
Ding and Wang Boundary Value Problems  (2015) 2015:160 
DOI 10.1186/s13661-015-0429-y

R E S E A R C H Open Access

Blow-up solutions, global existence, and
exponential decay estimates for second order
parabolic problems
Juntang Ding* and Ming Wang

*Correspondence:
djuntang@sxu.edu.cn
School of Mathematical Sciences,
Shanxi University, Taiyuan, 030006,
P.R. China

Abstract
In this paper, we study the blow-up solutions, global existence, and exponential
decay estimates for a class of second order parabolic problems with Dirichlet
boundary conditions. By constructing auxiliary functions and using maximum
principles, the sufficient conditions for the existence of the blow-up solution, the
sufficient conditions for the global existence of the solution, an upper bound for the
‘blow-up time’, and some explicit exponential decay bounds for the solution and its
derivatives are specified.
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1 Introduction
Many authors have studied the blow-up solutions, global existence, and exponential de-
cay estimates of nonlinear parabolic problems (see, for instance, [–]). In this paper, we
investigate the following second order parabolic problems with Dirichlet boundary con-
ditions:

⎧
⎪⎨

⎪⎩

(k(u))t = ∇ · (g(u)∇u) + f (u), (x, t) ∈ D × (, T),
u = , (x, t) ∈ ∂D × (, T),
u(x, ) = h(x), x ∈ D,

(.)

where D ⊂ R
N (N ≥ ) is a bounded convex domain with smooth boundary ∂D ∈ C,ε ,

T is the maximal existence time of u, and D is the closure of D. Set R+ := (, +∞). We
assume, throughout the paper, that f (s) is a nonnegative C(R+) function, f () = , g(s) is
a positive C(R+) function, g ′(s) ≤  for any s ∈ R

+, k(s) is a C(R+) function, k′(s) >  for
any s ∈ R+, and h(x) is a nonnegative C(D) function, h(x) 	≡  for any x ∈ D. Under these
assumptions, it follows from the maximum principle [] that u(x, t) is nonnegative.

Some special cases of the problem (.) have been discussed already. Payne et al. in []
dealt with the following problem:

⎧
⎪⎨

⎪⎩

ut = �u + f (u), (x, t) ∈ D × (, T),
u = , (x, t) ∈ ∂D × (, T),
u(x, ) = h(x), x ∈ D.
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They established conditions on data sufficient to preclude blow-up and to ensure that the
solution and its spatial gradient decay exponentially for all t > . In [], Enache researched
the following problem:

⎧
⎪⎨

⎪⎩

ut = ∇ · (g(u)∇u) + f (u), (x, t) ∈ D × (, T),
u = , (x, t) ∈ ∂D × (, T),
u(x, ) = h(x), x ∈ D.

His purpose was to establish conditions on the data sufficient to guarantee blow-up of
solution at some finite time, conditions to ensure that the solution remains bounded as
well as conditions to derive some explicit exponential decay bounds for the solution and its
derivatives. Some authors also discussed blow-up phenomena for parabolic problems with
Dirichlet boundary conditions and obtained a lot of interesting results (see, for instance,
[–]).

In the process of heat conduction and mass diffusion, many problems can be summa-
rized as the problem (.). Therefore, in this paper, we study the problem (.). By con-
structing auxiliary functions and using maximum principles, the sufficient conditions for
the existence of the blow-up solution, the sufficient conditions for the global existence of
the solution, an upper bound for the ‘blow-up time’, and some explicit exponential decay
bounds for the solution and its derivatives are specified. Our results extend and supple-
ment those obtained in [, ].

We proceed as follows. In Section  we study the blow-up solution of (.). Section 
is devoted to the global solution of (.) and the explicit exponential decay bounds for
the solution. The explicit exponential decay bounds for the derivatives of the solution are
given in Section . A few examples are presented in Section  to illustrate the applications
of the abstract results.

2 Blow-up solution
In order to get the sufficient conditions for the existence of the blow-up solution, we define
the following functions:

F(u) :=
∫ u


f (s)g(s) ds, G(u) := 

∫ u


sg(s)k′(s) ds,

A(t) :=
∫

D
G

(
u(x, t)

)
dx, B(t) :=

∫

D

(

F(u) –



g(u)|∇u|
)

dx.

