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Abstract
In this article, we establish higher-order regularizing rate estimates of solutions to
generalized magneto-hydrodynamic equations in Morrey spaces with initial data
(u0,d0) in Besov-Morrey spaces Ṅ–s

r,λ,∞ × Ṅ–s
r,λ,∞, where n ≥ 2, 1 ≤ r <∞, 0≤ λ < n,

r > n – λ, 12 +
n–λ
4r < σ < 1 + n–λ

4r , and s = 2σ – 1 – n–λ
r , for which under some smallness

condition, the solution of the Cauchy problem is analytic in the spatial variable. Our
class of initial data contains strongly singular functions and measures and extends the
ones in early work.
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1 Introduction and main results
In this article, we investigate the generalized magneto-hydrodynamic equations in the
whole space R

n,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + u · ∇u + (–�)σ u – d · ∇d + ∇p =  in R
n × (, +∞),

∇ · u = , ∇ · d = ,
dt + u · ∇d + (–�)σ d – d · ∇u =  in R

n × (, +∞),
(u, d)|t= = (u, d).

(.)

Here u is the velocity field of the flow, d(·, t) is the magnetic field. p(·, t) : Rn → R represents
the pressure function. ∇ · u =  and ∇ · d =  represent the incompressible conditions.
(u, d) is for given initial data with ∇ · u =  and ∇ · d =  in the distribution sense.

When σ = , the equations of system (.) become the usual MHD equations, which
govern the dynamics of the velocity and magnetic fields in electrically conducting fluids.
The system plays a fundamental role in applied sciences such as astrophysics, geophysics,
and plasma physics. The first equation of system (.) reflects the conservation of momen-
tum, the third equation of system (.) is the magnetic induction equation and the second
equation of system (.) specifies the conservation of mass.

For general σ , system (.) is a generalization of the usual incompressible MHD sys-
tem. As observed in [], a fractional power of Laplacian can, in principle, be used as a
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mild dissipation in MHD equations. Besides their physical applications, system (.) is
also mathematically significant.

According to Duhamel’s principle, the mild solution (u, d) for system (.) can be repre-
sented as

{
u = e–tLu –

∫ t
 e–(t–s)L

P∇ · (u ⊗ u – d ⊗ d)(·, s) ds,
d = e–tLd –

∫ t
 e–(t–s)L

P∇ · (u ⊗ d – d ⊗ u)(·, s) ds.
(.)

Here P is the Leray projection operator, which can be expressed as an n × n matrix:
P = {Pj,k}≤j,k≤n = {δj,k + RjRk}≤j,k≤n with δj,k being the Kronecker symbol, Rj = ∂j(–�)– 



being the Riesz transform. L := (–�)σ denotes the fractional Laplacian, which is defined
as ̂[(–�)σ f ](ξ ) = |ξ |σ f̂ (ξ ).

To give a clearer introduction to our results in this article, we first note that system
(.) enjoys scaling properties. Clearly, if (u(x, t), d(x, t)) is a solution to system (.), then
(uλ(x, t), dλ(x, t)) is also a solution of (.) corresponding to the initial data (uλ

, dλ
), where

uλ(x, t) := λσ–u
(
λx,λσ t

)
, dλ(x, t) := λσ–d

(
λx,λσ t

)
,

uλ
(x) := λσ–u(λx), dλ

(x) := λσ–d(λx).
(.)

We say that the solution (u, d) is self-similar for system (.), if (uλ, dλ) = (u, d) for each
λ > .

A function space Y is called a critical space for (.) if it satisfies invariance under the
scaling ‖u(·, t)‖Y = ‖uλ(·, t)‖Y for all u ∈Y.

Before going further, we recall the functional spaces we are going to use. Let S be
the Schwartz class of rapidly decreasing functions and S ′ be the space of tempered
distributions. Here F and F– denote the Fourier and inverse Fourier transforms of L

functions, respectively, defined by F f = f̂ (ξ ) = (π )– n

∫

Rn e–ix·ξ f (x) dx and F–f = f̌ (x) =
(π )– n


∫

Rn eix·ξ f (ξ ) dξ . More generally, the Fourier transform of any f ∈ S ′ is given by
(F f , g) = (f ,Fg), for any g ∈ S . First, we recall the definition of Morrey space introduced
in []: for  ≤ p < ∞ and  ≤ λ < n, the Morrey space Mp,λ = Mp,λ(Rn) is defined as

Mp,λ :=
{

f ∈ Lp
loc

(
R

n),‖f ‖p,λ < ∞}
,

with the norm given by

‖f ‖p,λ := sup
x∈Rn

sup
r>

r– λ
p

{∫

B(x,r)

∣
∣f (y)

∣
∣p dy

} 
p

, (.)

where B(x, r) denotes the ball in R
n with center x and radius r. The space Mp,λ endowed

with the norm ‖ · ‖p,λ is a Banach space and has the following nice scaling property: for
μ > ,

∥
∥f (μx)

∥
∥

p,λ = μ
– n–λ

p
∥
∥f (x)

∥
∥

p,λ.

Set Sh = {φ ∈ S , ∂αF f () = } for any multi-index α ∈ N := N
n ∪ {}, N is the set of all

positive integers. The dual space of Sh is given by S′
h = S /P , where P is the space of poly-

nomials. We now introduce a dyadic partition of Rn. Let ϕ ∈ S be a radially symmetric
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function with support in {ξ ∈ R
n : 

 ≤ |ξ | ≤ 
 } and such that

∞∑

k=–∞
ϕk(ξ ) =

{
, if ξ ∈ R

n \ {},
, if ξ = .

Furthermore, we define ϕk = ϕ(–kξ ) for every k ∈ Z.
For any f ∈ S′

h, setting �kf = (ϕk f̂ )̌ , k = ,±,±, . . . , and Sjf =
∑

k≤j– �kf . We have the
Littlewood-Paley decomposition,

f =
∞∑

k=–∞
�kf .

In [], Kozono and Yamazaki introduced the homogeneous Besov-Morrey space Ṅs
p,λ,q.

Recall that the space Ṅs
p,λ,q is defined by

Ṅs
p,λ,q =

{
f ∈ S′

h
(
R

n) : ‖f ‖Ṅs
p,λ,q

< ∞}
,

where

‖f ‖Ṅs
p,λ,q

=

{
(
∑

k∈Z(ks‖�kf ‖p,λ)q)

q , if  ≤ p ≤ ∞,  ≤ q < ∞, s ∈R,

supk∈Z ks‖�kf ‖p,λ, if  ≤ p ≤ ∞, q = ∞, s ∈R.

When λ = , Ṅs
p,,q = Ḃs

p,q, where Ḃs
p,q is the homogeneous Besov space (see []).

