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1 Introduction
The boundary value problems (BVPs for short) for nonlinear differential equations arise
in a variety of areas of applied mathematics, physics, and variational problems of con-
trol theory. The nonlocal BVPs have been studied extensively. The methods used therein
mainly depend on the fixed-point theorems, degree theory, upper and lower techniques,
and monotone iteration. Many existence, uniqueness, and multiplicity results have been
obtained. For instance, see [–] and the references therein.

The purpose of this paper is to investigate the existence and uniqueness of iterative so-
lution to the following nth-order nonlocal BVP:

{
x(n)(t) + f (t, x(t), x′(t), . . . , x(n–)(t)) = , t ∈ (, ),
x() = x′() = · · · = x(n–)() = , x(n–)() =

∫ 
 x(n–)(s) dA(s),

(.)

where f ∈ C((, ) × Rn–, R), � :=
∫ 

 t dA(t) �= .
∫ 

 x(n–)(s) dA(s) denotes the Riemann-
Stieltjes integral, where A is of bounded variation.

In BVP (.),
∫ 

 x(n–)(s) dA(s) denotes the Riemann-Stieltjes integral with a signed mea-
sure. This includes as special cases the two-point, three-point, multi-point problems and
integral problems. Let us remark that the idea of using a Riemann-Stieltjes integral in the
boundary conditions is quite old, see for example the review by Whyburn in []. The BVP
(.) used to model various nonlinear phenomena in physics, chemistry and biology. Over
the past decades, great efforts have been devoted to nonlinear nth-order nonlocal BVP
(.) and its particular and related cases, and many results of the existence of solutions
have been obtained by several authors; see [, , , , –] and references therein. For
example, when n = , A(t) ≡ , the BVP (.) becomes the second-order two-point BVP

{
x′′(t) + f (t, x(t)) = , t ∈ (, ),
x() = , x() = .

(.)
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BVP (.) is the well-known second-order Dirichlet BVP, which has been extensively stud-
ied and has important applications in physical sciences. When n = ,

∫ 
 x(s) dA(s) = αx(η),

the BVP (.) reduces to the second-order three-point BVP

{
x′′(t) + f (t, x(t)) = , t ∈ (, ),
x() = , x() = αx(η).

When n = , the BVP (.) reduces to the fourth-order nonlocal BVP

{
x′′′′(t) + f (t, x(t), x′(t), x′′(t)) = , t ∈ (, ),
x() = x′() = x′′() = , x′′() =

∫ 
 x′′(s) dA(s).

(.)

In material mechanics, the BVP (.) describes the deflection or deformation of an elastic
beam whose the ends are controlled.

Motivated by the works mentioned above, in this paper, we consider the nth-order non-
local BVP (.). The existence and uniqueness of iterative solution is established by apply-
ing the cone theory and the Banach contraction mapping principle. In comparison with
previous works, this paper has several new features. Firstly, the nonlinearity f is allowed
to depend on higher derivatives of unknown function x(t) up to n –  order, and we allow f
to be singular at t = , . The second new feature is that the nonlinearity f is not monotone
or convex, the conclusions and the proof used in this paper are different from the known
papers. Thirdly, the scope of � is not limited to  ≤ � < , therefore, we do not need to
suppose that the Green function G(t, s) is nonnegative.

2 The preliminary lemmas
Lemma . ([]) For any y ∈ L[, ], the BVP

{
–x′′(t) = y(t), t ∈ (, ),
x() = , x() =

∫ 
 x(s) dA(s),

has a unique solution x(t) =
∫ 

 G(t, s)y(s) ds, where

G(t, s) = G(t, s) +
t

 – �
GA(s), t, s ∈ [, ],

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ ,

GA(s) =
∫ 


G(t, s) dA(t).

Denote I = [, ], J = (, ), and for any x ∈ C(I), t ∈ I , define

(Ix)(t) =
∫ t


x(s) ds, (Iix)(t) =

∫ t



(t – s)i–

(i – )!
x(s) ds, i = , . . . , n – ,

and

(Fx)(t) =
∫ 


G(t, s)f

(
s, (In–x)(s), . . . , (Ix)(s), x(s)

)
ds.

