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Abstract
In this article, we develop a high-order compact conservative numerical scheme to
solve the initial-boundary problem of GRLW equation. The proposed scheme is
three-level and linear-implicit based on a finite difference method. A detailed
numerical analysis of the scheme is presented including a convergence analysis
result. Some numerical examples are provided to show the present scheme is
efficient, reliable, and of high accuracy.
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1 Introduction
The Cauchy problem of the generalized regularized long-wave (GRLW) equation reads

ut – βuxxt + ux + α
(
up)

x = , (.)

u(x, ) = u(x), (.)

where α, β are positive constants and p is a positive integer []. The GRLW equation was
first put forward by Peregrine [] and Benjamin et al. [] as a model for small-amplitude
long waves on the surface of water in a channel. Many authors [–] have recently stud-
ied models for long waves in nonlinear dispersive systems. When p = , (.) is usually
called the RLW equation. When p = , (.) is called a modified regularized long-wave
(MRLW) equation. Various numerical techniques have been developed to solve the equa-
tion. These partly include the finite difference method, finite element methods, the least
squares method, and a collocation method with quadratic B-splines, cubic B-splines and
septic splines; we refer to [–], and references therein.

In general, the solutions of the system (.)-(.) decays rapidly to zero for |x| � .
Therefore, numerically we can solve the system (.)-(.) in a compact domain � = (xl, xr)
with –xl �  and xr � . We can add the boundary conditions to the Cauchy problem
(.)-(.),

u(xl, t) = u(xr , t) = . (.)

© 2015 Pan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-015-0404-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0404-7&domain=pdf
mailto:panxintian@126.com


Pan et al. Boundary Value Problems  (2015) 2015:141 Page 2 of 14

It is well known that the system (.)-(.) possesses the following conservative law:

E(t) = ‖u‖
L + ‖ux‖

L = E(). (.)

In [], Zhang considered a linear conservative scheme for GRLW equation, however,
the accuracy of the scheme is only second-order. Recently, there has been growing in-
terest in high-order compact methods to solve the partial differential equations [–
], where fourth-order compact finite difference approximation solutions for the tran-
sient wave equations, a N-carrier system, the Klein-Gordon equation, the Sine-Gordon
equation, the one-dimensional heat and advection-diffusion equations, the Schrödinger
equation, the Klein-Gordon-Schrödinger equation and the RLW equation were shown,
respectively. These numerical methods may give us many enlightenments to design a new
numerical scheme for the GRLW equation. For a wide and most complete vision concern-
ing the importance, the breadth, and the interest of the topics covered, we should also
recall the study done on the long waves in [–].

The main purpose of this paper is to construct a new numerical scheme which has the
following advantages:

. Coupling with the Richardson extrapolation, the new scheme is high-accuracy and
without refined mesh; it has an accuracy of O(τ  + h).

. The new scheme is linearized and preserves the original conservative property.
. The coefficient matrices of the scheme is symmetric and pentadiagonal, and the

Thomas algorithm can be employed to solve it effectively.
. Useful numerical examples are given to show the efficiency of the scheme.
The rest of this paper is organized as follows. In Section , a high-accuracy linear-

compact difference scheme for the GRLW equation is described. In Section , we discuss
the solvability of the scheme and the estimate of the difference solution. In Section , the
fourth-order convergence and stability of the scheme are proved by the discrete energy
method. Numerical results are reported in Section .

2 High-accuracy compact scheme and its discrete conservative law
In this section, we describe a high-order linear-compact difference scheme for (.)-(.).

Let h = xr–xl
J and τ = T

N be the uniform step size in the spatial and the temporal di-
rection, respectively. Denote xj = jh ( ≤ j ≤ J), tn = nτ ( ≤ n ≤ N ), un

j ≈ u(xj, tn) and
Z

h = {u = (uj)|u– = u = uJ = uJ+ = , j = , , . . . , J}. For simplicity, we introduce the fol-
lowing notations of the difference operators:

δxun
j =

un
j+ – un

j

h
, δx̄un

j =
un

j – un
j–

h
, δx̂un

j =
un

j+ – un
j–

h
, δẍun

j =
un

j+ – un
j–

h
,

δt̂un
j =

un+
j – un–

j

τ
, δtun

j =
un+

j – un
j

τ
, ūn

j =
un+

j + un–
j


.

