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Abstract
In this paper we study a class of semilinear degenerate parabolic equations arising in
mathematical finance and in the theory of diffusion processes. We show that blow-up
of spatial derivatives of smooth solutions in finite time occurs to initial boundary
value problems for a class of degenerate parabolic equations. Furthermore,
nonexistence of nontrivial global weak solutions to initial value problems is studied
by choosing a special test function. Finally, the phenomenon of blow-up is verified by
a numerical experiment.
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1 Introduction
In this paper, we consider the equation

uxx(z) + u(z)uy(z) – ut(z) = f , in R×R× (, T), (.)

where z = (x, y, t) denotes the point in R
. This equation arises in mathematical finance

[] and in the physical phenomena such as diffusion and convection of matter. One of the
main features of equation (.) is the strong degeneracy due to the lack of diffusion in the y-
direction. We restrict our consideration to two cases: the initial boundary value problems
of (.) and the initial value problems of (.).

Regarding the theoretical analysis of (.), most scholars have been devoted to the study
of well-posedness and regularity of solutions [–]. Antonelli and Pascucci [] proved that
there exists a unique viscosity solution to the initial value problem for (.) in a small time.
The existence and uniqueness of a global solution in an unbounded domain was studied
by Vol’pert and Hudjaev []. On the regularity of solutions, Citti et al. [] proved that the
viscosity solution of (.) is a classical solution in the sense that uxx, uuy –ut are continuous
and the equation is pointwise satisfied. Furthermore, they obtained the smooth solution
of (.) when f (z) ∈ C∞(�) and ∂xu �= , in an open set � ⊂R

 in [].
Blow-up and nonexistence of solutions for (.) are as important aspects of properties of

partial differential equations. In [], Fujita described the initial problem of a semi-linear
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parabolic equation, which takes place blowing up even when the initial data is very nice.
Ever since then, results about blow-up and nonexistence have been generalized to deal
with some more general semilinear, quasilinear and fully nonlinear parabolic equations
and systems. Without being exhaustive with the amount of references concerned with
this topic, let us mention the works [–]. For a more extensive list of references, we refer
to the book by Quittner and Souplet [].

For degenerate parabolic equations, blow-up results have been obtained by many au-
thors, see [–]. It is mentioned that the initial value problem

{
uxx + xuy – ut = –u+α ,α >  in R

 × (, T),
u|t= = g, in R

,

has no nontrivial nonnegative solutions in []. There is an interesting thing that replacing
the right term u+α by u|u|α in the first equation of the above problem, Haraux and Weissler
[] obtained global solutions.

In this paper, we will mainly deal with the following problems:

⎧⎪⎨
⎪⎩

uxx + uuy – ut = –u|u|α , in R
+ ×R× (, T),

u|t= = g, in R
+ ×R,

limx→∞ u = u|x= = , in R× (, T),
(.)

and

{
uxx + uuy – ut = –tk|x|–γ |u|α+, in R×R× (, T),
u|t= = g, in R×R.

(.)

It is known that the local solutions are obtained for (.) and (.) in []. Our interest is
the blow-up of spatial derivatives of solutions in finite time to the initial boundary value
problem (.) and the nonexistence of the weak solutions to the initial value problem (.).

Our main results are the following theorems.
Firstly, we define energy functionals

F(a) =
∫ ∞


a dx and E(a) =

∫ ∞



(



a
x –




a
)

dx. (.)

Theorem . Let a(x) have compact support such that E(a) < . Assume that the initial
value g(x, y) takes the form g = yb(x, y), b(x, ) = a(x). Then spatial derivatives of smooth
solutions of (.) blow up in finite time. More precisely, there exists T = F(a)

(–β)E(a) , β ∈ (, 
 ),

such that either

lim
t→T

max
x∈R+

∣∣uy(x, , t)
∣∣ = +∞ or lim

t→T
uxy(, , t) = +∞.

This is our first result. A smooth solution u of (.) means u ∈ C([, T), C(R+ × R))
for T > . It is remarkable that Theorem . remains valid if we replace –u|u|α by u|u|α
or .
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Next, we consider the more general case

⎧⎪⎨
⎪⎩

uxx + uuy – ut = f (u), in R
+ ×R× (, T),

u|t= = g, in R
+ ×R,

limx→∞ u = u|x= = , in R× (, T).
(.)