If σ = , d = , system (.) is the well-known Navier-Stokes equations (NS), Foias and
Temam [] proved spatial analyticity for solutions in Sobolev spaces of periodical func-
tions in an elementary way. The analyticity of solutions in Lp for NS was first shown by
Grujič, and Kukavica [] and Lemarié-Rieusset [] gave a different approach based on
multilinear singular integrals. In a very interesting paper [], Kahane established the spa-
tial analyticity of weak solutions in Serrin’s class Lp

t Lq
x with n/q + /p < . In cylindrical

domains, Komatsu [] showed that the solutions have global spatial analyticity up to the
boundary. Using iterative derivative estimates, in [], Giga and Sawada considered the
regularizing rates of the higher-order derivatives and analyticity for the NS for the ini-
tial velocity in Ln. Similar results for the Navier-Stokes equations have been established
by Sawada [] when initial value u ∈ Ḣ n

 –(Rn) and by Miura and Sawada [] when
u ∈ BMO–. Recently, Bae et al. [] obtained the analyticity of the solutions of NS for the
sufficiently small initial data in critical Besov spaces Ḃ–+/p

p,q , and Huang and Wang []
showed the analyticity of the local solutions of NS with large initial data in critical Besov
spaces Ḃ–+n/p

p,q and modulation spaces M–
p,.

For general σ and d = , the equations of system (.) reduce to generalized Navier-
Stokes equations (GNS). Dong and Li [] showed that solutions are analytic in space
variables for / < σ <  with initial data in Ln/(σ–). Huang and Wang [] showed the an-
alyticity of the solutions of GNS in critical Besov spaces Ḃ–σ+n/p

p,q and modulation spaces
M–σ

p, for / < σ < . When σ = 
 , Huang and Wang [] showed the analyticity of the

solutions of GNS in critical Besov spaces Ḃn/p
p, and modulation spaces M∞, ∩ Ḃ∞,.

When σ = , Liu and Cui in [] show the analyticity of the usual MHD with initial data
in Ln, Ḣ n

 – and BMO–. When / < σ < (n + )/, Liu et al. in [] show that the solution
is analytic in the spatial variable of system (.) with the initial velocity in PMn–σ+.
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In [], Yamamoto considered the regularizing rates and analyticity for the drift-
diffusion equation for the initial data in L

n
θ ( < θ ≤ n) and extended the results to Besov-

Morrey spaces and Triebel-Lizorkin-Morrey spaces.
Inspired by the interesting work above, especially [–, –] and motivated by the

work of Mazzucato [], and Kozono and Yamazaki [] on the Navier-Stokes equations and
a particular class of semi-linear heat equations with initial data in a certain Besov-Morrey
space, our goal in the present article is to establish regularizing decay rate estimates and
show space analyticity of mild solutions of system (.) with initial data in certain Besov-
Morrey spaces. For more information on Besov-Morrey spaces, we also refer to [–].
The question of the largest Besov-type spaces on initial data for which the solutions of
(.) have well-posedness and analyticity is still open.

We give our main results in the following theorem.

Theorem . Let n ≥ ,  ≤ r < ∞,  ≤ λ < n, r > n–λ, 
 + n–λ

r < σ < + n–λ
r , s = σ –– n–λ

r ,
α = σ–

σ
– n–λ

rσ , ∇ · u = , ∇ · d = , (u, d) ∈ Ṅ–s
r,λ,∞ × Ṅ–s

r,λ,∞, q ∈ [r,∞]. Assume further
that there exist positive constants M and M, such that the solutions (u, d) to system (.)
exist globally in time and satisfy

∥
∥(u, d)

∥
∥

Ṅ–s
r,λ,∞

≤ M < +∞, sup
t>

t
α

∥
∥(u, d)

∥
∥

r,λ ≤ M < +∞ (.)

for any t >  and M sufficiently small. Then there exist positive constants K, K such that

∥
∥
(∇mu,∇md

)∥
∥

q,λ ≤ K
(
K|β̃|)mt– m

σ – 
σ (σ–– n–λ

q ), (.)

where β̃ ∈N
n
 is a multi-index and |β̃| = m.

Remarks (I) The assumptions in Theorem . are natural. Indeed, let  ≤ r < ∞,  ≤ λ < n,
r > n – λ, 

 + n–λ
r < σ <  + n–λ

r , α = σ–
σ

– n–λ
rσ , s = σ –  – n–λ

r . The Banach spaces E are
defined by E = {u : ∇ · u = , u ∈ BC((,∞), Ṅ–s

r,λ,∞), t α
 u ∈ BC((,∞), Mr,λ)}, which are

Banach spaces with norms given by ‖u‖E = supt> ‖u(t)‖Ṅ–s
r,λ,∞ + supt> t α

 ‖u(t)‖r,λ. Let u

and d be divergence free vector fields and (u, d) ∈ Ṅ–s
r,λ,∞ × Ṅ–s

r,λ,∞ with ‖(u, d)‖Ṅ–s
r,λ,∞

sufficiently small. Following a similar method to Theorems  and  on p. in [] for
Navier-Stokes equations, then there exists a globally in time solution (u(x), d(x)) ∈ E × E
to (.) that satisfies (.). The proof of this is standard by making minor modifications
with Theorems  and  on p. in [], and we will outline its proof in the Appendix for
completeness.

(II) When 
 < δ ≤ , K ≥ , the estimate (.) is equivalent to (see [])

∥
∥
(∇mu,∇md

)∥
∥

q,λ ≤ K
(
K|β̃|)m–δt– m

σ – 
σ (σ–– n–λ

q ).

(III) From Remark . of [], we get PMn–σ+ ⊂ Ḃ
–σ+ n

p
p,∞ for n

σ– < p < ∞. It follows (see

[], p.) that the space Ṅ–σ++ n–λ
r

r,λ,∞ is strictly larger than Ḃ
–σ+ n

p
p,∞ , when p = nr

n–λ
, λ > .

The pseudomeasure space PMa (a ≥ ) introduced in [] is defined as PMa := {f ∈ S ′ :
f̂ ∈ L

loc(Rn),‖f ‖PMa = ess supξ∈Rn |ξ |a|f̂ | < ∞}. In view of the continuous inclusions above,
we see that the initial spaces Ṅ–s

r,λ,∞ (r > max{ n–λ
σ– , n – λ}, λ > ) defined in Theorem .
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is larger than pseudomeasure space PMn–σ+ in []. In [], the authors considered the
regularizing rates of the higher-order derivatives for system (.) for the initial velocity in
PMn–σ+.