The following theorem is the main result for the blow-up solution.

Theorem . Let u be a classical solution of the problem (.). Suppose we have the follow-
ing.

(i)
(
g(s)k′(s)

)′ ≤ , sf (s)g(s) ≥ 


( + α)F(s), s ∈R
+, (.)

where α is a positive constant.
(ii)

lim
s→+

sg(s) = . (.)
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(iii)

B() =
∫

D

(

F(h) –



g(h)|∇h|
)

dx ≥ .

Then u(x, t) must blow up at some finite time t∗ < T and

T :=


α(α + )
A()B–() ≤ +∞.

Proof Making use of the differential equation (.), of the divergence theorem, of the fact
that g ′ ≤  and of the assumption (.), we have

A′(t) = 
∫

D
gk′uut dx = 

∫

D
fgu dx + 

∫

D
gu

(
g�u + g ′|∇u|)dx

= 
∫

D
fgu dx – 

∫

D
gg ′u|∇u| dx – 

∫

D
g|∇u| dx

≥ 
∫

D
fgu dx – 

∫

D
g|∇u| dx

≥ ( + α)
∫

D

(

F(u) –



g(u)|∇u|
)

dx +
α



∫

D
g(u)|∇u| dx

≥ ( + α)B(t). (.)

It follows from the divergence theorem that

B′(t) =
∫

D

(
fgut – gg ′|∇u|ut – g∇u · ∇ut

)
dx

=
∫

D

(
fgut – gg ′|∇u|ut

)
dx + 

∫

D
gg ′|∇u|ut dx –

∫

D
∇(

gut
) · ∇u dx

=
∫

D
fgut dx +

∫

D
gg ′|∇u|ut dx +

∫

D
gut�u dx

=
∫

D
gut

(
f + g ′|∇u| + g�u

)
dx

=
∫

D
gk′(ut) dx ≥ . (.)

Consequently, B(t) is a nondecreasing function in t and

B(t) ≥ B() ≥ .

By the Schwarz inequality, (.), and (.), we have

(

 +
α



)

A′B ≤ A′


=

(∫

D
gk′uut dx

)

≤
∫

D
gk′(ut) dx

∫

D
gk′u dx

= B′(t)
∫

D
gk′u dx.

It follows from (.) and (.) that
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A(t) =
∫

D
G(u) dx = 

∫

D

(∫ u


sg(s)k′(s) ds

)

dx

=
∫

D

(

g(u)k′(u)u –
∫ u



(
g(s)k′(s)

)′s ds
)

dx

≥
∫

D
gk′u dx.

Thus,

(

 +
α



)

A′B ≤ AB′,

which implies

d
dt

(
BA–– α


) ≥ . (.)

With (.) and (.), we get

–


α(α + )
(
A– α


)′ =


α + 

A′A–– α
 ≥ BA–– α

 ≥ M := B()
[
A()

]–– α
 . (.)

Integrate (.) over [, t] to get

[
A(t)

]– α
 ≤ [

A()
]– α

 –
α(α + )


Mt,

which cannot hold for

t ≥ T :=


α(α + )
A()B–().

Hence, u(x, t) must blow up at some finite time t∗ < T . The proof is complete. �

3 Global solution
In order to get the sufficient conditions for the existence of the global solution and the
explicit exponential decay bounds for the solution, we suppose the following:

s
(
f (s)g(s)

)′ + sg ′(s) ≥ f (s)g(s), s ∈R
+, (.)

f ′(s)
k′(s)

≤ p(s),


k′(s)

(
k′(s)
g(s)

)′
≤ q(s), s ∈R+, (.)

where p(s) and q(s) are nondecreasing functions of s. Since the solution of problem (.)
might blow up in a finite time t∗, the solution exists in an internal (,γ ) with γ < t∗. Further
we define

um := max
D×(,γ )

u(x, t) (< +∞).

Next, we give two lemmas from which the main results of this section are derived.
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Lemma . Let u be a classical solution of the problem (.). Suppose that (.) holds and

–c ≤ g(h)
k′(h)

[∇ · (g(h)∇h
)

+ f (h)
] ≤ , x ∈ D, (.)

where c is a positive constant. Then

–c ≤ gut ≤ , (x, t) ∈ D × (,γ ). (.)