In the paper, C denotes a general positive constant which may have different values in
different occurrences.
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Based on the notations above, we consider the following high-accuracy linear-compact
scheme for the initial-boundary problem (.)-(.),

δt̂un
j –



βδxδx̄δt̂un

j +


βδx̂δx̂δt̂un

j +


δx̂

(
un

j
)

–


δẍ

(
un

j
)

+
p

p + 
α

[


{(

δx̂ūn
j
)(

un
j
)p– + δx̂

[(
un

j
)p–(ūn

j
)]}

–


{(

δẍūn
j
)(

un
j
)p– + δẍ

[(
un

j
)p–(ūn

j
)]}

]
= ,

 ≤ j ≤ J – ,  ≤ n ≤ N – , (.)

u
j –



βδxδx̄u

j +


βδx̂δx̂u

j

= u(xj) –
du

dx (xj) – τ
du

dx
(xj) – ταpup–

 (xj)
du

dx
(xj), (.)

u
j = u(xj),  ≤ j ≤ J , (.)

un
 = un

J = ,  ≤ n ≤ N . (.)

For convenience, the last term of (.) is defined by

κ
(
un, ūn) = κ

(
un, ūn) + κ

(
un, ūn), (.)

where

κ
(
un, ūn) =

p
(p + )

α
{(

δx̂ūn)(un)p– + δx̂
[(

un)p–(ūn)]},

κ
(
un, ūn) = –

p
(p + )

α
{(

δẍūn)(un)p– + δẍ
[(

un)p–(ūn)]}.

Theorem . Suppose u ∈ H
[xl, xr], then the scheme (.) admits the following invariant:

En =


(∥∥un+∥∥ +

∥
∥un∥∥) +



β
(∥∥δxun+∥∥ +

∥
∥δxun∥∥) –




β
(∥∥δx̂un+∥∥ +

∥
∥δx̂un∥∥)

+



hτ

J–∑

j=

δxun
j un+

j –



hτ

J–∑

j=

δẍun
j un+

j = En– = · · · = E. (.)

Proof Taking in (.) the inner product with ūn and using the boundary condition (.)
yield


τ

(∥∥un+∥∥ –
∥∥un–∥∥) +


τ

β
(∥∥δxun+∥∥ –

∥∥δxun–
x

∥∥)

–


τ
β
(∥∥δx̂un+∥∥ –

∥
∥δx̂un–

x
∥
∥)

+


(
δxun, ūn) –



(
δẍun, ūn) +

(
κ

(
un, ūn) + κ

(
un, ūn), ūn) = . (.)
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Notice that



(
δxun, ūn) =




h
J–∑

j=

(
δxun

j un+
j – un

j δxun–
j

)
(.)

and



(
δẍun, ūn) =




h
J–∑

j=

(
δẍun

j un+
j – un

j δẍun–
j

)
. (.)

Now, computing the last term of the left-hand side in (.), we have

(
κ

(
un, ūn), ūn) =

p
(p + )

αh
J–∑

j=

{(
un

j
)p–

δx̂
(
ūn

j
)

+ δx̂
[(

un
j
)p–ūn

j
]}

ūn
j

=
p

(p + )
α

J–∑

j=

[(
un

j
)p–ūn

j+ūn
j –

(
un

j+
)p–ūn

j+ūn
j
]

–
p

(p + )
α

J–∑

j=

[(
un

j–
)p–ūn

j ūn
j– –

(
un

j
)p–ūn

j ūn
j–

]

= . (.)

Similarly to the proof of (.), we get

(
κ

(
un, ūn), ūn) = . (.)

Substituting (.)-(.) into (.). Let

En =


(∥∥un+∥∥ +

∥
∥un∥∥) +



β
(∥∥δxun+∥∥ +

∥
∥δxun∥∥) –




β
(∥∥δx̂un+∥∥ +

∥
∥δx̂un∥∥)

+



hτ

J–∑

j=

δxun
j un+

j –



hτ

J–∑

j=

δẍun
j un+

j .

By the definition of En, (.) follows. �

3 Solvability and estimate for the difference solution
In this section, we shall discuss the estimate for the difference solution and the solvability
of the difference scheme (.). For ∀vn, wn ∈ Z

h , we define the discrete inner products and
norms on Z

h via

(
vn, wn) = h

J–∑

j=

vn
j wn

j ,
(
δxvn, δxwn)

l = h
J–∑

j=

δxvn
j δxwn

j ,
∥
∥vn∥∥ =

(
vn, vn),

∥∥δxvn∥∥ =
√(

δxvn, δxvn
)

l,
∥∥δẍvn∥∥ =

√(
δẍvn, δẍvn

)
l,

∥∥vn∥∥∞ = max
≤j≤J–

∣∣vn
j
∣∣.