(IV) In particular, when σ = , d(x, t) = , system (.) becomes the usual Navier-Stokes
equations. We also notice that BMO– may be regarded as the largest critical space for
initial data, where well-posedness and spatial analyticity of the Navier-Stokes equations
can be constructed (see []). In [], Miura and Sawada considered the regularizing rates
of the higher-order derivatives for the Navier-Stokes equations for the initial velocity u ∈
BMO–. The space BMO– is the space of tempered distributions that can be written as
divergence of a vector with components in BMO, where BMO is the space of functions of
bounded mean oscillations. The norm on BMO– is given by

‖f ‖BMO– := sup
x∈Rn

sup
r>

(

r–n
∫

B(x,r)

∫ r



∣
∣et�f (y)

∣
∣

) 


.

But the initial data Ṅ–s
r,λ,∞ (σ = ) given in Theorem . is not included completely with

the space BMO–. Using the characterization from Lemma . below, we obtain (see [],
p.)

Ṅ
n–λ

r –
r,λ,∞ ⊂ BMO–, r ≥ , n ≥ ,  ≤ λ < n, r > n – λ,

and, for  ≤ λ < n, n ≥ ,

Ṅn––λ
,λ,∞ � BMO–, BMO–

� Ṅn––λ
,λ,∞ .

Thus we note that even for the Navier-Stokes equations, our result in Theorem . is also
new.

Notation Throughout this article, we denote vector fields u = (u, u, . . . , un), d = (d, d,
. . . , dn). For a functional space X, we denote by ‖(u, d)‖X ,

‖d‖X :=
n∑

i

‖di‖X , ‖u‖X :=
n∑

i

‖ui‖X ,
∥
∥(u, d)

∥
∥

X := ‖u‖X + ‖d‖X .

We use c >  to denote a constant independent of the main variables, which may be
different from line to line. We will employ the notation a � b to mean that a ≤ cb for a
universal constant c >  that only depends on the parameters coming from the problems.

2 Preliminaries
In this section, we prepare several tools from harmonic analysis to be used in the proof of
Theorem ..

Lemma . Assume that  ≤ pj, q ≤ ∞ for all j = , , , and  ≤ p ≤ ∞,  ≤ r < ∞,  ≤ λ,
λi < n for all i = , , .

() If p > p, s – n–λ
p

= s – n–λ
p

, s, s ∈ R, then

Ṅs
p,λ,q ↪→ Ṅs

p,λ,q and Ṅ
r,λ, ↪→ Mr,λ ↪→ Ṅ

r,λ,∞.

() If  ≤ r ≤ r̃ ≤ ∞, s ∈R, then Ṅs
p,λ,r ↪→ Ṅs

p,λ,r̃ .
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() If  ≤ p ≤ p ≤ ∞,  ≤ λ,λ < n, n–λ
p

= n–λ
p

, then Mp,λ ⊂ Mp,λ .
() If 

p
= 

p
+ 

p
, λ

p
= λ

p
+ λ

p
, hi ∈ Mpi ,λi for i = , , then

‖hh‖p,λ ≤ ‖h‖p,λ‖h‖p,λ .

Proof For the proof of Lemma ., we refer to [, , , , ]. �

From the Calderón-Zygmund operator theory, the Riesz transform Rj is continuous on
Mr,υ for  < r < ∞ and  ≤ υ < n, thus P is bounded on Mr,υ . By the estimates for the
multiplier operator, we can also see that P is bounded on Ṅs

p,λ,q for  ≤ p, q ≤ ∞,  ≤ λ < n,
and s ∈R.

Lemma . Let μ >  and N
n
 � α = (α,α, . . . ,αn) be a multi-index with |α| = μ, s ≤ s,

 ≤ q ≤ ∞,  ≤ p ≤ p ≤ ∞,  ≤ λ < n, for all f ∈ S ′, then there exist c, c, c̃, c̃, c̃, c, and
c̄ depending only on n such that

∥
∥e–tLf

∥
∥

p,λ ≤ c̄t– 
σ ( n–λ

p
– n–λ

p
)‖f ‖p,λ, (.)

∥
∥∂αe–tLf

∥
∥

p,λ ≤ c(cμ)
μ

σ t– μ
σ – 

σ ( n–λ
p

– n–λ
p

)‖f ‖p,λ, (.)
∥
∥e–tLf

∥
∥

Ṅs
p,λ,q

≤ ct– s–s
σ – 

σ ( n–λ
p

– n–λ
p

)‖f ‖Ṅs
p,λ,q

, (.)

∥
∥∂αe–tLf

∥
∥

Ṅs
p,λ,q

≤ c̃(c̃μ)
μ

σ t– μ+s–s
σ – 

σ ( n–λ
p

– n–λ
p

)‖f ‖Ṅs
p,λ,q

. (.)

Further, if s < ρ , the estimate

∥
∥e–tLf

∥
∥

Ṅρ
r,λ,

≤ c̃t
s–ρ
σ ‖f ‖Ṅs

r,λ,∞ (.)

holds for every t > .

Lemma . still holds true with (–�)μ in place of ∂α .

Proof We first prove (.) by proceeding in the following way. For all  ≤ p ≤ ∞,  ≤ λ < n,
g ∈ Mp,λ, φ ∈ L, in Morrey spaces we have

‖g ∗ φ‖p,λ ≤ ‖φ‖L‖g‖p,λ. (.)

Note that (.) implies

∥
∥e–tLf

∥
∥

p,λ = ‖Kt ∗ f ‖p,λ ≤ ‖Kt‖L‖f ‖p,λ.

According to Lemma . of [], we have Kt ∈ Lp for  ≤ p ≤ ∞, where K(x) :=
( 

π
) n


∫

Rn eix·ξ e–|ξ |σ dξ and Kt := t– n
σ K( x

t


σ

). Thus we get ‖e–tLf ‖p,λ ≤ c̄‖f ‖p,λ.

From Lemma . of [], we have the point-wise estimate |K(x)| ≤ c̄( + |x|)–n–σ .
Hölder’s inequality yields |e–tLf |p ≤ c̄Kt ∗ |f |p . Therefore, one has

∣
∣e–tLf (x)

∣
∣p ≤ c̄

∫

Rn

∣
∣f (y)

∣
∣p( + |x – y|t– 

σ
)–n–σ dy

≤ c̄t– n
σ

∫ +∞



∫

∂B(x,r)

∣
∣f (y)

∣
∣p dSy

(
 + rt– 

σ
)–n–σ rn– dr
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≤ c̄t– n
σ

∫ +∞



(
 + rt– 

σ
)–n–σ dρ(r)

≤ c̄t– n
σ

∫ +∞



(
–ρ(r)

)
d
(
 + rt– 

σ
)–n–σ

≤ c̄t– n
σ t– 

σ ‖f ‖p
p,λ

∫ +∞


rλ

(
 + rt– 

σ
)–n–σ– dr

≤ c̄t
λ–n
σ ‖f ‖p

p,λ. (.)

Using the definition of Morrey spaces in (.), we get

ρ(r) :=
∫

B(x,r)

∣
∣f (y)

∣
∣p dy ≤ ‖f ‖p

p,λrλ.