Proof Construct an auxiliary function

z(x, t) := g(u)ut , (.)

from which we have

∇z = g ′∇uut + g∇ut ,

�z = g ′′|∇u|ut + g ′∇ut · ∇u + g ′�uut + g�ut , (.)

and

zt = g ′(ut) + gutt = g ′(ut) + g
(

g
k′ �u +

g ′

k′ |∇u| +
f
k′

)

t

= g ′(ut) +
(

gg ′

k′ –
gk′′

k′

)

�uut +
g

k′ �ut +
(

gg ′′

k′ –
gg ′k′′

k′

)

|∇u|ut + 
gg ′

k′ ∇ut · ∇u

+
(

f ′g
k′ –

fgk′′

k′

)

ut . (.)

It follows from (.), (.), (.), and the first equation of (.) that

g
k′ �z – zt +

f ′

k′ z –

k′

(
k′

g

)′
z = . (.)

The comparison principle [], (.), (.), and (.) imply (.) holds. The proof is com-
plete. �

In the following, we use the first Dirichlet eigenvalue λ of the Laplacian and the corre-
sponding eigenfunction � for a region D̃ ⊇ D:

{
��(x) + λ�(x) = , x ∈ D̃,
�(x) = , x ∈ ∂D̃.

(.)

Further since �(x) is determined up to an arbitrary multiplicative constant, we can nor-
malize �(x) by

max
D̃

�(x) = . (.)
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Lemma . Let u be a classical solution of the problem (.). Suppose that assumptions
(.), (.), and (.) hold and

(
k′(s)
g(s)

)′
≥ , s ∈ R

+. (.)

Then u(x, t) satisfies the following inequality:

 ≤ u(x, t) ≤ 	 exp

[

–
g(um)
k′(um)

(

λ –
f (um)

umg(um)

)

t
]

, (x, t) ∈ D × (,γ ), (.)

where

	 := max
D

h(x)
�(x)

< +∞. (.)

Proof Construct the following auxiliary function:

v(x, t) := u(x, t) exp

(

–
f (um)

umk′(um)
t
)

.

Here, (.) and the fact that g ′ ≤  imply

(
f (s)
sg(s)

)′
≥ , s ∈R

+. (.)

It follows from Lemma ., (.), and (.) that

(

�v –
k′(um)
g(um)

vt

)

exp

(
f (um)

umk′(um)
t
)

= �u –
k′(um)
g(um)

ut +
f (um)

umg(um)
u

≥ �u –
k′(u)
g(u)

ut +
f (u)
g(u)

= –
g ′(u)
g(u)

|∇u| ≥ .

Thus, we have

⎧
⎪⎨

⎪⎩

�v – k′(um)
g(um) vt ≥ , (x, t) ∈ D × (,γ ),

v(x, t) = , (x, t) ∈ ∂D × (,γ ),
v(x, ) = h(x), x ∈ D.

(.)

Let

w(x, t) := 	�(x) exp

(

–
λg(um)
k′(um)

t
)

. (.)

With (.), (.), and (.), we have

⎧
⎪⎨

⎪⎩

�w – k′(um)
g(um) wt = , (x, t) ∈ D × (,γ ),

w(x, t) ≥ , (x, t) ∈ ∂D × (,γ ),
w(x, ) = 	�(x) ≥ h(x), x ∈ D.

(.)
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It follows from (.), (.), and the comparison principle that

v(x, t) ≤ w(x, t),

which implies

u(x, t) ≤ 	�(x) exp

[

–
g(um)
k′(um)

(

λ –
f (um)

umg(um)

)

t
]

. (.)

With (.) and (.), we derive (.). The proof is complete. �

Next, we can get Theorem . from Lemmas .-..

Theorem . Let u be a classical solution of the problem (.). Suppose that (.), (.),
(.), and (.) hold and

f (	)
	g(	)

< λ. (.)

Then we have

t∗ = ∞

and

max
D

f (u(x, t))
u(x, t)g(u(x, t))

< λ, t ∈ [,∞). (.)

Proof We assume that (.) cannot hold. There exists a first time t̃ < ∞ for which f (u)
ug(u)

reaches the value λ. Thus, we have

max
D

f (u(x, t̃))
u(x, t̃)g(u(x, t̃))

= λ. (.)