By Lemma . and routine calculations, we have the following lemma.
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Lemma .
(i) If x ∈ Cn–(I) is a solution of BVP (.), then y(t) = x(n–)(t) ∈ C(I) is a fixed point of

the operator F .
(ii) If x ∈ C(I) is a fixed point of the operator F , then

y(t) = (In–x)(t) =
∫ t


(t–s)n–

(n–)! x(s) ds ∈ Cn–(I) is a solution of BVP (.).

Let

h(t, s) =


s( – s)
∣∣G(t, s)

∣∣,
e(t) =

∫ 


h(t, s) ds,

em+(t) = max

{∫ 


h(t, s)em(s) ds,

∫ 


h(t, s)

∫ s


em(τ ) dτ ds

}
, m = , , . . . ,

G = lim
m→∞

[
sup
t∈J

em(t)
]– 

m .

It is easy to see that G > .

Lemma . ([]) P is a generating cone in the Banach space (E,‖ · ‖) if and only if there
exists a constant τ >  such that every element x ∈ E can be represented in the form x = y–z,
where y, z ∈ P and ‖y‖ ≤ τ‖x‖, ‖z‖ ≤ τ‖x‖.

3 Main results
Consider the Banach space C(I) of the usual real-valued continuous functions u(t) defined
on I with the norm ‖u‖ = supt∈I |u(t)| for all u ∈ C(I). Let P = {u ∈ C(I) | u(t) ≥ ,∀t ∈ I}.
Obviously, P is a normal solid cone of C(I), by Lemma .. in [], we see that P is a
generating cone in C(I).

Theorem . Suppose that f (t, x, x, . . . , xn–) = g(t, x, x, x, x, . . . , xn–, xn–), and there
exist positive constants B, C, B, C, . . . , Bn–, Cn– with B + C + B + C + B + C + · · · +
Bn–+Cn–

(n–)! < G, such that for any t ∈ J , a, b, a, b, a, b, a, b, . . . , a,n–, b,n–, a,n–,
b,n– ∈ R with a ≤ b, a ≥ b, a ≤ b, a ≥ b, . . . , a,n– ≤ b,n–, a,n– ≥ b,n–,

–Bn–(b,n– – a,n–) – Cn–(a,n– – b,n–) – · · ·
– B(b – a) – C(a – b) – B(b – a) – C(a – b)

≤ t( – t)
[
g(t, a,n–, a,n–, . . . , a, a, a, a)

– g(t, b,n–, b,n–, . . . , b, b, b, b)
]

≤ Bn–(b,n– – a,n–) + Cn–(a,n– – b,n–) + · · ·
+ B(b – a) + C(a – b) + B(b – a) + C(a – b), (.)

and there exist x, y ∈ Cn–(I) such that

t( – t)g
(
t, x(t), y(t), x′

(t), y′
(t), . . . , x(n–)

 (t), y(n–)
 (t)

) ∈ L[, ].
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Then BVP (.) has a unique solution In–x∗ in Cn–(I). Moreover, for any x ∈ C(I), the
iterative sequence

x(t) =
∫ 


G(t, s)f

(
s, (In–x)(s), . . . , (Ix)(s), x(s)

)
ds,

xm(t) =
∫ 


G(t, s)f

(
s, (In–xm–)(s), . . . , (Ixm–)(s), xm–(s)

)
ds (m = , , . . .)

converges to x∗ in C(I).

Proof By t( – t)g(t, x(t), y(t), x′
(t), y′

(t), . . . , x(n–)
 (t), y(n–)

 (t)) ∈ L[, ], it is easy to see
that for any t ∈ J ,

∫ 


G(t, s)g

(
s, x(s), y(s), x′

(s), y′
(s), . . . , x(n–)

 (s), y(n–)
 (s)

)
ds

is well defined. Set p(t) = x(n–)
 (t), q(t) = y(n–)

 (t), then

∫ 


G(t, s)g

(
s, (In–p)(s), (In–q)(s), . . . , (Ip)(s), (Iq)(s), p(s), q(s)

)
ds < +∞.