Then from the interpolation inequality it follows that

∥
∥e–tLf

∥
∥

Lp (B(x,r)) ≤ ∥
∥e–tLf

∥
∥

– p
p

L∞
∥
∥e–tLf

∥
∥

p
p
Lp (B(x,r))

≤ ∥
∥e–tLf

∥
∥

– p
p

L∞
∥
∥e–tLf

∥
∥

p
p
p,λr

λ
p . (.)

Combining (.) and (.) gives

∥
∥e–tLf

∥
∥

p,λ ≤ ∥
∥e–tLf

∥
∥

– p
p

L∞
∥
∥e–tLf

∥
∥

p
p
p,λ

≤ c̄t
λ–n
σ ( 

p
– 

p
)‖f ‖p,λ.

Thus, we complete the estimate (.).
To estimate (.), application of the commutativity of the semigroup and derivatives

gives the following estimate:

∂αe–tLf =
n∏

j=

(
∂je– t

μL
)αj e– t

Lf . (.)

Then, by (.),

∥
∥∂αe–tLf

∥
∥

p,λ ≤
n∏

j=

∥
∥F–(iξje– t

μ (|ξ |)σ )∥
∥αj

L

∥
∥e– t

Lf
∥
∥

p,λ. (.)

With the aid of the Hörmander-Mikhlin type estimate in [], we obtain

∥
∥F–(iξje– t

μ (|ξ |)σ )∥
∥

L = (cμ)


σ t– 
σ . (.)

Applying (.) and (.), we get

∥
∥∂αe–tLf

∥
∥

p,λ ≤ c(cμ)
μ

σ t– μ
σ – 

σ ( n–λ
p

– n–λ
p

)‖f ‖p,λ. (.)

Thus, one obtains the estimate of (.).
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To estimate (.), we apply the frequency projection operator �j to e–tL and take the
Mp,λ norm, then by (.)

∥
∥�je–tLf

∥
∥

p,λ ≤ ct– 
σ ( n–λ

p
– n–λ

p
)∥∥�je– t

Lf
∥
∥

p,λ. (.)

For every j ∈ Z, it follows from (.) that

∥
∥�je–tLf

∥
∥

p,λ ≤ ct– 
σ ( n–λ

p
– n–λ

p
)∥∥�je– t

Lf
∥
∥

p,λ

≤ ct– 
σ ( n–λ

p
– n–λ

p
)t– s–s

σ s–s‖�jf ‖p,λ. (.)

By the definition of Besov-Morrey spaces, from (.) we get (.) immediately.
For (.), using the estimate of (.), we can prove (.) exactly in the same way as de-

riving (.). Here we omit the proof of (.).
Assume that s < ρ , applying (.) with q = ∞, we obtain

∥
∥e–tLf

∥
∥

Ṅρ–s
r,λ,∞

≤ c̃t
s–ρ
σ ‖f ‖Ṅs

r,λ,∞ (.)

and

∥
∥e–tLf

∥
∥

Ṅs
r,λ,∞

≤ c̃‖f ‖Ṅs
r,λ,∞ . (.)

Using (.), (.), and the interpolation relation (Ṅρ–s
r,λ,∞, Ṅs

r,λ,∞) 
 , = Ṅρ

r,λ, (see Propo-
sition . of []), we get the desired estimate (.). Thus, we complete the proof of
Lemma .. �

Following the method used by [], we give the proof of Lemma ..

Lemma . Suppose  ≤ p, q ≤ ∞, s > , and  < σ < ∞, then one has f ∈ Ṅ–s
p,λ,q if and only

if

{
(
∫ ∞

 (t s
σ ‖e–tLf ‖p,λ)q dt

t )

q , if  ≤ q < ∞,

supt> t s
σ (‖e–tLf ‖p,λ), if q = ∞.

Proof Let C = {ξ :  < r ≤ |ξ | ≤ r, r > , r > } be an annulus, there exists a positive
constant c > , such that for any  ≤ p ≤ ∞ and any couple (t,λ) of positive real numbers,
from the same ideas from Lemma . of [], we have

Supp û ⊂ λC ⇒ ∥
∥e–tLu

∥
∥

p,λ ≤ ce–ctλσ ‖u‖p,λ; (.)

here, we omit the proof (.).
In the following, we only show the case  ≤ q < ∞. For q = ∞ we have the same process.

Note that, by (.),

∥
∥t

s
σ �je–tLf

∥
∥

p,λ ≤ ct
s
σ e–ctjσ ‖�jf ‖p,λ. (.)
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Then, in virtue of f =
∑

j∈Z �jf , we deduce that

∥
∥t

s
σ e–tLf

∥
∥

p,λ ≤ c‖f ‖Ṅ–s
p,λ,q

∑
t

s
σ jse–ctjσ

cr,j, (.)

where {cr,j = –js‖�j f ‖p,λ
‖f ‖Ṅ–s

p,λ,q
}j∈Z ∈ lq. Note that ‖cr,j‖lq = , the change of variable τ = ctlσ

yields

∑

j∈Z
t

s
σ jse–ctjσ ≤

∫ +∞

–∞
t

s
σ lse–ctlσ

dl

=
∫ +∞


t

s
σ

(
τ

ct

) s
σ

e–τ 
ctσ l(σ log )

dτ

(

τ = ctlσ ,
dτ

ct
= lσ log

(
σ

)
dl

)

=
∫ +∞


t

s
σ

(
τ

ct

) s
σ

e–τ 
τ

lσ σ l(σ log )
dτ

(

ct =
τ

lσ

)

=


σ cs/σ log 

∫ +∞


t

s
σ

(
τ

t

) s
σ

e–τ 
τ

dτ

=


σ cs/σ log 

∫ +∞


τ

s
σ –e–τ dτ

=


σ cs/σ log 
�(s/σ ), (.)

which is based on a technique developed in [] (see (.) on p. in []), where �(s) =
∫ +∞

 xs–e–x dx is the � function for s > .
Therefore, Hölder’s inequality with weight t s

σ jsectjσ , Fubini’s theorem, (.), and
(.) imply that

∫ +∞


t

s
σ e–tL‖f ‖q

p,λ
dt
t

≤ c‖f ‖Ṅ–s
p,λ,q

∫ +∞



(∑

j∈Z
t

s
σ jse–ctjσ

)q–(∑

j∈Z
t

s
σ jse–ctjσ

cq
r,j

)
dt
t

≤ c‖f ‖Ṅ–s
p,λ,q

∑

j∈Z
cq

r,j

∫ +∞


t

s
σ jse–ctjσ dt

t

≤ c‖f ‖Ṅ–s
p,λ,q

∫ +∞


t

s
σ –e–t dt

� ‖f ‖Ṅ–s
p,λ,q

.