Continuing with the description of our results, let us introduce the precise assumptions
on our f :

(H) f () =  and there exists an increasing continuous function φ on [, +∞) such that

∣∣f (r) – f (r)
∣∣ ≤ φ

(|r – r|
)
,

and 
φ(r) is not integrable near r = +, that is,

∫ δ



dr
φ(r)

= +∞,

where δ is a positive constant.
Then Theorem . can be extended to the following theorem.

Theorem . Suppose that f satisfies (H), f ′() ≤ , and g(x, y) satisfies the conditions of
Theorem .. Then there exist blow-up solutions of (.) in finite time.

For initial value problems, we derive two theorems.
The following theorem considers blow-up of solutions to the initial value problem

{
uxx + uuy – ut = f (u), in QT = R

 × (, T),
u|t= = g, in R

.
(.)

Theorem . Assume that u is the bounded classical solution of (.) in QTε
, QTε = R

 ×
(, T – ε), for any given ε ∈ (, T). If f ≤  and g(x, c) ≥ c

T , c > , then u blows up in time
T at y = c.

This improves the result of Example . in [].
Finally, we consider nonexistence of weak solutions to the initial problem (.). Here,

a weak solution of (.) is defined as follows.

Definition  A function u ∈ L
loc(Q) is called a weak solution of (.) with the initial data

g(x, y) ∈ L
loc(R) in Q = R

 × (,∞) if tk|x|–γ |u|α+ ∈ L
loc(Q) and

∫
Q

–tk|x|–γ |u|α+φ dx dy dt =
∫

Q

(
uφxx +




uφy – uφt

)
dx dy dt –

∫
R

gφ(x, y, ) dx dy

hold for any nonnegative φ ∈ C
(R × [,∞)).

Now, we address our result.

Theorem . Let α > , k – γ

 > . Assume that
∫
R g(x, y) dx dy ≥ . If α ≤ k – γ

 + , then
there exists no nontrivial weak solution of (.).
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The rest of the paper is organized as follows. Section  is devoted to initial boundary
value problems (.) and (.) through energy methods. In Section , we investigate initial
value problems (.) and (.) by a comparison principle and choosing a special test func-
tion. Finally, we describe a numerical result about the blow-up of solutions in Theorem .
in Section .

2 Initial boundary value problems
In this section, we obtain the blow-up results of initial boundary value problems (.) and
(.).

2.1 Proof of Theorem 1.1
Suppose that a smooth solution u of (.) exists locally and the initial value g(x, y) satisfies
the form g = yb(x, y). If we restrict (.) to the half line l = {x > , y = } and let v(x, t) =
u(x, , t), v obviously satisfies an equation of the form

vxx + w(x, t)v – vt = –v|v|α ,

where w(x, t) = uy(x, , t) is smooth, with the initial data v(x, ) =  and the boundary data
v(, t) = . By the maximum principle, we conclude that u(x, , t) = v(x, t) =  as long as u
stays smooth. Any smooth function that vanishes at y =  can be written in this form

u(x, y, t) = yb(x, y, t). (.)

Substituting (.) into the first equation of (.), we obtain

bxx + b(b + yby) – bt = –b|yb|α .

Let a(x, t) = b(x, , t) and a(x) = b(x, , ). Then a satisfies

at = axx + a, (.)

with the initial boundary value conditions

a(, t) = , lim
x→+∞ a(x, t) = , a(x, ) = a(x). (.)

The proof of Theorem . is based on the following lemma.

Lemma . If a(x) has compact support such that E(a) <  (E is defined as in (.)), then
there exists a finite time T such that either

lim
t→T

max
x∈R+

∣∣a(x, t)
∣∣ = +∞ or lim

t→T
ax(, t) = +∞.

Proof Assume that maxx∈R+ a stays bounded. Since a satisfies equation (.), the standard
result shows that a decays exponentially fast at infinity as long as its maximum norm stays
bounded.
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Next, we will show that F(a) (F is defined as in (.)) blows up in finite time assuming
that ax(, t) stays finite. We will use the following integral identities that are valid for the
smooth solutions of (.)-(.):

d
dt

F(a) = –
∫ ∞


a

x dx + 
∫ ∞


a dx, (.)

d
dt

∫ ∞






a
x dx = –

∫ ∞


a

xx dx –
∫ ∞


aaxx dx, (.)

d
dt

∫ ∞






a dx =
∫ ∞


aaxx dx +

∫ ∞


a dx. (.)

