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1 Introduction
Among commonly used methods for the numerical approach of problems which arise
in engineering, for example, Laplace equation and Maxwell system, the finite element
method is one of the most relied on methods because it is much more interested in the
analysis of the error committed between the exact solution and the approximate solution.
In many of these applications, adaptive techniques using a posteriori error estimators have
become an indispensable tool. These estimators allow to measure the quality of the com-
puted solution and provide information to control the mesh adaptation algorithm. There
are a lot of works on the a posteriori estimators for the elliptic partial differential equa-
tions and dynamic partial differential equations. Of these works, it is possible to refer to []
where the authors considered an elliptic second order boundary value problem approxi-
mated by a discontinuous Galerkin method. Time dependent Stokes equations in [] and
second order wave equations in [] are discretized by Euler’s implicit scheme in time and
standard finite elements in space. Using Rothe’s method in [] and [], the authors studied
the equation of telegraph and integrodifferential equation with integral conditions (resp.).

The purpose of this work is to combine Rothe’s method with nonconforming finite ele-
ment method of Crouseix-Raviart and to introduce a posteriori error estimators suitable
for the wave equation assumptions on the mesh. These indicators can give a good overview
of the local distribution of the error and a useful tool for mesh adaptation.

Let � be a bounded open domain of Rd , d =  or  with Lipschitz boundary � that we
suppose to be polygonal (d = ) or polyhedral (d = ). We further assume that � is simply
connected and that � is connected. Let T be a fixed positive number,

∂ttu – �u = f in �× ], T[,

u(x, ) = u(x) in � at t = ,

u =  at � × I, I = (, T),

∂tu(x, ) = u(x) in � at t = ,

()
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where f ∈ L((, T), L(�)), U ∈ H
(�) and U ∈ L(�). Under these conditions, problem

() is equivalent to

(∂ttu, v) + (∇u,∇v) = (f , v), ∀v ∈ H
(�) a.e. t ∈ (, T) ()

has a unique weak solution C((, T), H
(�)) ∩ C((, T), L(�)). If we put U =

( u
∂tu

)
and

F =
( 

f
)
, then problem () can be rewritten as follows:

⎧
⎪⎨

⎪⎩

∂tU –
(  

� 
)
U = F in �× ], T[,

U =  on � × I,
U(·, ) = U

()

with U =
( u

u

)
.

2 Time discretization using Rothe’s method
We divide the interval (, T) into subintervals of length τ = T

n and denote uj = u(jτ , x),
x ∈ �, j = , . . . , n. Successively, for j = , . . . , n, we solve the linear stationary boundary
value problem

⎧
⎪⎨

⎪⎩

uj–uj–+uj–

τ – �uj = f j in �,
uj =  on �,
u(x, ) = u in �,

()

where f j = f (x, tj) = f (x, jτ ). Setting u–(x) = u(x) – τu(x), define δuj = uj–uj–

τ
, δuj =

δuj–δuj–

τ
, j = , . . . , n.

This problem has a unique weak solution uj ∈ H
(�) by the Lax-Milgram lemma whose

variational formulation is

(
δuj, v

)
+

(∇uj,∇v
)

=
(
f j, v

)
, ∀v ∈ H

(�). ()

We define Rothe’s functions by a piecewise linear interpolation with respect to the time t,

un(t, x) = uj– + (t – tj–)δuj for tj– ≤ t ≺ tj, j = , . . . , n, ()

δun(t, x) = δuj– + (t – tj–)δuj for tj– ≤ t ≺ tj, j = , . . . , n, ()

the auxiliary functions are

u(t, x)n =

{
uj if t ∈ (tj–, tj), j = , . . . , n,
u if t ∈ [–h, ],

()

δu(t, x)n =

{
δuj if t ∈ (tj–, tj), j = , . . . , n,
u if t ∈ [–h, ].

()

3 Full discretization
We consider the following nonconforming finite element method to approximate our
problem. For all j = , . . . , n, we consider a triangulation ϒjh made of triangles T if d = 
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and of tetrahedra if d =  whose edges/faces are denoted by e. We assume that this trian-
gulation is regular in Ciarlet’s sense ([], p.), i.e. , ∃σ 
  such that hT

ρT
≤ σ , ∀T ∈ ϒjh,

where hT is the diameter of T and ρT is the diameter of its largest inscribed bull. We de-
fine hj = maxT∈ϒjh hT . Let ζ int

jh be the set of interior edges/faces of ϒjh and ζT be the set of
edges/faces of the element T . For an edge/face e ∈ ζT ∩ ζK , we denote by he = 

 ( d(T)
|e| + d(K )

|e| )
its mean height. Problem () is approximated by the Crouseix-Raviart nonconforming fi-
nite element space

X
jh =

{
v ∈ L(�); v\T ∈ P,∀T ∈ ϒjh,

∫

e
v\T =

∫

e
v\K ,∀e ∈ ζT ∩ ζK ∩ ζ int

jh ,

T , K ∈ ϒjh,
∫

e
v\T = ,∀e ∈ ζT ∩ �, T ∈ ϒjh

}
.