To analyze the estimates of difference solution for the scheme (.)-(.), the following
lemmas should be introduced.
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Lemma . ([]) For a mesh function u ∈ Z
h , by the Cauchy-Schwarz inequality, we have

‖δẍu‖ ≤ ‖δx̂u‖ ≤ ‖δxu‖.

Lemma . (Discrete Sobolev’s inequality []) There exist two constants C and C such
that

∥∥un∥∥∞ ≤ C
∥∥un∥∥ + C

∥∥δxun∥∥.

Theorem . Suppose that u ∈ H, then there is the estimation for the solution un of the
scheme (.): ‖un‖ ≤ C, ‖δxun‖ ≤ C, which yields ‖un‖∞ ≤ C.

Proof It follows from (.) and the Cauchy-Schwartz inequality that



(∥∥un+∥∥ +

∥
∥un∥∥) +



β
(∥∥δxun+∥∥ +

∥
∥δxun∥∥) –




β
(∥∥δx̂un+∥∥ +

∥
∥δx̂un∥∥)

≤ C +



hτ

J–∑

j=

∣
∣δxun

j un+
j

∣
∣ +




hτ

J–∑

j=

∣
∣δẍun

j un+
j

∣
∣

≤ C +


τ
(∥∥δxun∥∥ +

∥∥un+∥∥) +



τ
(∥∥δẍun∥∥ +

∥∥un+∥∥). (.)

According to Lemma ., we obtain from (.)




[(
 –



τ

)∥∥un+∥∥ +
∥∥un∥∥

]
+




[
β
∥∥δxun+∥∥ +

(
β –



τ

)∥∥δxun∥∥
]

≤ C. (.)

This implies for small τ which satisfies β – 
τ >  that we have

∥
∥un∥∥ ≤ C,

∥
∥δxun∥∥ ≤ C. (.)

Using Lemma ., we obtain

∥∥un∥∥∞ ≤ C. (.)
�

Remark . Theorem . implies that the scheme (.) is unconditionally stable.

Theorem . The difference scheme (.) is uniquely solvable.

Proof Let us prove the unique solvability by induction. It is obvious that u and u are
uniquely determined by (.) and (.), respectively. Suppose that u, u, . . . , un be solved
uniquely. Consider un+ in (.) which satisfies


τ

un+
j –


τ

βδxδx̄un+
j +


τ

δx̂δx̂
(
un+

j
)

+
p

(p + )
α
{(

un
j
)p–

δx̂un+
j + δx̂

[(
un

j
)p–un+

j
]}

–
p

(p + )
{(

un
j
)p–

δẍun+
j + δẍ

[(
un

j
)p–un+

j
]}

= . (.)
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Taking the inner product of (.) with un+, we obtain


τ

∥
∥un+∥∥ +


τ

β
∥
∥δxun+∥∥ –


τ

β
∥
∥δx̂un+∥∥ +

(
I – II, un+) = , (.)

where

I =
p

(p + )
α
{(

un
j
)p–

δx̂un+
j + δx̂

[(
un

j
)p–un+

j
]}

,

II =
p

(p + )
{(

un
j
)p–

δẍun+
j + δẍ

[(
un

j
)p–un+

j
]}

.

Similarly to the proof of (.), we get

(
I, un+) = ,

(
II, un+) = . (.)

It follows from (.)-(.) and Lemma . that


τ

∥∥un+∥∥ +


τ
β
∥∥δxun+∥∥ ≤ . (.)