Since �( s
σ

+ ) =
∫ +∞

 t s
σ e–t dt, by the definition of the Fourier transform, we thus get

�jf = �

(
s
σ

+ 
)– ∫ +∞


t

s
σ (–�)s+σ e–tL�jf dt. (.)
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Taking the Mp,λ norm on (.), in view of (.), one easily sees that

‖�jf ‖p,λ � �

(
s
σ

+ 
)– ∫ +∞


t

s
σ js+jσ e– ct

 jσ ∥
∥e–tLf

∥
∥

p,λ dt. (.)

The change of the variable x = ct
 mσ implies that

∑

j∈Z
–jsq‖�jf ‖q

p,λ �
∫ +∞


t

sq
σ

∥
∥e–tLf

∥
∥q

p,λ

(∑

j∈Z
jσ e– ct

 jσ
t
)

dt
t

�
∫ +∞


t

sq
σ

∥
∥e–tLf

∥
∥q

p,λ

(∫ +∞



x
c

e–x 
σx ln 

dx
)

dt
t

�
∫ +∞


t

sq
σ

∥
∥e–tLf

∥
∥q

p,λ
dt
t

.

Thus, we complete the proof of Lemma .. �

Lemma . For all δ ∈ ( 
 , ), then there exists a constant c >  such that

∑

α̃≤γ

(
γ

α̃

)

|α̃||α̃|–δ|γ – α̃||γ –α̃|–δ ≤ c|γ ||γ |–δ

holds for every γ ∈ Z
n
+, (α̃, α̃, . . . , α̃n) = α̃ ≤ γ = (γ,γ, . . . ,γn). Note that α̃ ≤ γ means

α̃i ≤ γi for all i = , , . . . , n and
(
γ

α̃

)
=

∏n
j=

γj !
α̃j !(γj–α̃j)!

.

Proof For the proof of Lemma ., see []. �

Lemma . Let ψ be a measurable and locally bounded function in (, T). Let {ψj}∞j=

be a sequence of measurable functions in (, T). Assume that α ∈ R and μ,ν >  sat-
isfying μ + ν = . Let Bη >  be a number depending on η ∈ (, ), and assume that
Bη >  is nonincreasing with respect to η. Assume that there is a positive constant θ such
that

 ≤ ψ(t) ≤ Bηt–α + θ

∫ t

(–η)t
(t – s)–μ(s)–νψ(s) ds

and

 ≤ ψj+(t) ≤ Bηt–α + θ

∫ t

(–η)t
(t – s)–μ(s)–νψj(s) ds

for all j ≥ , t >  and η ∈ (, ). Let η be a unique positive number such that I(η) =
min{ 

θ
, I()} with I(η) =

∫ t
(–η)t(t – s)–μ(s)–ν–α ds. Then

ψj(t) ≤ Bη̃t–α

for all j ≥ ,  < η̃ ≤ η, and  < t < T .

Proof For the proof of Lemma ., we refer to []. �
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3 Proof of Theorem 1.1
Before proving Theorem ., we first follow the ideas from [, ] and prove a variant of
Theorem . under some additional regularity assumptions.

Proposition . Suppose that the assumptions of Theorem . are satisfied. Assume fur-
thermore that

t
m
σ + 

σ (σ–– n–λ
q )(

∂β̃
x u, ∂β̃

x d
) ∈ L∞(

(,∞); Mq,λ
)

(.)

for all r ≤ q ≤ ∞. Then given 
 < δ ≤ , there exist constants K > , K >  (depending only

on n, M, M, δ, and σ ), such that

∥
∥
(
∂β̃

x u, ∂β̃
x d

)∥
∥

q,λ ≤ K(Km)m–δt– m
σ – 

σ (σ–– n–λ
q ) (.)

for all r ≤ q ≤ ∞, where |β̃| = m.

Proof For  ≤ p ≤ ∞ and  ≤ λ < n, by Lemma ., note that (.), there exists a constant
c >  such that

∥
∥e–tL

P∇f
∥
∥

p,λ ≤ ct– 
σ ‖f ‖p,λ. (.)

In fact, the proof of (.) is essentially the same as the proof of ‖e–t�
P∇f ‖p ≤ ct– 

 ‖f ‖p.
The process of proving ‖e–t�

P∇f ‖p ≤ ct– 
σ ‖f ‖p can be found in [, ].

Using Lemma . and (.), for  ≤ p ≤ p ≤ ∞ and  ≤ λ < n, a straightforward calcu-
lation yields the following elementary estimates:

∥
∥(–�)

μ
 e–tL

P∇f
∥
∥

p,λ ≤ c(cμ)
μ

σ t– μ+
σ – 

σ ( n–λ
p

– n–λ
p

)‖f ‖p,λ. (.)

We use an induction argument with respect to m.
Step . We first shall prove (.) for m = . Taking the Mq,λ norm to the first term of (.),

for some ε ∈ (, ),

∥
∥u(t)

∥
∥

q,λ ≤ ∥
∥e–tLu

∥
∥

q,λ +
∫ (–ε)t



∥
∥e–(t–τ )L

P∇(u ⊗ u – d ⊗ d)
∥
∥

q,λ dτ

+
∫ t

(–ε)t

∥
∥e–(t–τ )L

P∇(u ⊗ u – d ⊗ d)
∥
∥

q,λ dτ

:= B + B + B. (.)

We shall estimate each term. To estimate the first term B on the right side of (.), we
note that, by (.),

B ≤ t– n–λ
σ ( 

r – 
q )∥∥e– t

Lu
∥
∥

r,λ

≤ t– n–λ
σ ( 

r – 
q )

(
t


)– s
σ

sup
t>

(
t


) s
σ ∥

∥e– t
Lu

∥
∥

r,λ

≤ Ct– 
σ (σ–– n–λ

q )‖u‖Ṅ–s
r,λ,∞

≤ CMt– 
σ (σ–– n–λ

q ). (.)
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It follows from () of Lemma ., (.), and (.) that

B ≤
∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( 

r – 
q )(‖u‖

r,λ + ‖d‖
r,λ

)
dτ

≤ M


∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( 

r – 
q )

τ–α dτ

≤ CM
t– 

σ (σ–– n–λ
q )

ε
– 

σ – n–λ
σ ( 

r – 
q ). (.)

By Lemma ., (.), and (.), similarly we can derive

B ≤
∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( q+r

rq – 
q )‖u ⊗ u + d ⊗ d‖ rq

q+r ,λ dτ

≤
∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( q+r

rq – 
q )(‖u‖q,λ‖u‖r,λ + ‖d‖q,λ‖d‖r,λ

)
dτ

≤ CM

∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( q+r

rq – 
q )

τ– α

∥
∥(u, d)

∥
∥

q,λ dτ . (.)