Employing (.), (.) and (.), we find

d
dt

E(a) = –
∫ ∞



(
axx + a) dx,

dF(a)
dt

=
∫ ∞


a

x dx – E(a) ≥ –E(a).

Thus, we have E(a) <  for t >  under the condition E(a) < .
At last, we compute the time derivative of H(a) = – E(a)

F(a)β . Firstly, we have

–F(a)
dE(a)

dt
=

∫ ∞


a dx

∫ ∞



(
axx + a) dx ≥

(∫ ∞


a
(
axx + a)dx

)

=



(
dF(a)

dt

)

.

Furthermore,

–F(a)
dE(a)

dt
≥ –




E(a)
dF(a)

dt
.

If we choose β ∈ (, 
 ), then

d
dt

H(a) = F(a)–β–
(

–F(a)
dE(a)

dt
+ βE(a)

dF(a)
dt

)

≥ F(a)–β–
(

β –



)
E(a)

dF(a)
dt

≥ .

By the definition of H(a), we get –E(a) ≥ H(a)F(a)β , where H(a)|t= = H(a).
Since

dF(a)
dt

≥ –E(a) ≥ H(a)F(a)β ,

we deduce

F(a) ≥ 

(F(a)–β+ – (β – )H(a)t)


β–
.

Hence there exists a finite time T = F(a)
(–β)E(a) , β ∈ (, 

 ) such that

lim
t→T

F(a) = +∞.
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Due to the condition

lim
x→∞ a = ,

we get

lim
t→T

max
x∈R+

|a| = +∞.

This completes the proof of Lemma .. �

Proof of Theorem . We note that the smooth solution of (.)-(.) is unique. From
Lemma ., we get either

lim
t→T

max
x∈R+

∣∣b(x, , t)
∣∣ = +∞ or lim

t→T
bx(, , t) = +∞.

This implies that either

lim
t→T

max
x∈R+

∣∣uy(x, , t)
∣∣ = +∞ or lim

t→T
uxy(, , t) = +∞. �

2.2 Proof of Theorem 1.2
As the proof of Lemma ., the smooth solution of (.) can be written in this form

u(x, y, t) = yI(x, y, t)

if g = yb(x, y) and f satisfies hypothesis (H). Substituting u(x, y, t) = yI(x, y, t) into the first
equation of (.), we get

yIt = yIxx + yI(I + yIy) – f (yI). (.)

Let s(x, t) = I(x, , t) and s(x) = I(x, , ). By f () =  and f ′() ≤ , multiply (.) by 
y and

take limit as y →  to get

st = sxx + s – f ′()s,

with the initial boundary value conditions

s(, t) = , lim
x→+∞ s(x, t) = , s(x, ) = s(x).

Setting ψ = exp(f ′()t)s, ψ satisfies

ψt = ψxx + exp
(
–f ′()t

)
ψ. (.)

Lemma . Define

E(ψ) =
∫ ∞



(


ψ

x –



exp
(
–f ′()t

)
ψ

)
dx.



Wu Boundary Value Problems  (2015) 2015:157 Page 7 of 12

If the initial value ψ = ψ(x, ) has compact support such that E(ψ) <  and f ′() ≤ ,
then there exists a finite time T such that either

lim
t→T

max
x∈R+

|ψ | = +∞ or lim
t→T

ψx(, t) = +∞.

Proof It is proceeded by a contradiction to the proof of Lemma ., that is, we assume that
ψx(, t) stays finite and we will get F(ψ) (F is defined as in (.)) blows up in finite time.
The following integral identities are valid for smooth solutions of (.):

d
dt

F(ψ) = –
∫ ∞


ψ

x dx + 
∫ ∞


exp

(
–f ′()t

)
ψ dx,

d
dt

∫ ∞





ψ

x dx = –
∫ ∞


ψ

xx dx –
∫ ∞


exp

(
–f ′()t

)
ψψxx dx,

d
dt

∫ ∞






exp
(
–f ′()t

)
ψ dx =

∫ ∞


exp

(
–f ′()t

)
ψψxx dx +

∫ ∞


exp

(
–f ′()t

)
ψ dx

–
∫ ∞






f ′() exp
(
–f ′()t

)
ψ dx.

