‖u‖
C([–τ ,],Ḣ

μ


per(�))

)
,

where K(‖u‖
C([–τ ,],Ḣ

μ


per(�))
) is a positive constant depending on ‖u‖

C([–τ ,],Ḣ
μ


per(�))
. Re-

peating the above procedure, we can prove that, for nτ ≤ t ≤ (n + )τ (n = , , . . .),

∥∥M/u(t)
∥∥ ≤ K

(
n,‖u‖

C([–τ ,],Ḣ
μ


per(�))

)
.

In summary, we have proved Theorem .. �

Secondly, we prove that our main result about the exponential stability. To this end, we
introduce the following notations. For a given initial condition u = u(x, s) ∈ C([–τ , ],
Ḣ

μ


per(�)), denote

K = sup
–τ≤s≤

∥∥M/u(s)
∥∥ +

√

∥∥M/u()

∥∥. (.)

Set

σ = sup

{
δ >  :

∥
∥M/u()

∥
∥ ≤ K


,  ≤ τ ≤ δ

}
, (.)

and let τ be small enough, such that for any τ ,  ≤ τ < τ ≤ σ ,

ω =
α

λ


–
λ

K
λ



√√
√√τ [α + λ

K

ε
τ ]

λ–
 – ε

> . (.)

Proof of Theorem . Let

T = sup
{
δ :

∥
∥M/u(t)

∥
∥ ≤ K,  ≤ t ≤ δ

}
. (.)

Since

∥∥M/u()
∥∥ ≤ K,

and ‖M/u(t)‖ is continuous, we have T > . We shall prove that T = +∞. For this, we
argue by contradiction. If T < +∞, then we have

∥∥M/u(t)
∥∥ ≤ K, ∀ – τ ≤ t ≤ T (.)
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and

∥∥M/u(T)
∥∥ = K. (.)

Multiplying (.) by u, then integrating on � with respect to x, we obtain

d
dt

∥
∥M/u(t)

∥
∥ + α

∥
∥L/u(t)

∥
∥ = –

∫ 


u(t)u(t – τ )ux(t) dx.

Since
∫ 

 u(t)ux(t) dx = , we have

d
dt

∥
∥M/u(t)

∥
∥ + α

∥
∥L/u(t)

∥
∥ = �, (.)

where

� = –
∫ 


u(t)

[
u(t – τ ) – u(t)

]
ux(t) dx.

We now majorize � in the right hand side of (.). Firstly, since

∣∣u(x, t)
∣∣≤ ∥∥ux(x, t)

∥∥,  ≤ x ≤ ,

we have

� ≤ 
∫ 



∣∣u(t – τ ) – u(t)
∣∣∣∣u(t)

∣∣∣∣ux(t)
∣∣dx

≤ 
∫ 



∣
∣u(t – τ ) – u(t)

∣
∣
∥
∥ux(t)

∥
∥
∣
∣ux(t)

∣
∣dx

≤ 
∥∥ux(t)

∥∥
∫ 



∣∣u(t – τ ) – u(t)
∣∣∣∣ux(t)

∣∣dx

≤ 
∥
∥ux(t)

∥
∥
(∫ 



∣
∣u(t – τ ) – u(t)

∣
∣ dx

) 

(∫ 



∣
∣ux(t)

∣
∣ dx

) 


= 
∥∥ux(t)

∥∥
(∫ 



∣∣u(t – τ ) – u(t)
∣∣ dx

) 


= 
∥
∥ux(t)

∥
∥

(∫ 



∣∣
∣∣

∫ t

t–τ

us(s) ds
∣∣
∣∣



dx
) 



≤ 
∥∥ux(t)

∥∥
(∫ 



(∫ t

t–τ

u
s (s) ds

∫ t

t–τ

ds
)

dx
) 



= 
√

τ
∥
∥ux(t)

∥
∥

(∫ 



∫ t

t–τ

u
s (s) ds dx

) 


.

Let

 =
(∫ 



∫ t

t–τ

u
s (s) ds dx

) 


,
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we have

� ≤ 
√

τ
∥∥ux(t)

∥∥
 (.)

and

 ≤ λ


∫ t

t–τ

∥∥M/us(s)
∥∥ ds. (.)

We now want to estimate  . To this end, multiplying (.) by ut , then integrating on �

with respect to x, we obtain

∥∥M/ut(t)
∥∥ +

α


d
dt

∥∥L/u(t)
∥∥ +

∫ 


ut(t)u(t – τ )ux(t) dx = .

Integrating on [t – τ , t],  ≤ t ≤ T, we obtain


∫ t

t–τ

∥∥M/us(s)
∥∥ ds + α

∥∥L/u(t)
∥∥ – α

∥∥L/u(t – τ )
∥∥ + H = ,

where

H = 
∫ t

t–τ

∫ 


us(s)u(s – τ )ux(s) dx ds,

which implies that


∫ t

t–τ

∥
∥M/us(s)

∥
∥ ds ≤ α

∥
∥L/u(t – τ )

∥
∥ – H . (.)

We now majorize H :

H ≤ 
∫ t

t–τ

∫ 



∣∣us(s)
∣∣∣∣u(s – τ )

∣∣∣∣ux(s)
∣∣dx ds

≤ 
∫ t

t–τ

∫ 



∥∥ux(s – τ )
∥∥(∣∣us(s)

∣∣∣∣ux(s)
∣∣)dx ds

≤ λK
∫ t

t–τ

∫ 



∣∣us(s)
∣∣∣∣ux(s)

∣∣dx ds

≤ λK
(∫ t

t–τ

∫ 


u

s (s) dx ds
) 


(∫ t

t–τ

∫ 


u

x(s) dx ds
) 



≤ ε +
λ

K

ε

∫ t

t–τ

∫ 


u

x(s) dx ds

≤ ε +
λ

K

ε

∫ t

t–τ

K ds

≤ ε +
λ

K

ε
τ , (.)

with  < ε < λ–
 . Thus by (.)-(.), we have


∫ t

t–τ

∥∥M/us(s)
∥∥ ds ≤ αK + ε +

λ
K

ε
τ , (.)
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furthermore, by (.), we get

 ≤ K

√√
√√ [α + λ

K

ε
τ ]

λ–
 – ε

, ∀ ≤ t ≤ T. (.)

Then (.) and (.) implies that

� ≤ λ
K

√√
√√τ [α + λ

K

ε
τ ]

λ–
 – ε

∥∥ux(t)
∥∥

≤ λ
K

√√
√√τ [α + λ

K

ε
τ ]

λ–
 – ε

∥∥L/u(t)
∥∥. (.)

Thus, by (.) and (.), we obtain

d
dt

∥∥M/u(t)
∥∥ +

∥∥L/u(t)
∥∥

(
α – λ

K

√√
√√τ [α + λ

K

ε
τ ]

λ–
 – ε

)
≤ ,

furthermore,

d
dt

∥∥M/u(t)
∥∥ + ω

∥∥M/u(t)
∥∥ ≤ , (.)

where ω is defined by (.). Solving the above inequality gives

∥∥M/u(t)
∥∥ ≤ ∥∥M/u(x, )

∥∥e–ωt ≤ K


e–ωt ,  ≤ t ≤ T. (.)

Hence

∥∥M/u(t)(T)
∥∥ ≤ Ke–ωT , (.)

which is in contradiction with (.). Therefore, we have proved that T = +∞ and then
(.) follows from (.). Thus we have completed the proof of Theorem .. �
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