Note that α = σ–
σ

– n–λ
rσ , denoting Bε = CM + CM

ε
– 

σ – n–λ
σ ( 

r – 
q ), and combining (.),

(.), and (.), one obtains

∥
∥u(t)

∥
∥

q,λ ≤ Bεt– 
σ (σ–– n–λ

q )

+ CM

∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( q+r

rq – 
q )

τ– α

∥
∥(u, d)

∥
∥

q,λ dτ . (.)

Similarly, we can get the desired estimate of ‖d‖q,λ,

∥
∥d(t)

∥
∥

q,λ ≤ Bεt– 
σ (σ–– n–λ

q )

+ CM

∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( q+r

rq – 
q )

τ– α

∥
∥(u, d)

∥
∥

q,λ dτ . (.)

Thus, by (.) and (.),

∥
∥
(
u(t), d(t)

)∥
∥

q,λ ≤ Bεt– 
σ (σ–– n–λ

q )

+ CM

∫ (–ε)t


(t – τ )– 

σ – n–λ
σ ( q+r

rq – 
q )

τ– α

∥
∥(u, d)

∥
∥

q,λ dτ .

Therefore, according to Lemma ., we get (.) for |β̃| = m = .
Step . We next consider the case m = . The proof of (.) is essentially contained in

Step . Thus here we omit the details.
Step . Assume that m ≥ . We suppose that (.) holds for q ∈ [r,∞] and all |β̃| ≤ m – .

We need to prove that (.) holds for |β̃| = m. Then, for |β̃| = m and some ε ∈ (, ), we
see that

∥
∥∂βu(t)

∥
∥

q,λ ≤ ∥
∥∂β̃e–tLu

∥
∥

q,λ

+
∫ (–ε)t



∥
∥∂β̃e–(t–τ )L

P∇(u ⊗ u – d ⊗ d)
∥
∥

q,λ dτ
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+
∫ t

(–ε)t

∥
∥∂β̃e–(t–τ )L

P∇(u ⊗ u – d ⊗ d)
∥
∥

q,λ dτ

=: A + A + A.

We shall estimate each of the above terms A, A, A separately. Note that m
σ

≤ m – δ,
since m ≥  and  < δ ≤ . Observe that by (.), and Lemmas . and .

A ≤ t– n–λ
σ ( 

r – 
q )∥∥e– t

Lu
∥
∥

r,λ

≤ C̃(C̃m)
m
σ t– m

σ – n–λ
σ ( 

r – 
q )

(
t


)– s
σ

sup
t>

(
t


) s
σ ∥

∥e– t
Lu

∥
∥

r,λ

� C̃(C̃m)
m
σ t– m

σ – 
σ (σ–– n–λ

q )‖u‖Ṅ–β̃
r,λ,∞

� CM(Cm)m–δt– m
σ – 

σ (σ–– n–λ
q ). (.)

To estimate the term A, we note that, by Lemma ., (.), and (.),

A ≤ C̃(C̃m)
m
σ

∫ (–ε)t


(t – τ )– m+

σ – n–λ
σ ( 

r – 
q )‖u ⊗ u – d ⊗ d‖r,λ dτ

≤ C̃(C̃m)
m
σ M



∫ (–ε)t


(t – τ )– m+

σ – n–λ
σ ( 

r – 
q )

τ–α dτ

≤ C(Cm)
m
σ M

t– m
σ – 

σ (σ–– n–λ
q )

ε
– m+

σ – n–λ
σ ( 

r – 
q )

≤ C(Cm)m–δM
t– m

σ – 
σ (σ–– n–λ

q )
ε

– m+
σ – n–λ

σ ( 
r – 

q ). (.)

We now calculate ∇m(u ⊗ u – d ⊗ d) by Leibniz’s rule. Lemma . and (.) yield

A ≤ C
∫ t

(–ε)t
(t – τ )– 

σ
(∥
∥∇mu

∥
∥

q,λ‖u‖L∞ +
∥
∥∇md

∥
∥

q,λ‖d‖L∞
)

dτ

+ C
∫ t

(–ε)t
(t – τ )– 

σ

× max
|β̃|=m

∑

<γ <β̃

(
β̃

γ

)
(∥
∥∂γ

x u
∥
∥

q,λ

∥
∥∂β̃–γ

x u
∥
∥

L∞ +
∥
∥∂γ

x d
∥
∥

q,λ

∥
∥∂β̃–γ

x d
∥
∥

L∞
)

dτ

=: A + A. (.)

Here, γ < β̃ means γi ≤ β̃i and |γ | < |β̃| for the multi-indices β̃ = (β̃, β̃, . . . , β̃n) and γ =
(γ,γ, . . . ,γn), where i = , , . . . , n.

In order to estimate the first term on the right hand of (.), according to Step , we
note that there exists c >  such that ‖(u, d)‖∞,λ = ‖(u, d)‖L∞ ≤ CKt –σ

σ , then

A ≤ CK

∫ t

(–ε)t
(t – τ )– 

σ τ
–σ

σ
(∥
∥∇mu

∥
∥

q,λ +
∥
∥∇md

∥
∥

q,λ

)
dτ

≤ CK

∫ t

(–ε)t
(t – τ )– 

σ τ
–σ

σ

∥
∥
(∇mu,∇md

)∥
∥

q,λ dτ . (.)
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By the assumption of the induction, we obtain

A ≤ C

∫ t

(–ε)t
(t – τ )– 

σ max
|β̃|=m

∑

<γ <β̃

(
β̃

γ

)

K
(
K|β̃ – γ |)|β̃–γ |–δ

τ
– |β̃–γ |

σ – 
σ (σ–– n–λ

q )

× K
(
K|γ |)|γ |–δ

τ– |γ |
σ – 

σ (σ–) dτ

≤ CK
 Km–δ



∑

<γ <β̃

(
β̃

γ

)

|β̃ – γ ||β̃–γ |–δ|γ ||γ |–δ

×
∫ t

(–ε)t
(t – τ )– 

σ τ
– |β̃–γ |

σ – 
σ (σ–– n–λ

q )
τ– |γ |

σ – 
σ (σ–) dτ

≤ CK
 Km–δ



∑

<γ <β̃

(
β̃

γ

)

|β̃ – γ ||β̃–γ |–δ|γ ||γ |–δt– m
σ – 

σ (σ–– n–λ
q )

×
∫ 

(–ε)t
( – τ )– 

σ τ
– m

σ – 
σ (σ–– n–λ

q ) dτ .

Applying Lemma ., it follows that

A ≤ CK
 Km–δ

 mm–δt– m
σ – 

σ (σ–– n–λ
q )I(ε), (.)

where I(ε) :=
∫ 

–ε
( – τ )– 

σ τ
– m

σ – 
σ (σ–– n–λ

q ) dτ .
Note that we set

bε = CM(Cm)m–δ + C(Cm)m–δM
ε

– m+
σ – n–λ

σ ( 
r – 

q )

+ CK
 Km–δ

 mm–δI(ε). (.)