The fact that f (s)
sg(s) is a nondecreasing functions in s, (.), and Lemma . imply

u(x, t) ≤ 	, (x, t) ∈ D × [, t̃]

and

f (u(x, t))
u(x, t)g(u(x, t))

≤ f (	)
	g(	)

< λ, (x, t) ∈ D × [, t̃].

Hence, we have

max
D

f (u(x, t̃))
u(x, t̃)g(u(x, t̃))

< λ,

which contradicts with the inequality (.). So we conclude that t̃ = ∞ and (.) holds.
The proof is complete. �
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4 Exponential decay estimate
In this section, we will use a comma to denote partial differentiation and adopt the sum-
mation convection, i.e., if an index is repeated, summation from  to N is understood, for
example,

u,iu,ku,ik =
N∑

i,k=

∂u
∂xi

∂u
∂xk

∂u
∂xi ∂xk

.

Hence, the differentiated form of the first equation of (.) is

k′(u)ut =
(
g(u)u,i

)

,i + f (u). (.)

In order to get the exponential decay bounds for the derivatives of the solution, we con-
sider


(x, t) :=
(

g(u)|∇u| + 
∫ u


f (s)g(s) ds + a

∫ u


sg(s) ds

)

eβt , (.)

where a ≥  and  < β ≤  are some positive constants to be determined. Our main result
is Theorem ..

Theorem . Let u be the classical solution of the problem (.). Suppose the following.
(i) The inequalities (.), (.), (.), and (.) hold and

 < k′(s) ≤ b ≤ , s ∈ R
+, (.)

where b is a positive constant.
(ii)

lim
s→+

sg(s) = . (.)

(iii)
a
b

:= M + β <
π

d g(	) –
f (	)
	

, (.)

where d is the in-radius of D and

M := c max
s∈[,	]

{


k′(s)

(
k′(s)
g(s)

)′}

with c given in Lemma .. Thus, 
(x, t) takes its maximum value at t = , i.e.,

g(u)|∇u| + 
∫ u


f (s)g(s) ds + a

∫ u


sg(s) ds ≤ He–βt , (x, t) ∈ D × (,∞),

with

H := max
D

{

g(h)|∇h| + 
∫ h


f (s)g(s) ds + a

∫ h


sg(s) ds

}

.
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Proof The theorem will be proved in three steps.
Step . Differentiating (.), we get


,k = 
(
gg ′|∇u|u,k + gu,iu,ik + fgu,k + augu,k

)
eβt , (.)

(g
,k),k =
[

(
gg ′|∇u|u,k + gu,iu,ik + fgu,k + augu,k

)
eβt]

,k

= eβt(g
(
g ′)|∇u| + gg ′′|∇u| + gg ′u,iu,ku,ik

+ gg ′|∇u|�u + g(gu,ik),ku,i

+ gu,iku,ik + f ′g|∇u| + fgg ′|∇u| + fg�u + ag|∇u|

+ augg ′|∇u| + aug�u
)
, (.)

and


t = eβt
(

gg ′|∇u|ut + gu,iut,i + fgut + augut + βg|∇u| + β

∫ u


f (s)g(s) ds

+ aβ

∫ u


sg(s) ds

)

. (.)

It follows from the first equation of (.) that

�u = –
g ′

g
|∇u| –

f
g

+
k′

g
ut . (.)

Next, substituting (.) into (.), we have

(g
,k),k = eβt(g
(
g ′)|∇u| + gg ′′|∇u| + gg ′u,iu,ku,ik + gg ′k′|∇u|ut

+ g(gu,ik),ku,i + gu,iku,ik + f ′g|∇u| + fgk′ut – f g + ag|∇u|

+ augg ′|∇u| + augk′ut – aufg
)
. (.)

Differentiating (.), we have

(gu,k),ki =
(
k′ut – f

)

,i,

i.e.,

(
g ′u,iu,k + gu,ik

)

,k = k′′u,iut + k′ut,i – f ′u,i. (.)

It follows from (.) that

(gu,ik),k = k′′u,iut + k′ut,i – f ′u,i –
(
g ′u,iu,k

)

,k

= k′′u,iut + k′ut,i – f ′u,i – g ′′|∇u|u,i – g ′u,ku,ik – g ′u,i�u. (.)