Due to f ′() ≤ , we get

d
dt

E(ψ) = –
∫ ∞



[(
ψxx + exp

(
–f ′()t

)
ψ) –




f ′() exp
(
–f ′()t

)
ψ

]
dx ≤ ,

–F(ψ)
dE(ψ)

dt

=
∫ ∞


ψ dx

∫ ∞



[(
ψxx + exp

(
–f ′()t

)
ψ) –




f ′() exp
(
–f ′()t

)
ψ

]
dx

≥
(∫ ∞


ψ

(
ψxx + exp

(
–f ′()t

)
ψ)dx

)

=



(
dF
dt

)

.

Since

dF
dt

=
∫ ∞


ψ

x dx – E ≥ –E > ,

we have

–F
dE

dt
≥ –




E
dF
dt

.

If we define H(a) = – E(a)
F(a)β and choose β ∈ (, 

 ), then

d
dt

H(ψ) = F–β–
(

–F
dE

dt
+ βE

dF
dt

)

≥ F–β–
(

β –



)
E

dF
dt

≥ .
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We have –E(ψ) ≥ H(ψ)Fβ and dF
dt ≥ –E ≥ H(ψ)Fβ , where H(ψ)|t= = H(ψ). Hence

there exists a finite time T = F(ψ)
(–β)E(ψ) , β ∈ (, 

 ) such that

lim
t→T

max
x∈R+

|ψ | = +∞.

This completes the proof of Lemma .. �

By Lemma ., the solution of (.) has either

lim
t→T

max
x∈R+

∣∣uy(x, , t)
∣∣ = +∞ or lim

t→T
uxy(, , t) = +∞.

Then Theorem . is obtained.

Remark  Replacing the semilinear term uuy of (.) by h(u)uy, if h(u) satisfies hypothesis
(H) and f ′()h′() ≤ , then the smooth solutions of (.) have the same result as Theo-
rem ..

Remark  Theorem . and Theorem . describe the lower dimensional problems. The
higher dimensional cases are parallel to the lower dimensional cases. For example, the
high dimensional problem is as follows:

⎧⎪⎨
⎪⎩

�xu + h(u)uy – ut = f (u), in R
N
+ ×R× (, t),

u(x, y, ) = g, in R
N
+ ×R,

u(x, y, t) = , in ∂RN
+ ×R× (, t),

where �x is the Laplace operator acting in the variable x = (x, x, . . . , xN ) ∈R
N
+ .

3 Initial value problems
The section describes initial value problems (.) and (.) for deriving the proofs of The-
orem . and Theorem ..

For the convenience of description, we set

Lu = uxx + uuy – ut .

Next, we get a comparison principle about the initial value problem (.).

Lemma . Assume that there are two solutions ui of (.) satisfying ui ∈ C,(QT )∩C(QT )
and ui, (u)y ∈ L∞(QT ), i = , . Let f (u) ≤ f (u), g(u) ≥ g(u), then u ≥ u.

Proof Set w = u – u,

Lu – Lu = (u – u)xx – (u – u)t + u(u – u)y + (u)y(u – u)

= wxx + uwy + (u)yw – wt ≤ .

We suppose that r > , α > , N > , and

m ≥ max
QT

(|u| + |u|
)
,
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and set

v =
m
r



(
r + Nt

)
exp(αt) + w

for r = x + y.
Defining L by

Lw = wxx + uwy + (u)yw – wt ,

we have

Lv = Lw +
m
r


exp(αt)

[
 + yu +

(
(u)y – α

)(
r + Nt

)
– N

]
.

Choosing

α ≥ max
QT

(|u| +
∣∣(u)y

∣∣) and N > ,

we get Lv ≤ .
In �r = {(x, y, t)|x + y ≤ r

,  ≤ t ≤ T}, due to v|t= ≥ , v|r=r ≥ , by the maximum
principle, we obtain v ≥ .

For any p ∈ QT , if we choose r sufficiently large such that p ∈ �r , then v|p ≥ .
Set r → ∞, we get w|p = (u – u)|p ≥ . �

Using Lemma ., we get the following proof of Theorem ..

Proof of Theorem . Taking u = y
T–t , it shows that

Lu = (u)xx + u(u)y – (u)t = .

Fixing y = c > , we have Lu(x, c, t) ≥ Lu(x, c, t). When g(x, c) ≥ c
T , we get u ≥ c

T–t by
Lemma ..

At y = c,

u(x, y, T – ε) ≥ c

ε
,

lim
t→T

u(x, y, t) = lim
ε→

u(x, y, T – ε) = ∞. �

Finally, we give the proof of Theorem ..