That is, (.) has only a trivial solution. Hence, (.) determines un+
j uniquely. This com-

pletes the proof of Theorem .. �

4 Convergence and stability of the difference scheme
First, we shall consider the truncation error of the difference scheme (.)-(.). Let vn

j =
u(xj, tn). We define the truncation error as follows:

Ern
j = δt̂vn

j –


βδxδx̄δt̂vn

j +


βδx̂δx̂δt̂vn

j +


δx̂

(
vn

j
)

–


δẍ

(
vn

j
)

+
p

p + 
α

[


{(

δx̂v̄n
j
)(

vn
j
)p– + δx̂

[(
vn

j
)p–(v̄n

j
)]}

–


{(

δẍv̄n
j
)(

vn
j
)p– + δẍ

[(
vn

j
)p–(v̄n

j
)]}

]
,

 ≤ j ≤ J – ,  ≤ n ≤ N – , (.)

s
j = v

j –


βδxδx̄v

j +


βδx̂δx̂v

j – u(xj)

+
du

dx (xj) + τ
du

dx
(xj) + ταpup–

 (xj)
du

dx
(xj), (.)

v
j = u(xj),  ≤ j ≤ J , (.)

vn
 = vn

J = ,  ≤ n ≤ N . (.)

Using a Taylor expansion, we obtain |Ern| + |s| = O(τ  + h) holds if τ , h → .
Next, we shall discuss the convergence and stability of the scheme (.)-(.).

Lemma . (Discrete Gronwall inequality []) Suppose that the discrete mesh function
{wn|n = , , . . . , N ; Nτ = T} satisfies the recurrence formula

wn – wn– ≤ Aτwn + Bτwn– + Cnτ ,
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where A, B, and Cn (n = , . . . , N ) are nonnegative constants. Then

∥∥wn∥∥∞ ≤
(

w + τ

N∑

k=

Ck

)

e(A+B)T ,

where τ is small, such that (A + B)τ ≤ N–
N (N > ).

Theorem . Assume that u ∈ H, then the solution un of the scheme (.)-(.) converges
to the solution of the initial-boundary problem (.)-(.) and the rate of convergence is
O(τ  + h) by the ‖ · ‖∞ norm.

Proof Let en
j = vn

j – un
j . From (.)-(.) and (.)-(.), we have

Ern
j = δt̂en

j –


βδxδx̄δt̂en

j +


βδx̂δx̂δt̂en

j +


δx̂

(
en

j
)

–


δẍ

(
en

j
)

+
p

p + 
α

[


{(

δx̂v̄n
j
)(

vn
j
)p– + δx̂

[(
vn

j
)p–(v̄n

j
)]}

–


{(

δx̂ūn
j
)(

un
j
)p– + δx̂

[(
un

j
)p–(ūn

j
)]}]

–
p

p + 
α

[


{(

δẍv̄n
j
)(

vn
j
)p– + δẍ

[(
vn

j
)p–(v̄n

j
)]}

–


{(

δẍūn
j
)(

un
j
)p– + δẍ

[(
un

j
)p–(ūn

j
)]}

]
,  ≤ j ≤ J – ,  ≤ n ≤ N – , (.)

s
j = e

j –


βδxδx̄e

j +


βδx̂δx̂e

j , (.)

e
j = ,  ≤ j ≤ J , (.)

en
 = en

J = ,  ≤ n ≤ N . (.)

Taking in (.) the inner product with ēn (i.e. en+ + en–), we obtain

(
Ern, ēn) = δt̂

∥∥en∥∥ +


βδt̂

∥∥δxen∥∥ –


βδt̂

∥∥δx̂en∥∥ +



h
J–∑

j=

(
δxen

j en+
j – en

j δxen–
j

)

–



h
J–∑

j=

(
δẍen

j en+
j – en

j δẍen–
j

)
+

(
P + P + Q + Q, ēn), (.)

where

P =
pα

(p + )
[(

δx̂v̄n)(vn)p– –
(
δx̂ūn)(un)p–],

P =
pα

(p + )
{
δx̂

[(
vn)p–v̄n] – δx̂

[(
un)p–ūn]},

Q = –
pα

(p + )
[(

δẍv̄n)(vn)p– –
(
δẍūn)(un)p–],

Q = –
pα

(p + )
{
δẍ

[(
vn)p–v̄n] – δẍ

[(
un)p–ūn]}.
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Computing the sixth term on the right-hand side of (.) and using Lemma . and The-
orem . yield

(
P, ēn) =

pα

(p + )
([(

δx̂v̄n)(vn)p– –
(
δx̂ūn)(un)p–], ēn)

=
pα

(p + )
([(

δx̂ēn)(vn)p– +
(
δx̂ūn)((vn)p– –

(
un)p–)], ēn)