Multiplied by gu,i from (.), we have

g(gu,ik),ku,i = gk′′|∇u|ut + gk′u,iut,i – f ′g|∇u|

– gg ′′|∇u| – gg ′u,iu,ku,ik – gg ′|∇u|�u. (.)
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Substituting (.) into (.), we get

g(gu,ik),ku,i = gk′′|∇u|ut + gk′u,iut,i – f ′g|∇u| – gg ′′|∇u| – gg ′u,iu,ku,ik

– gg ′k′|∇u|ut + fgg ′|∇u| + g
(
g ′)|∇u|. (.)

We substitute (.) into (.) to obtain

(g
,k),k = eβt(g
(
g ′)|∇u| + gg ′u,iu,ku,ik + gk′′|∇u|ut

+ gk′u,iut,i + fgg ′|∇u| + gu,iku,ik + fgk′ut

– f g + ag|∇u| + augg ′|∇u| + augk′ut – aufg
)
. (.)

It follows from (.) that

gu,iu,ik =



e–βt
,k – gg ′|∇u|u,k – fgu,k – augu,k . (.)

Substituting (.) into (.), we get

(g
,k),k = eβt
(

–g
(
g ′)|∇u| +




e–βtg ′u,k
,k – fgg ′|∇u|

– augg ′|∇u| + gk′′|∇u|ut + gk′u,iut,i + gu,iku,ik + fgk′ut

– f g + ag|∇u| + augk′ut – aufg
)

. (.)

It follows from (.) and (.) that

(g
,k),k – k′
t = eβt
(

–g
(
g ′)|∇u| +




e–βtg ′u,k
,k – fgg ′|∇u| – augg ′|∇u|

+ gk′′|∇u|ut + gu,iku,ik – f g + ag|∇u| – aufg – gg ′k′|∇u|ut

– βgk′|∇u| – βk′
∫ u


f (s)g(s) ds – aβk′

∫ u


sg(s) ds

)

. (.)

Next, we use the Cauchy-Schwarz inequality in the following form:

|∇u|u,iku,ik ≥ u,ku,iku,ju,ij. (.)

It follows from (.) that

u,ku,ik = u,ju,ij =

g

(



e–βt
,i – gg ′|∇u|u,i – fgu,i – augu,i

)

. (.)

Further, with (.) and (.), we obtain

u,iku,ik ≥ 
g|∇u|

(



e–βt
,i – gg ′|∇u|u,i – fgu,i – augu,i

)

=


g|∇u| e–βt(
,i) –


g|∇u|
(
g ′|∇u|u,i + auu,i + fu,i

)
e–βt
,i
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+

g

((
g ′)|∇u| + au + f  + aug ′|∇u| + auf + fg ′|∇u|),

x ∈ D \ W , (.)

where W := {x ∈ D : ∇u(x, t) = } is the set of critical points of u. Substituting (.) into
(.), we have

g
k′ �
 +


k′

{(

g ′ –
e–βt

g|∇u|
)

∇
 –
[

g ′ –


|∇u| (f + au)
]

∇u
}

· ∇
 – 
t

≥ eβt
{

a
fgu
k′ – β

∫ u


f (s)g(s) ds + a gu

k′ – aβ

∫ u


sg(s) ds

+ g|∇u|
[

a
k′ – β +

g
k′

(
k′

g

)′
ut

]}

. (.)

Integrating (.) from  to u(x, t) and using (.), we get

fgu – 
∫ u


f (s)g(s) ds + gu – 

∫ u


sg(s) ds ≥ . (.)

Making use of the fact that a ≥ , (.), and (.), we have

a
fgu
k′ – β

∫ u


f (s)g(s) ds + a gu

k′ – aβ

∫ u


sg(s) ds

≥ a
fgu
b

– aβ

∫ u


f (s)g(s) ds + a gu

b
– aβ

∫ u


sg(s) ds

≥ afgu – aβ

∫ u


f (s)g(s) ds + agu – aβ

∫ u


sg(s) ds

≥ a
(

fgu – 
∫ u


f (s)g(s) ds + agu – 

∫ u


sg(s) ds

)

≥ fgu – 
∫ u


f (s)g(s) ds + gu – 

∫ u


sg(s) ds ≥ . (.)