For any x, y ∈ C(I), let u(t) = |p(t)| + |x(t)|, v(t) = –|q(t)| – |y(t)|, then u ≥ p, v ≤ q. By (.),
we have

–Bn–(In–u – In–p)(t) – Cn–(In–q – In–v)(t) – · · ·
– B(Iu – Ip)(t) – C(Iq – Iv)(t) – B(u – p)(t) – C(q – v)(t)

≤ t( – t)g
(
t, (In–u)(t), (In–v)(t), . . . , (Iu)(t), (Iv)(t), u(t), v(t)

)
– t( – t)g

(
t, (In–p)(t), (In–q)(t), . . . , (Ip)(t), (Iq)(t), p(t), q(t)

)
≤ Bn–(In–u – In–p)(t) + Cn–(In–q – In–v)(t) + · · ·

+ B(Iu – Ip)(t) + C(Iq – Iv)(t) + B(u – p)(t) + C(q – v)(t),

then

∣∣G(t, s)g
(
s, (In–u)(s), (In–v)(s), . . . , (Iu)(s), (Iv)(s), u(s), v(s)

)
– G(t, s)g

(
s, (In–p)(s), (In–q)(s), . . . , (Ip)(s), (Iq)(s), p(s), q(s)

)∣∣
≤ h(t, s)

[
Bn–

∣∣(In–u – In–p)(s)
∣∣ + Cn–

∣∣(In–q – In–v)(s)
∣∣ + · · ·

+ B
∣∣(Iu – Ip)(s)

∣∣ + C
∣∣(Iq – Iv)(s)

∣∣ + B
∣∣(u – p)(s)

∣∣ + C
∣∣(q – v)(s)

∣∣]
≤ h(t, s)

[
(Bn– + · · · + B + B)‖u – p‖ + (Cn– + · · · + C + C)‖q – v‖].

Following the former inequality, we can easily get

∫ 


G(t, s)

[
g
(
s, (In–u)(s), (In–v)(s), . . . , (Iu)(s), (Iv)(s), u(s), v(s)

)
– g

(
s, (In–p)(s), (In–q)(s), . . . , (Ip)(s), (Iq)(s), p(s), q(s)

)]
ds
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is convergent, and then

∫ 


G(t, s)g

(
s, (In–u)(s), (In–v)(s), . . . , (Iu)(s), (Iv)(s), u(s), v(s)

)
ds

=
∫ 


G(t, s)g

(
s, (In–p)(s), (In–q)(s), . . . , (Ip)(s), (Iq)(s), p(s), q(s)

)
ds

+
∫ 


G(t, s)

[
g
(
s, (In–u)(s), (In–v)(s), . . . , (Iu)(s), (Iv)(s), u(s), v(s)

)
– g

(
s, (In–p)(s), (In–q)(s), . . . , (Ip)(s), (Iq)(s), p(s), q(s)

)]
ds

is convergent. Similarly, by u ≥ x, v ≤ y, we get

∫ 


G(t, s)g

(
s, (In–x)(s), (In–y)(s), . . . , (Ix)(s), (Iy)(s), x(s), y(s)

)
ds < +∞.

Define the operator A : C(I) × C(I) → C(I) by

A(x, y)(t) =
∫ 


G(t, s)g

(
s, (In–x)(s), (In–y)(s), . . . , (Ix)(s), (Iy)(s), x(s), y(s)

)
ds.

Then In–x is the solution of BVP (.) if and only if x = A(x, x). Let

(Kx)(t) = B

∫ 


h(t, s)x(s) ds,

(Kix)(t) = Bi

∫ 


h(t, s)(Iix)(s) ds, i = , , . . . , n – ,

(My)(t) = C

∫ 


h(t, s)y(s) ds,

(Miy)(t) = Ci

∫ 


h(t, s)(Iiy)(s) ds, i = , , . . . , n – ,

(Kx)(t) = (Kx + Kx + · · · + Kn–x)(t),

(My)(t) = (My + My + · · · + Mn–y)(t).