We consider the fully discrete scheme for problem (): for each j = , . . . , n, find uj
h ∈ X

jh
such that

τ 
∑

T∈ϒjh

∫

T
∇uj

h∇vh = τ 
∫

�

f jvh –
∫

�

(
uj

h – uj–
h + uj–

h
)
vh. ()

We will use the following Crouseix-Raviart property:

∫

e
[uh]e = , ∀e ∈ ζjh,∀uh ∈ X

jh, ()

where the jump of some function v across an edge/face at point x is defined by

[
v(x)

]
e =

{
limα→+ v(x + αηe) – v(x – αηe) if e ∈ ζ int

jh ,
v(x) if e ∈ ζjh\ζ int

jh ,

ηe denotes the outward normal vector for a boundary edge/face e and te = (–ηe ,ηe ) is the
tangent vector if ηe = (ηe ,ηe ).

Since [vh] is linear on e, the condition
∫

e[vh]e =  is equivalent to the continuity of vh at
e barycenter.

For vh ∈ X
jh, we define its broken gradient ∇hv in � by

(∇hv)\T = ∇(v\T), ∀T ∈ ϒjh.

We will need local subdomain, also called patches. For any T ∈ ϒjh, let wT be the
union of all elements having a common edge/face with T . Similarly let we be the union
of all elements having e as an edge/face. Finally, let wx be the union of elements hav-
ing x as a node, and w̃T (resp. w̃e) be the union of all triangles sharing a node with T
(resp. e).

Later on, we also need the standard P conforming finite element spaces:

Vjh =
{

v ∈ H(�); v\T ∈ P,∀T ∈ ϒjh
}

,

V 
jh = Vjh ∩ H

(�).
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We further need

Yjh =
{

v ∈ L(�); v\T ∈ H(�),∀T ∈ ϒjh,
∫

e
v\T =

∫

e
v\K ,∀e ∈ ζT ∩ ζK ∩ ζ int

jh ,

T , K ∈ ϒjh

}
,

Y 
jh =

{
v ∈ L(�); v\T ∈ H(�),∀T ∈ ϒjh,

∫

e
v\T =

∫

e
v\K ,∀e ∈ ζT ∩ ζK ∩ ζ int

jh ,

T , K ∈ ϒjh,
∫

e
v\T = ,∀e ∈ ζT ∩ �, T ∈ ϒjh

}
.

We recall that for a node x ∈ Njh, we denote by λx the standard hat function such that
λx(y) = δxy, ∀y ∈ Njh, where Njh is the set of nodes of ϒjh and N int

jh denotes the set of interior
nodes of ϒjh.

Definition . For v ∈ Yjh and w ∈ Y 
jh, Clément interpolation is defined as follows:

ICv =
∑

x∈Njh

|wx|–
(∫

wx

v
)

λx, ()

I
Cw =

∑

x∈N int
jh

|wx|–
(∫

wx

w
)

λx. ()

We define the gradient jump of uj
h in normal and tangential direction as follows:

J j
e,η =

{
[∇uj

h · ηe] if e ∈ ζ int
jh ,

 if e ∈ ζjh\ζ int
jh .

()

If d = , then

J j
e,t =

{
[∇uj

h · te] if e ∈ ζ int
jh ,

–∇uj
h · te if e ∈ ζjh\ζ int

jh .
()

If d = , then

J j
e,t =

{
[∇uj

h × ne] if e ∈ ζ int
jh ,

–∇uj
h × ne if e ∈ ζjh\ζ int

jh .