Moreover, by (.), it is easy to see

f (	)
	

<
π

d g(	) ≤ λg(	).

It follows from Theorem . that

f (um)
umg(um)

< λ,

which implies

um ≤ 	. (.)

Next, it follows from (.), (.), (.), and Lemma . that

a
k′ – β +

g
k′

(
k
g

)′
ut ≥ a

b
– β –

c
k′

(
k
g

)′
≥ a

b
– β – M = . (.)
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Consequently, (.), (.), and (.) imply

g
k′ �
 +


k′

{(

g ′ –
e–βt

g|∇u|
)

∇
 –
[

g ′ –


|∇u| (f + au)
]

∇u
}

· ∇
 – 
t ≥ ,

x ∈ D \ W .

By means of the maximum principle, we have the following possible cases where 
 may
take its maximum value:

(a) on the boundary ∂D × (, T),
(b) at a point where ∇u = ,
(c) for t = .
Step . We first exclude the case (a). Assume 
(x, t) takes its maximum value at Q̂ = (x̂, t̂)

on ∂D. Since u =  on ∂D, we have

∂


∂n
= 

[

gg ′
(

∂u
∂n

)

+ g ∂u
∂n

∂u
∂n

]

eβt . (.)

With (.) and f () = , evaluated on ∂D ∈ C,ε , we get

g ′
(

∂u
∂n

)

+ g
[

∂u
∂n + (N – )K

∂u
∂n

]

= , (.)

where K is the average curvature of ∂D. By (.) and (.), we are led to

∂


∂n
=

[

–(N – )kg
(

∂u
∂n

)]

eβt ≤ , x ∈ ∂D.

Hence, we have

∂


∂n

∣
∣
∣
Q̂=(x̂,t̂)

≤ ,

which contradicts with the maximum principle. Hence, 
 cannot take its maximum value
on ∂D.

Step . In the following, we exclude the case (b). Assume 
(x, t) takes its maximum value
at a critical point Q̄ = (x̄, t̄).

Thus we have


(x, t) ≤ 
(x̄, t̄), (x, t) ∈ D × (, +∞). (.)

Replacing t with t̄ in (.), we obtain

g(u(x, t̄)
)∣
∣∇u(x, t̄)

∣
∣ ≤ 

∫ u(x̄,t̄)

u(x,t̄)
f (s)g(s) ds + a

∫ u(x̄,t̄)

u(x,t̄)
sg(s) ds,

from which we have

g(u(x, t̄)
)∣
∣∇u(x, t̄)

∣
∣ ≤ 

∫ uM

u(x,t̄)
f (s)g(s) ds + a

∫ uM

u(x,t̄)
sg(s) ds, x ∈ D, (.)

where uM = maxD u(x, t̄).
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Here, (.) and the fact that g ′(s) ≤  imply

(
f (s)g(s)

s

)′
≥ , s ∈R

+. (.)

Next, making use of Cauchy’s mean value theorem and of (.), we get


∫ uM

u(x,t̄)
f (s)g(s) ds =

f (ξ )g(ξ )
ξ

(
u

M – u(x, t̄)
) ≤ f (uM)g(uM)

uM

(
u

M – u(x, t̄)
)

≤ f (uM)g(u(x, t̄))
uM

(
u

M – u(x, t̄)
)
, (.)

where ξ is some intermediate value between u(x, t̄) and uM . The fact that g ′(s) ≤  implies


∫ uM

u(x,t̄)
sg(s) ds ≤ g

(
u(x, t̄)

)(
u

M – u(x, t̄)
)
. (.)

Hence, inserting (.) and (.) in (.), we get

∣
∣∇u(x, t̄)

∣
∣ ≤

(
f (uM)

uM
+ a

)(
u

M – u(x, t̄)
g(uM)

)

, x ∈ D. (.)

With (.), we have

du
√

u
M – u(x, t̄)

≤
√(

f (uM)
uM

+ a
)


g(uM)

dτ . (.)