=
pα

(p + )
h

{ J–∑

j=

(
δx̂ēn

j
)(

vn
j
)p–ēn

j +
J–∑

j=

(
δx̂ūn

j
)[(

vn
j
)p– –

(
un

j
)p–]ēn

j

}

=
pα

(p + )
h

( J–∑

j=

(
δx̂ēn

j
)(

vn
j
)p–ēn

j +
J–∑

j=

(
δx̂ūn

j
)
[

en
j

p–∑

k=

(
vn

j
)p––k(un

j
)k

]

ēn
j

)

≤ C
(∥∥δx̂ēn∥∥ +

∥∥en∥∥ +
∥∥ēn∥∥)

≤ C
(∥∥δxen+∥∥ +

∥∥δxen–∥∥ +
∥∥en+∥∥ +

∥∥en∥∥ +
∥∥en–∥∥), (.)

where the Cauchy-Schwartz inequality and Lemma . are used.
Similarly, we can also obtain

(
P, ēn) ≤ C

(∥∥δxen+∥∥ +
∥∥δxen–∥∥ +

∥∥en+∥∥ +
∥∥en∥∥ +

∥∥en–∥∥), (.)
(
Q, ēn) ≤ C

(∥∥δxen+∥∥ +
∥∥δxen–∥∥ +

∥∥en+∥∥ +
∥∥en∥∥ +

∥∥en–∥∥), (.)
(
Q, ēn) ≤ C

(∥∥δxen+∥∥ +
∥∥δxen–∥∥ +

∥∥en+∥∥ +
∥∥en∥∥ +

∥∥en–∥∥). (.)

In addition, it is obvious that

(
Ern, ēn) ≤ ∥∥Ern∥∥ +



(∥∥en+∥∥ +

∥∥en–∥∥), (.)




h
J–∑

j=

(
δxen

j en+
j – en

j δxen–
j

) ≤ C
(∥∥δxen∥∥ +

∥
∥δxen–∥∥ +

∥
∥en+∥∥ +

∥
∥en∥∥), (.)

–



h
J–∑

j=

(
δẍen

j en+
j – en

j δẍen–
j

) ≤ C
(∥∥δxen∥∥ +

∥∥δxen–∥∥ +
∥∥en+∥∥ +

∥∥en∥∥). (.)

It follows from (.)-(.) that

δt̂
∥∥en∥∥ +



βδt̂

∥∥δxen∥∥ –


βδt̂

∥∥δx̂en∥∥

≤ ∥
∥Ern∥∥ + C

(∥∥δxen+∥∥ +
∥
∥δxen∥∥

+
∥
∥δxen–∥∥ +

∥
∥en+∥∥ +

∥
∥en∥∥ +

∥
∥en–∥∥). (.)

Let Bn = 
 (‖en+‖ +‖en‖)+ β

 (‖δxen+‖ +‖δxen‖). Using Lemma ., (.) can be written
as follows:

Bn – Bn– ≤ τ
∥∥Ern∥∥ + Cτ

(
Bn + Bn–). (.)



Pan et al. Boundary Value Problems  (2015) 2015:141 Page 9 of 14

According to Lemma ., we can immediately obtain

Bn ≤
(

B + T sup
l≤n≤N

∥
∥Ern∥∥

)
eCT . (.)

Taking the inner product of (.) with e yields

(
s, e) =

∥∥e∥∥ +


β
∥∥δxe∥∥ –



β
∥∥δẍe∥∥. (.)

This, together with (s, e) ≤ 
 (‖s‖ + ‖e‖), |s| = O(τ  + h), and Lemma ., gives

∥∥e∥∥ ≤ O
(
τ  + h),

∥∥δxe∥∥ ≤ O
(
τ  + h). (.)

From the discrete initial condition (.), we know that B = [O(τ  + h)].
It follows from (.) that

Bn ≤ [
O

(
τ  + h)]. (.)

Then we have

∥∥en∥∥ ≤ O
(
τ  + h),

∥∥δxen∥∥ ≤ O
(
τ  + h). (.)

This, together with Lemmas ., gives

∥
∥en∥∥∞ ≤ O

(
τ  + h). (.)

This completes the proof of Theorem .. �

Similarly, we can prove stability of the difference solution.

Theorem . Under the conditions of Theorem ., the solution of the scheme (.)-(.)
is unconditionally stable by the ‖ · ‖∞ norm.

5 Numerical experiments
In this section, we give some numerical experiments to demonstrate our theoretical results
obtained in the previous sections. We will measure the accuracy of the proposed scheme
using the absolute error defined by en = ‖vn – un‖∞.