Lemma . [] For all v ∈ Yjh and w ∈ Y 
jh, we have

‖v – ICv‖T � hT‖∇hv‖w̃T , ∀T ∈ ϒjh, ()

‖v – ICv‖e � h


e ‖∇hv‖w̃e , ∀e ∈ ζjh, ()

∥
∥w – I

Cw
∥
∥

T � hT‖∇hw‖w̃T , ∀T ∈ ϒjh, ()
∥∥w – I

Cw
∥∥

e � h


e ‖∇hw‖w̃e , ∀e ∈ ζ int

jh , ()
∥
∥∇I

Cw
∥
∥� ‖∇hw‖w̃T , ∀T ∈ ϒjh. ()
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Next, we need the following Green’s formulas.
If D is open bounded of R and v, w ∈ H(D), then

∫

D
∇v curl w =

∫

∂D
v curl w · η =

∫

∂D
∇v · tw, ()

where t is the unit tangent vector along ∂D and curl w =
( ∂w

–∂w
)
.

Similarly if D is open bounded of R and v ∈ H(D), w ∈ H(D), then we have

∫

D
∇v curl w =

∫

∂D
v curl w · η =

∫

∂D
(∇v × η) · w. ()

4 A posteriori analysis of time discretization
For each j, j = , . . . , n, the refinement indicator is defined by

η
j
t = τ

∥
∥∇h

(
uj+

h – uj
h
)∥∥ + τ

∥∥
∥∥

uj+
h – uj

h + uj–
h

τ

∥∥
∥∥, ()

eτ = u – un indicate the error with respect to the discretization time.

Proposition . (Upper and lower bounds of the error in time) The following a posteriori
error estimate holds for all tj+, j = , . . . , n – :

∥∥
∥∥(∂tu)(tj+) –

uj+ – uj

τ

∥∥
∥∥

H–(�)
+

∥
∥u(tj+) – uj+∥∥

�
j∑

m=

ηm
t + τ‖∇U‖ + τ ‖∇U‖ +

j∑

m=

τ

∑

k=

∥∥∇(
um+–k – um+–k

h
)∥∥

+
j∑

m=

τ

∑

k=

∥
∥δum+–k – δm+–k

h
∥
∥, ()

η
j
t ≤

∑

k=

∥∥(∂tu)(tj+–k) – δuj+–k∥∥
H–(�) +

∥∥u(tj+) – uj+–k
∥∥ +

∥
∥∥
∥

∫ tj+

tj

∇(
u – un)(s) ds

∥
∥∥
∥

+
∥∥
∥∥

∫ tj+

tj

(
∂tu – δun)(s) ds

∥∥
∥∥ + τ

∑

k=

∥
∥∇(

uj+–k – uj+–k
h

)∥∥

+ τ

∑

k=

∥∥δuj+–k – δhuj+–k
h

∥∥. ()

Proof See []. �

5 A posteriori analysis of space discretization
The error indicator is defined by

η
j
T = hT

∥
∥∥∥f j

h –
uj

h – uj–
h + uj–

h
τ 

∥
∥∥∥ +

∑

e∈ζjh

h


e
(∥∥J j

e,η
∥∥

e +
∥∥J j

e,t
∥∥

e

)
,
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the global error estimator ηj is given by

ηj =
√ ∑

T∈ϒjh

(
η

j
T
),

the higher order term depending on the datum f is defined as

osc(f , wT ) =
∑

T∈ϒjh

h
T
∥∥f – f j

h
∥∥

wT
, where

(
f j
h
)\T :=


|T |

∫

T
f j
h, T ∈ ϒjh.

Our main result is the following theorem.

Theorem . (Upper bound) The following inequality holds:

∥
∥en∥∥ +

n∑

j=

τ ∥∥∇hej∥∥ �
∥
∥e∥∥ +

∥
∥e∥∥ + τ 

n∑

j=

osc(f , wT )

+
n∑

j=

max
{

h
j , τ }(ηj).

To prove this theorem we need some lemmas. As our approximated scheme is a non-
conforming one, we need to use an appropriate Helmholtz decomposition of the error.

Lemma . (Helmholtz decomposition of the error) Let ej = uj – uj
h, then we have the

following decomposition of error ej:

∇hej = ∇ϕj + curlχ j ()

with χ j ∈ H(�) and ϕj ∈ H
(�); furthermore, the following inequalities hold:

∥∥∇ϕj∥∥ ≤ ∥∥∇hej∥∥, ()
∥∥curlχ j∥∥ ≤ ∥∥∇hej∥∥. ()

Proof We consider the following problem: find ϕj ∈ H
(�), a solution of

{
div(∇hej – ∇ϕj) =  in �,
ϕj =  on �.