Combining the above estimates for (.), (.), (.), (.), (.), and (.), we obtain

∥
∥∇mu(t)

∥
∥

q,λ ≤ bεt– m
σ – 

σ (σ–– n–λ
q ) + CK

∫ t

(–ε)t
(t – τ )– 

σ τ
–σ

σ

∥
∥
(∇mu,∇md

)∥
∥

q,λ dτ .

Similarly, from a computation it follows that

∥
∥∇md(t)

∥
∥

q,λ ≤ bεt– m
σ – 

σ (σ–– n–λ
q ) + CK

∫ t

(–ε)t
(t – τ )– 

σ τ
–σ

σ

∥
∥
(∇mu,∇md

)∥
∥

q,λ dτ .

Thus, we have

∥
∥
(∇mu(t),∇md(t)

)∥
∥

q,λ

≤ bεt– m
σ – 

σ (σ–– n–λ
q ) + CK

∫ t

(–ε)t
(t – τ )– 

σ τ
–σ

σ

∥
∥
(∇mu,∇md

)∥
∥

q,λ dτ .

Applying Lemma ., we see that there exists εm ∈ (, ), such that for any  < εm ≤ εm ,
we have

∥
∥
(∇mu(t),∇md(t)

)∥
∥

q,λ ≤ bεm t– m
σ – 

σ (σ–– n–λ
q ),
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where I(εm ) = min{ 
CK

, I()}. Let εm = 
mσ , since I(ε) is nonincreasing with respect to ε.

We can choose m >  sufficiently large such that I( 
mσ ) ≤ 

CK
for all m ≥ m. Hence,

we obtain
∥
∥
(∇mu(t),∇md(t)

)∥
∥

q,λ ≤ b 
mσ

t– m
σ – 

σ (σ–– n–λ
q ). (.)

By (.), we can choose K and K sufficiently large such that (.) holds for all |β̃| ≤ m.
Finally, it is enough to show that b 

mσ
≤ K(K|β̃|)|β̃|–δ for any m > m ≥  with constants

K and K sufficiently large.
Next, we compute I( 

mσ ),

I
(


mσ

)

≤
∫ 

– 
mσ

( – τ )– 
σ τ

– m
σ – 

σ (σ–– n–λ
q ) dτ

≤
∫ 

– 
mσ

( – τ )– 
σ dτ

(

 –


mσ

)– m
σ

(

 –


mσ

)– 
σ (σ–– n–λ

q )

≤ σ

σ – 
m–σ

 e
m–σ


σ

(

 –


mσ


)– 
σ (σ–)

≤ σ

σ – 
–σ e

–σ

σ

(

 –


σ

)– 
σ (σ–)

≤ C(σ ). (.)

Since δ ≤ m – m
σ

( 
 < δ ≤ , m ≥ , 

 < σ < ), r > n – λ, 
 + n–λ

r < σ <  + n–λ
r < , and

mδ+ ≤  · m–δ
√

m ≤  · m–δ , we thus have

b 
mσ

≤ 
{

CMCm–δ
 mm–δ + CM

C
m
σ

 m
m
σ

(


mσ

)– m+
σ – n–λ

σ ( 
r – 

q )

+ CC(σ )K
 Km–δ

 mm–δ

}

≤ 
{

CMCm–δ
 mm–δ + CM

C
m
σ

 m
m
σ mm++ n–λ

r – n–λ
q

+ CC(σ )K
 Km–δ

 mm–δ
}

≤ 
{

CMCm–δ
 mm–δ + CM

Cm–δ
 mm–δmδ+ + CC(σ )K

 Km–δ
 mm–δ

}

≤ 
{

CMCm–δ
 mm–δ + CM

Cm–δ
 mm–δ · m–δ

+ CC(σ )K
 Km–δ

 mm–δ
}

≤ 
{

CMCm–δ
 + CM

Cm–δ
 m–δ + CC(σ )K

 Km–δ


}
mm–δ .

We choose the constants K := CM + CM
. We take K large enough, such that K ≥

C + C and CC(σ )KK–δ
 < 

 . Then we obtain (.) immediately. �

Proposition . Suppose that the assumptions of Theorem . are satisfied. Then the mild
solution (u, d) of (.) satisfies (.), and there exist constants K̃, K̃ >  such that

∥
∥
(
∂β̃

x u, ∂β̃
x d

)∥
∥

q,λ ≤ K̃(K̃m)mt– m
σ – 

σ (σ–– n–λ
q ) (.)

for all r ≤ q ≤ ∞, where |β̃| = m.
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Proof The proof is now standard, we refer the reader to [–]. �

Now Theorem . follows immediately from Proposition . and Proposition .. We
thus complete the proof of Theorem ..

Appendix
In this Appendix, we will show the global existence of solution for system (.) men-
tioned in Theorem . or (I) of Remarks below Theorem .. We note that, similarly to
the Navier-Stokes equations ([], Theorems  and , p.), the proof of global existence
can be obtained by making minor modifications to Theorems  and  on p. in [].
Here, we give a brief argument of this proof for completeness and for convenience of the
reader.

We say (u, d) ∈ Eε × Eε if (u, d) ∈ E × E and ‖(u, d)‖Eε = ‖(u, d)‖E = supt> ‖(u(t),
d(t))‖Ṅ–s

r,λ,∞ + supt> t α
 ‖(u(t), d(t))‖r,λ ≤ Cε. The definition of E can be found in (I) of

Remarks below Theorem ..

Lemma A. Let n ≥ ,  ≤ r < ∞,  ≤ λ < n, r > n–λ, 
 + n–λ

r < σ < + n–λ
r , s = σ –– n–λ

r ,
α = σ–

σ
– n–λ

rσ , ∇ · u = , ∇ · d = , (u, d) ∈ Ṅ–s
r,λ,∞ × Ṅ–s

r,λ,∞, q ∈ [r,∞]. There exists a
constant M > , such that (u, d) satisfies (.), then we have (u, d) ∈ EM × EM , where
ū = e–tLu and d̄ = e–tLd.

Proof From (.) of Lemma ., we thus obtain

∥
∥(ū, d̄)

∥
∥

Ṅ–s
r,λ,∞

�
∥
∥(u, d)

∥
∥

Ṅ–s
r,λ,∞

. (A.)

Note that ασ + n–λ
r = s + n–λ

r , it follows from Lemma . and a Sobolev-type embedding
of Lemma . that

sup
t>

t
α

∥
∥(ū, d̄)

∥
∥

r,λ
∼= ∥

∥(u, d)
∥
∥

Ṅ–ασ
r,λ,∞

�
∥
∥(u, d)

∥
∥

Ṅ–s
r,λ,∞

. (A.)