Consider the initial-boundary value problem (.)-(.). In the numerical experiments,
we take xl = –, xr = , T = , and choose three cases p = , , , respectively. In order
to verify the accuracy O(τ  + h), we take τ and h small enough to verify the fourth-order
accuracy and second-order accuracy in the spatial and temporal directions, respectively.
The convergence order figures of log(en)- log(h) with h and the ones of log(en)- log(τ ) with
τ small enough are given in Figures - for various mesh steps h and τ at t = . From
Figures -, it is obvious that the scheme (.)-(.) is convergent in the maximum norm,
and the convergence order is O(τ  + h).

We show in Theorem . that the numerical solution un of the scheme (.) satisfies the
conservation of discrete energy. In Tables -, the values of En for the scheme (.) are
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Figure 1 The spatial convergence order in maximal norm for un at t = 10 with different h and τ
computed by the scheme (2.1)-(2.4).

Figure 2 The temporal convergence order in maximal norm for un at t = 10 with different h and τ
computed by the scheme (2.1)-(2.4).

Table 1 Discrete energy En of the scheme (2.1) at different time t when h = 0.1, 0.05 and p = 2

t En

h = 0.1, τ = 0.1 h = 0.05, τ = 0.025

2 5.599999981471710 5.599999994989064
4 5.599999981452243 5.599999990049693
6 5.599999981432834 5.599999985109076
8 5.599999981413214 5.599999980169102
10 5.599999981393715 5.599999975228256

presented for three cases p = , ,  under various mesh steps h and τ , respectively. It is
easy to see from Tables - that the scheme (.) preserves the discrete energy very well,
which also shows the accuracy and efficiency of the scheme in this paper.

Case . Take p = . Consider the following initial-boundary problem of RLW equation:

ut – uxxt + ux + uux = , (.)

u(x, ) = u(x), (.)
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Figure 3 The spatial convergence order in maximal norm for un at t = 10 with different h and τ
computed by the scheme (2.1)-(2.4).

Figure 4 The temporal convergence order in maximal norm for un at t = 10 with different h and τ
computed by the scheme (2.1)-(2.4).

Table 2 Discrete energy En of the scheme (2.1) at different times t when h = 0.1, 0.05 and p = 3

t En

h = 0.1, τ = 0.1 h = 0.05, τ = 0.025

2 2.888888820624460 2.888888884464111
4 2.888888820614826 2.888888884309116
6 2.888888820605145 2.888888884153947
8 2.888888820595414 2.888888883998621
10 2.888888820585634 2.888888883843508

u(xl, t) = u(xr , t) = . (.)

In computations, we choose the initial condition u(x, ) = sech( 
 x) []. The conver-

gence order figures and the values of En are shown in Figures - and Table , respectively.
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Figure 5 The spatial convergence order in maximal norm for un at t = 10 with different h and τ
computed by the scheme (2.1)-(2.4).

Figure 6 The temporal convergence order in maximal norm for un at t = 10 with different h and τ
computed by the scheme (2.1)-(2.4).

Table 3 Discrete energy En of the scheme (2.1) at different time t when (h,τ ) = (0.1, 0.1) and
(0.05,0.025) for p = 4

t En

h = 0.1, τ = 0.1 h = 0.05, τ = 0.025

2 5.943183838327444 5.943183859464757
4 5.943183838326568 5.943183859449224
6 5.943183838325569 5.943183859434159
8 5.943183838324471 5.943183859418023
10 5.943183838323502 5.943183859402211

Case . Take p = . We consider the following initial-boundary problem of MRLW equa-
tion:

ut – uxxt + ux +
(
u)

x = , (.)

u(x, ) = u(x), (.)

u(xl, t) = u(xr , t) = . (.)
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In experiments, we choose the initial condition u(x, ) =
√


 sech( 

 x) []. The conver-
gence order figures and the values of En are shown in Figures - and Table , respec-
tively.

Case . Take p = . We consider the initial-boundary problem (.)-(.) of GRLW equa-
tion:

ut – uxxt + ux + uux = , (.)

u(x, ) = u(x), (.)

u(xl, t) = u(xr , t) = . (.)

In the following experiments, we choose the initial condition u(x, ) = sech

 ( 

√


 x) [].
The convergence order figures and the values of En are shown in Figures - and Table ,
respectively.
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