()

The weak formulation of that problem () is

∫

�

∇ϕj∇v =
∫

�

∇hej∇v, ∀v ∈ H
(�). ()

As the vector field (∇hej – ∇ϕj) is divergence-free in �, i.e., div(∇hej – ∇ϕj) =  in �,
by Theorem .. of [] if d =  or Theorem .. of [] if d = , there exists χ j ∈ H(�) if
d =  and χ j ∈ H(�) if d =  such that

curlχ j = ∇hej – ∇ϕj.
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Estimate () directly follows by taking v = ϕj in (). To prove the inequality, we use
identity () and we get

∫

�

∣
∣curlχ j∣∣ =

∫

�

curlχ j(∇hej – ∇ϕj). ()

Using Green’s formula and taking into account that ϕj =  on �, we get

∫

�

∣∣curlχ j∣∣ =
∫

�

curlχ j∇hej.

The Cauchy-Schwarz inequality implies

∥∥curlχ j∥∥ ≤ ∥∥∇hej∥∥. �

Lemma . The error satisfies the following identity:

∑

T∈ϒjh

∫

T
∇hej∇vh =

∫

�

–ej + ej– – ej–

τ  vh, ∀vh ∈ V 
jh(�). ()

Proof We only need to take v = vh in (), then taking the difference between () and ()
we get the result. �

Lemma . Let ϕh ∈ Vjh if d =  and ϕh ∈ (Vjh) if d = , then the error verifies

∑

T∈ϒjh

∫

T
∇hej curlϕh = . ()

Proof We integrate by parts the expression
∫
�

∇hej curlϕh, using Green’s formula and tak-
ing into account that uj ∈ H

(�), then we use the property of finite elements of Crouseix-
Raviart (

∫
e[uj

h] = ) and get (). �

Lemma . Let ϕ ∈ H(�) if d =  and ϕ ∈ (H(�)) if d = , then we have

∫

�

∇hej curlϕ =
∑

e∈ζjh

∫

E
Jj
E,t · ϕ. ()

Proof The integration by parts and Green’s formula give us

∫

�

∇hej curlϕ =
∫

�

∇uj curlϕ –
∑

T∈ϒjh

∫

T
∇uj

h curlϕh = –
∑

T∈ϒjh

∫

∂T
∇uj

h · tTϕ,

because uj ∈ H
(�), and according to the definition of J j

E,t we find (). �

Lemma . Let ϕ ∈ H
(�), then ej verifies

∑

T∈ϒjh

∫

T
∇hej∇ϕ =

∑

T∈ϒjh

∫

T

(
f j –

uj – uj– + uj–

τ 

)
ϕ +

∑

e∈ζjh

∫

e
J j
e,η · ϕ.
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Proof We integrate by parts the expression
∑

T∈ϒjh

∫
T ∇hej∇ϕ with �u =  on each ele-

ment T ∈ ϒjh, and from the definition of J j
e,η we conclude the proof. �

Remark . Lemmas ., . imply that ∀ϕ ∈ H
(�) and χ ∈ H(�) if d =  and χ ∈

(H(�)) if d = , we have

∑

T∈ϒjh

∫

T
∇hej(∇ϕ + curlχ ) =

∑

T∈ϒjh

∫

T

(
f j –

uj – uj– + uj–

τ 

)
ϕ

+
∑

e∈ζjh

∫

e

(
J j
e,η · ϕ + J j

η,t · χ)
.

Note that the local error estimator η
j
T is inspired by the latter identity.

Proof From what precedes (Lemmas . and .), we can easily prove that

τ 
∫

�

∇hej∇ϕj = τ 
∫

�

(
f j –

uj – uj– + uj–

τ 

)(
ϕj – I

Cϕj)

+ τ 
∑

e∈ζjh

∫

E
Jj
e,η

(
ϕj – I

Cϕj) –
∫

�

(
ej – ej– + ej–)ϕj. ()

From Lemmas . and . we get

∫

�

∇hej curlχ j =
∑

E∈ζjh

∫

E
Jj
E,t

(
χ j – ICχ j). ()

By using the Helmholtz decomposition of the error and identities ()-(), we obtain

∥∥ej∥∥ + τ 
∫

�

∣∣∇hej∣∣ = τ 
∫

�

∇hej∇I
C
(
ej – ϕj) +

(
–ej + ej– – ej–, ej – ϕj – I

C
(
ej – ϕj))

+ τ 
∫

�

(
f j –

uj – uj– + uj–

τ 

)
(
ϕj – I

Cϕj) +
(
ej– – ej–, ej)