By (.), for any x, x, y, y ∈ C(I), x ≥ x, y ≤ y, we have

–K(x – x) – M(y – y) ≤ A(x, y) – A(x, y) ≤ K(x – x) + M(y – y) (.)

and

(K + M)x(t)

=
∫ 


h(t, s)

[
Bx + Cx + B(Ix) + C(Ix) + · · · + Bn–(In–x) + Cn–(In–x)

]
(s) ds

≤
[

B + C + B + C + B + C + · · · +
Bn– + Cn–

(n – )!

]
‖x‖e(t),

(K + M)x(t)
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=
∫ 


h(t, s)

[
B(K + M)x + C(K + M)x + BI(K + M)x + CI(K + M)x

+ · · · + Bn–In–(K + M)x + Cn–In–(K + M)x
]
(s) ds

≤
[

B + C + B + C + B + C + · · · +
Bn– + Cn–

(n – )!

]

‖x‖e(t).

By the method of mathematical induction, for any positive integer m and t ∈ J ,

(K + M)mx(t) ≤
[

B + C + B + C + B + C + · · · +
Bn– + Cn–

(n – )!

]m

‖x‖em(t).

Then

∥∥(K + M)m∥∥ ≤
[

B + C + B + C + B + C + · · · +
Bn– + Cn–

(n – )!

]m

sup
t∈J

em(t)

and

r(K + M) ≤ B + C + B + C + B + C + · · · + Bn–+Cn–
(n–)!

G
< .

Hence, we can choose a β >  such that

lim
m→∞

∥∥(K + M)m∥∥ 
m = r(K + M) < β < .

So, there exists a positive integer m such that

∥∥(K + M)m∥∥ < βm < , m ≥ m. (.)

Since P is a generating cone in C(I), from Lemma ., there exists τ >  such that every
element x ∈ C(I) can be represented in the form

x = y – z, where y, z ∈ P and ‖y‖ ≤ τ‖x‖,‖z‖ ≤ τ‖x‖, (.)

which implies

–(y + z) ≤ x ≤ y + z. (.)

Let

‖x‖ = inf
{‖u‖ | u ∈ P, –u ≤ x ≤ u

}
, (.)

by (.) we know that ‖x‖ is well defined for any x ∈ C(I). It is easy to verify that ‖ · ‖ is
a norm in C(I). By (.)-(.), we get

‖x‖ ≤ ‖y + z‖ ≤ τ‖x‖, ∀x ∈ C(I). (.)

On the other hand, for any u ∈ P which satisfies –u ≤ x ≤ u, we have θ ≤ x + u ≤ u,
then ‖x‖ ≤ ‖x + u‖ + ‖ – u‖ ≤ (N + )‖u‖, where N denotes the normal constant of P.
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Since u is arbitrary, we have

‖x‖ ≤ (N + )‖x‖, ∀x ∈ C(I). (.)

It follows from (.) and (.) that the norms ‖ · ‖ and ‖ · ‖ are equivalent.
Now, for any x, y ∈ C(I) and u ∈ P which satisfies –u ≤ x – y ≤ u, we set

u =



(x + y – u), u =



(x – y + u), u =



(–x + y + u),

then x ≥ u, y ≥ u, and x – u = u, y – u = u, u + u = u. It follows from (.) that

–Ku ≤ A(x, x) – A(u, x) ≤ Ku, (.)

–Ku – Mu ≤ A(y, u) – A(u, x) ≤ Ku + Mu, (.)

–Mu ≤ A(y, u) – A(y, y) ≤ Mu. (.)

By (.)-(.), we have

–(K + M)u ≤ A(x, x) – A(y, y) ≤ (K + M)u.

Let Ã(x) = A(x, x), then we obtain

–(K + M)u ≤ Ã(x) – Ã(y) ≤ (K + M)u.

As K and M are both positive linear bounded operators, so K + M is a positive linear
bounded operator, and therefore (K + M)u ∈ P. Hence, by mathematical induction, it is
easy to see that for the natural number m in (.), we have

–(K + M)m u ≤ Ãm (x) – Ãm (y) ≤ (K + M)m u, (K + M)m u ∈ P.