Hence, the proof of Lemma A. is now completed. �

Define
{

�(u, d) = –
∫ t

 e–(t–s)L
P∇ · (u ⊗ u – d ⊗ d)(·, s) ds,

�(u, d) = –
∫ t

 e–(t–s)L
P∇ · (u ⊗ d – d ⊗ u)(·, s) ds.

(A.)

Lemma A. Let n ≥ ,  ≤ r < ∞,  ≤ λ < n, r > n–λ, 
 + n–λ

r < σ < + n–λ
r , s = σ –– n–λ

r ,
α = σ–

σ
– n–λ

rσ . � and � were defined by (A.), respectively. It holds true that

sup
t>

∥
∥
(
�(u, d),�(u, d)

)∥
∥

Ṅ–s
r,λ,∞

�
∥
∥(u, d)

∥
∥

E ,

sup
t>

t
α

∥
∥
(
�(u, d),�(u, d)

)∥
∥

r,λ �
∥
∥(u, d)

∥
∥

E

for all (u, d) ∈ E × E.
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Proof From Lemmas . and ., it follows that

∥
∥�(u, d)

∥
∥

Ṅ–s
r,λ,∞

�
∫ t


(t – s)

s–
σ

∥
∥P∇ · (u ⊗ u – d ⊗ d)(·, s)

∥
∥

Ṅ–
r,λ,∞

ds

�
∫ t


(t – s)

s–
σ

∥
∥(u ⊗ u – d ⊗ d)(·, s)

∥
∥

Ṅ
r,λ,∞

ds

�
∫ t


(t – s)

s–
σ

∥
∥(u ⊗ u – d ⊗ d)(·, s)

∥
∥

r,λ ds

�
∫ t


(t – s)

s–
σ

(∥
∥u(·, s)

∥
∥

r,λ +
∥
∥d(·, s)

∥
∥

r,λ

)
ds

�
∫ t


(t – s)

s–
σ s–α ds

(‖u‖
E + ‖d‖

E
)

�
∥
∥(u, d)

∥
∥

E . (A.)

By Lemmas ., . and ., we obtain the estimate t α
 ‖�(u, d)‖r,λ � t α

 ‖�(u, d)‖Ṅ
r,λ,

�
t α

 ‖�(u, d)‖Ṅσ––ασ
r,λ,

. We thus obtain

t
α

∥
∥�(u, d)

∥
∥

r,λ � t
α


∫ t


(t – s)

α–


∥
∥P∇ · (u ⊗ u – d ⊗ d)(·, s)

∥
∥

Ṅ–
r,λ,∞

ds

� t
α


∫ t


(t – s)

α–


∥
∥P(u ⊗ u – d ⊗ d)(·, s)

∥
∥

Ṅ
r,λ,∞

ds

� t
α


∫ t


(t – s)

α–


(∥
∥u(·, s)

∥
∥

r,λ +
∥
∥d(·, s)

∥
∥

r,λ

)
ds

� t
α


∫ t


(t – s)

α–
 s–α ds

(‖u‖
E + ‖d‖

E
)

�
∥
∥(u, d)

∥
∥

E . (A.)

In the following, in a similar way to the derivation of (A.) and (A.), we have

∥
∥�(u, d)

∥
∥

Ṅ–s
r,λ,∞

� ‖u‖E‖d‖E �
∥
∥(u, d)

∥
∥

E ,

t
α

∥
∥∇�(u, d)

∥
∥

r,λ � ‖u‖E‖d‖E �
∥
∥(u, d)

∥
∥

E .
(A.)

Thus, we complete the proof of Lemma A.. �

Lemma A. Let n ≥ ,  ≤ r < ∞,  ≤ λ < n, r > n–λ, 
 + n–λ

r < σ < + n–λ
r , s = σ –– n–λ

r ,
α = σ–

σ
– n–λ

rσ , ∇ · u = , ∇ · d = , (u, d) ∈ Ṅ–s
r,λ,∞ × Ṅ–s

r,λ,∞, q ∈ [r,∞]. Given a constant
M >  small enough, let (û, d̂) ∈ EM × EM , and (u, d) satisfy (.), then (u, d) ∈ EM ×
EM , where

u = e–tLu –
∫ t


e–(t–s)L

P∇ · (û ⊗ û – d̂ ⊗ d̂)(·, s) ds,

d = e–tLd –
∫ t


e–(t–s)L

P∇ · (û ⊗ d̂ – d̂ ⊗ û)(·, s) ds.
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Proof We will prove (u, d) ∈ EM × EM . Due to Lemmas A. and A., one thus has

∥
∥(u, d)

∥
∥

E �
∥
∥
(
e–tLu, e–tLd

)∥
∥

E + sup
t>

∥
∥
(
�(û, d̂),�(û, d̂)

)∥
∥

Ṅ–β
r,λ,∞

+ sup
t>

t
α

∥
∥
(
�(û, d̂),�(û, d̂)

)∥
∥

r,λ

≤ CM + CM


≤ CM, (A.)

provided  < M ≤ M is chosen to be sufficiently small, where we have used the estimate

CM + CM
 ≤ M(C + CM) ≤ M(C + C) = CM

in the last step. Therefore, we obtain (u, d) ∈ EM × EM .
Hence, the proof of Lemma A. is finished. �

Lemma A. For all M >  small enough, let (u, d) ∈ EM × EM and (ũ, d̃) ∈ EM × EM

with the same initial data (u, d), then � = [�,�] defined in (A.) is a contractive map.

Proof Let u = u – ũ and d = d – d̃, repeating the proof as Lemma A., it holds true that

∥
∥�(u, d) – �(ũ, d̃)

∥
∥

EM
�

(‖ũ‖EM
+ ‖u‖EM

)‖u‖EM
+

(‖d̃‖E + ‖d‖EM

)‖d‖EM

≤ CM
(‖u‖EM

+ ‖d‖EM

)
.

Meanwhile, similar to the proof of Lemma A., we have

∥
∥�(u, d) – �(ũ, d̃)

∥
∥

EM
�

(‖ũ‖EM
+ ‖u‖EM

)‖d‖EM
+

(‖d̃‖EM
+ ‖d‖EM

)‖u‖EM

≤ CM
(‖u‖EM

+ ‖d‖EM

)
.

Taking M >  small enough, there exists  < θ < 
 , such that

∥
∥�(u, d) – �(ũ, d̃)

∥
∥

EM
+

∥
∥�(u, d) – �(ũ, d̃)

∥
∥

EM
≤ θ

(‖d – d̃‖EM
+ ‖u – ũ‖EM

)
.

Therefore, � = [�,�] is a contractive map and we complete the proof of Lemma A..
�

Applying Banach’s fixed pointed theorem, we finish the proof of global existence, it fol-
lowing directly from Lemmas A., A., A., and A..
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