+ τ 
∑

e∈ζjh

∫

e

(
J j
e,η

(
ϕj – I

Cϕj) + J j
e,t

(
χ j – ICχ j)). ()

The Cauchy-Schwarz inequality and estimate () give

∑

e∈ζjh

∫

e
J j
e,η

(
ϕj – ICϕj) ≤

∑

e∈ζjh

∥
∥J j

e,η
∥
∥
∥
∥ϕj – ICϕj∥∥

e �
∑

e∈ζjh

∥
∥J j

e,η
∥
∥h



e
∥
∥∇ϕj∥∥

w̃e

�
∑

e∈ζjh

η
j
T
∥∥∇ϕj∥∥

w̃e
� ηj∥∥∇ϕj∥∥. ()

Similarly, using the Cauchy-Schwarz inequality and estimate (), we get

∑

e∈ζjh

∫

E
Jj
E,t

(
χ j – ICχ j)� ηj∥∥∇χ j∥∥. ()
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By using the Helmholtz decomposition, Green’s formula and identity (), we find

∫

�

∣
∣curlχ j∣∣ =

∫

�

(∇hej – ∇hϕ
j) curlχ j =

∫

�

∇hej curlχ j

=
∑

e∈ζjh

∫

e
J j
e,t

(
χ j – ICχ j)� ηj∥∥∇χ j∥∥. ()

The Cauchy-Schwarz inequality and estimate () imply

∫

�

∣∣curlχ j∣∣ � ηj∥∥∇χ j∥∥.

Knowing that

∥
∥curlχ j∥∥ =

∥
∥∇χ j∥∥,

we get

∥
∥∇χ j∥∥� ηj,

and consequently

∑

e∈ζjh

∫

e
J j
e,t

(
χ j – ICχ j) �

(
ηj). ()

On the other hand, the Cauchy-Schwarz inequality and estimate () give

∑

T∈ϒjh

∫

T

(
f j – f j

h
)(

ϕj – I
Cϕj) �

∑

T∈ϒjh

hT
∥
∥f j – f j

h
∥
∥
∥
∥∇ϕj∥∥

w̃T

� osc(f ,w̃T )‖∇ϕ‖. ()

Similarly, we have

∣∣(–ej + ej– – ej–,ϕj – ej – I
C
(
ϕj – ej))∣∣� hT

∥∥ej – ej– + ej–∥∥∥∥∇(
ej – ϕj)∥∥.

Proceeding as in () we can prove that

∥
∥∇(

ej – ϕj)∥∥� ηj,

which implies that

∣∣(–ej + ej– – ej–,ϕj – ej – I
C
(
ϕj – ej))∣∣� hTηj∥∥ej – ej– + ej–∥∥. ()

To estimate ‖∇ϕj‖, we have

∥∥∇ϕj∥∥ ≤ ∥∥∇h
(
ϕj – ej)∥∥ +

∥∥∇hej∥∥ ≤ C
(
ηj) +

∥∥∇hej∥∥. ()
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For the residual element, using the Cauchy-Schwarz inequality and estimation (), we
get

∑

T∈ϒjh

∫

T

(
f j
h –

uj – uj– + uj–

τ 

)(
ϕj – I

Cϕj) �
∑

T∈ϒjh

hT

∥∥
∥∥f j

h –
uj – uj– + uj–

τ 

∥∥
∥∥
∥
∥∇ϕj∥∥

w̃T

� ηj∥∥∇ϕj∥∥. ()

Using the ε-inequality and replacing the previous estimates in (), we find

∥
∥ej∥∥ + τ 

∫

�

∣
∣∇hej∣∣ ≤ 


∥
∥ej–∥∥ +



∥
∥ej–∥∥ + C

(
max

{
h

j , τ }(ηj) + τ  · osc(f ,w̃T )).

Summing from j =  until n results in

∥
∥en∥∥ +

n∑

j=

τ 
∫

�

∣
∣∇hej∣∣ �

∥
∥e∥∥ +

∥
∥e∥∥ +

n∑

j=

max
{

h
j , τ }(ηj)

+
n∑

j=

τ  · osc(f ,w̃T ).
�

Theorem . (Lower bound of the error) [, ] For each element T ∈ ϒjh, j = , . . . , n, the
following estimate holds:

η
j
T � hT

∥
∥∥
∥

uj
h – uj–

h + uj–

τ 

∥
∥∥
∥ +

∥∥∇hej∥∥
wT

+ hT
∥∥f j – f j

h
∥∥

wT
.
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