Since (K + M)m u ∈ P, we see that

∥∥Ãm (x) – Ãm (y)
∥∥

 ≤ ∥∥(K + M)m
∥∥‖u‖,

which implies by virtue of the arbitrariness of u that

∥∥Ãm x – Ãm y
∥∥

 ≤ ∥∥(K + M)m
∥∥‖x – y‖ ≤ βm‖x – y‖.

By  < β < , we have  < βm < . Thus the Banach contraction mapping principle im-
plies that Ãm has a unique fixed point x∗ in C(I), and so Ã has a unique fixed point x∗ in
C(I). By the definition of Ã, A has a unique fixed point x∗ in C(I), then by Lemma .,
In–x∗ is the unique solution of BVP (.). And, for any x ∈ C(I), let x = A(x, x),
xm = A(xm–, xm–) (m = , , . . .), we have ‖xm – x∗‖ →  (m → ∞). By the equivalence of
‖ · ‖ and ‖ · ‖ again, we get ‖xm – x∗‖ →  (m → ∞). This completes the proof. �
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Remark . For the case n = ,

A(t) =

{
, t ∈ [,η),
α, t ∈ [η, ],

if f (t, x, y) = f (t, x), Theorem . is reduced to Theorem . in [], if  < α < 
η

and f (t, x, y) =
h(t)f (t, x), the existence results of nontrivial solutions are given by means of the topological
degree theory in []. So our results extend the corresponding results of [, ] to some
degree.

Example . To illustrate the applicability of our results, we consider the BVP (.) with
n =  and

f (t, x, y) =


t( – t)

[
sin

x
n

+ cos
x

n
+

ln( + y)
n

+ sin
y

n

]
,

A(t) =

{
, t ∈ [, 

 ),
, t ∈ [ 

 , ],

where n, n, n, n are positive integral numbers. Then � =
∫ 

 t dA(t) =  × 
 = 

 , and
BVP (.) becomes the singular third-order three-point BVP

{
x′′′(t) + 

t(–t) [sin x(t)
n

+ cos x(t)
n

+ ln(+(x′(t)))
n

+ sin x′(t)
n

] = , t ∈ (, ),
x() = x′() = , x′() = x′( 

 ).
(.)

Let

G(t, s) = t
[

( – s) – 
(




– s
)

χ[, 
 ](s)

]
– (t – s)χ[,t](s),

where χ is the characteristic function, i.e.

χ[a,b](t) =

{
, t ∈ [a, b],
, t /∈ [a, b]

and

(Fx)(t) =
∫ 


G(t, s)f

(
s, (Ix)(s), x(s)

)
ds, t ∈ (, ).

By Lemma ., if x ∈ C(I) is a fixed point of the operator F , then y(t) = (Ix)(t) =∫ t
 x(s) ds ∈ C(I) is a solution of BVP (.). Let f (t, x, y) = g(t, x, x, y, y), then for any t ∈ J ,

a, b, a, b, a, b, a, b ∈ R with a ≤ b, a ≥ b, a ≤ b, a ≥ b, we have

–


n
(b – a) –


n

(a – b) –


n
(b – a) –


n

(a – b)

≤ t( – t)
[
g(t, a, a, a, a) – g(t, b, b, b, b)

]
= sin

a

n
+ cos

a

n
+

ln( + a
)

n
+ sin

a

n
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–
[

sin
b

n
+ cos

b

n
+

ln( + b
)

n
+ sin

b

n

]

≤ 
n

(b – a) +


n
(a – b) +


n

(b – a) +


n
(a – b).

By Theorem ., BVP (.) has a unique solution Ix∗ ∈ C(I) provided 
n

+ 
n

+ 
n

+


n
< G. Moreover, for any x ∈ C(I), the iterative sequence

xm(t) =
∫ 


G(t, s)f

(
s, (Ixm–)(s), xm–(s)

)
ds (m = , , , . . .)

converges to x∗ (m → ∞).
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