Proof of Theorem . Let u be such a weak solution of (.) and φ ∈ C
(R × [,∞)) be a

nonnegative test function. Applying the first equation of (.) and Young’s inequality, we
obtain∫

Q
tk|x|–γ |u|α+φ dx dy dt

=
∫

Q

[
–uφxx +




uφy – uφt

]
dx dy dt –

∫
R

gφ(x, y, ) dx dy
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≤ 


∫
Q

tk|x|–γ |u|α+φ dx dy dt + c
[∫

Q
t– k

α |x| γ
α φ– 

α (φxx)
α+
α dx dy dt

+
∫

Q
t– k

α– |x| γ
α– φ– 

α– (φy)
α+
α– dx dy dt +

∫
Q

t– k
α |x| γ

α φ– 
α (φt)

α+
α dx dy dt

]

–
∫
R

gφ(x, y, ) dx dy,

where α > .
We define

φ(x, y, t) = ψ

(
t + x + y

r

)
,

where ψ ∈ C∞
 (R+) satisfies  ≤ ψ ≤  and

ψ(s) =

{
,  ≤ s ≤ ,
, s ≥ .

Then
∫

Q
tk|x|–γ |u|α+ψ dx dy dt

≤ c
[∫

Q
t– k

α |x| γ
α ψ– 

α (ψxx)
α+
α dx dy dt +

∫
Q

t– k
α– |x| γ

α– ψ– 
α– (ψy)

α+
α– dx dy dt

+
∫

Q
t– k

α |x| γ
α ψ– 

α (ψt)
α+
α dx dy dt

]
≤ c

[
r

γ
α – k

α r
–(α+)

α + + r
γ
α– – k

α– r
–(α+)
α– +]. (.)

In the case where γ + α – k –  < , the exponents of the right terms in (.) are negative.
Taking the limit as r → ∞ in (.), we deduce that

∫
t+x+y≤r

tk|x|–γ |u|α+ dx dy dt → .

This implies that u ≡  in Q.
In the case where γ + α – k –  = , we get from (.) that

∫
Q

tk|x|–γ |u|α+ dx dy dt < ∞.

Set �r = {(x, y, t) ∈ R
 × (,∞) : r ≤ t + x + y ≤ r}. Since ψ(s) is constant for s ∈

[, ] ∪ [,∞), we have

∣∣∣∣
∫

Q

[
–uψxx +




uψy – uψt

]
dx dy dt

∣∣∣∣
=

∣∣∣∣
∫

�r

[
–uψxx +




uψy – uψt

]
dx dy dt

∣∣∣∣
≤ c

{[∫
�r

t– k
α |x| γ

α ψ– 
α (ψxx)

α+
α dx dy dt

] α
α+
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+
[∫

�r

t– k
α– |x| γ

α– ψ– 
α– (ψy)

α+
α– dx dy dt

] α–
α+

+
[∫

�r

t– k
α |x| γ

α ψ– 
α (ψt)

α+
α dx dy dt

] α
α+

}{∫
�r

tk|x|–γ |u|α+ψ dx dy dt
} 

α+

≤ c
{∫

�r

tk|x|–γ |u|α+ dx dy dt
} 

α+
. (.)

It follows from the integrability of tk|x|–γ |u|α+ in Q that

lim
r→∞

∫
�r

tk|x|–γ |u|α+ dx dy dt = .

From (.) and (.), we know that

∫
Q

tk|x|–γ |u|α+ dx dy dt = .

This implies that u ≡ . �

4 A numerical experiment
Next, we present a numerical experiment. Our goal is to show that the result presented in
Theorem . can be observed when one performs numerical computations. For a numer-
ical experiment, we choose an adaptive bounded space to problem (.).

At y = , (.) in a bounded domain can be written to the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

at = axx + a,  < x < , t > ,
a|t= = –x(x – ),  < x < ,
a|x= = , t > ,
a|x= = , t > .

(.)

Figure  shows the evolution of the numerical solution of (.) with a space step size
., whose blow-up time turns out to be T = .. In (, T), for any T ≥ ., we fail to
show the figure in Matlab since the function value increases rapidly. In Figure , we display
the profile of Figure  at t = ..

Figure 1 Evolution of the numerical solution in
t ∈ [0, 0.55].
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Figure 2 The profile at t = 0.55.
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