Integrate (.) on a straight line from x̄ to the nearest point x ∈ ∂D to obtain

π


≤

√(
f (uM)

uM
+ a

)


g(uM)
|x̄x| ≤

√(
f (uM)

uM
+ a

)


g(uM)
d,

from which we have

(
f (uM)

uM
+ a

)


g(uM)
≥ π

d . (.)

We note that (.) and the fact that g ′(s) ≤  ensure f (s)
s is a nondecreasing function. It

follows from (.) and (.) that

f (um)
um

≤ f (	)
	

<
π

d g(	) –
a
b

≤ π

d g(um) –
a
b

≤ π

d g(um) – a,

which with uM ≤ um implies

(
f (uM)

uM
+ a

)


g(uM)
≤

(
f (um)

um
+ a

)


g(um)
<

π

d .

which contradicts with (.). The proof is complete. �
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5 Applications
When k(u) ≡ u and g(u) ≡  or k(u) ≡ u, the conclusions of Theorems ., . and . still
hold true. In this sense, our results extend and supplement those of [, ]

In what follows, as applications of the obtained results, two examples are presented.

Example . Let u be a classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut =
√

 + 
u�u – 

u

√

 + 
u |∇u| + u√u(u + ), (x, t) ∈ D × (, T),

u = , (x, t) ∈ ∂D × (, T),
u(x, ) = ( – |x|), x ∈ D,

where D = {x = (x, x, x) | |x| = (
∑

i= x
i )/ < } is the ball of R. The above problem can

be transformed into the following problem:

⎧
⎪⎨

⎪⎩

(
√

u + )t = ∇ · ( √
u∇u) + u 

 , (x, t) ∈ D × (, T),
u = , (x, t) ∈ ∂D × (, T),
u(x, ) = ( – |x|), x ∈ D.

Now,

k(u) = 
√

u + , g(u) =
√
u

, f (u) = u

 , h(x) =

(
 – |x|).

We have

F(u) =
∫ u


f (s)g(s) ds =

∫ u


s ds =

u


,

G(u) = 
∫ u


sk′(s)g(s) ds = 

∫ u



√
s

s + 
ds =  ln(

√
u +  –

√
u) + 

√
u(u + ).

By choosing α = , it is easy to check that (.) and (.) hold with

A() =
∫

D
G

(
h(x)

)
dx = 

∫

D
ln(

√
h +  –

√
h) +

√
h(h + ) dx

= 
∫

D
ln

(
√

(
 – |x|) +  –  + |x|) +

(
 – |x|)

√
(
 – |x|) +  dx

= π

∫ 



[
ln

(
√

(
 – r

) +  –  + r) +
(
 – r)

√
(
 – r

) + 
]
r dr

= . × 

and

B() =
∫

D

(

F(h) –



g(h)|∇h|
)

dx =
∫

D

(



h –
|∇h|

h

)

dx

=
∫

D

(


(
 – |x|) – |x|

)

dx = π

∫ 



(


(
 – r) – r

)

r dr

= . × .
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It follows from Theorem . that u blows up in a finite time t∗ and

t∗ < T =
A()

α(α + )B()
= . × –.

Example . Let u be a classical solution of the following problem:

⎧
⎪⎨

⎪⎩

ut = �u – 
u+ |∇u| + u(u + ), (x, t) ∈ D × (, T),

u = , (x, t) ∈ ∂D × (, T),
u(x, ) = �(x) = sin(|x|)

|x| , x ∈ D,

where D = {x = (x, x, x) | |x| = (
∑

i= x
i )/ < π

 } is the ball of R, �(x) is the first eigen-
function of D̃ = D and maxD �(x) = . The above problem may be turned into the follow-
ing problem:

⎧
⎪⎨

⎪⎩

(ln(u + ))t = ∇ · ( 
u+∇u) + u, (x, t) ∈ D × (, T),

u = , (x, t) ∈ ∂D × (, T),
u(x, ) = �(x) = sin(|x|)

|x| , x ∈ D.

Now we have

k(u) = ln(u + ), g(u) =


u + 
, f (u) = u, h(x) = �(x) =

sin(|x|)
|x| .

Here,

	 = ,
f (	)

	g(	)
= , λ =

π

R = .

By choosing c = , it is easy to check that (.), (.), (.), (.), and (.) hold. It follows
from Lemma . and Theorem . that u(x, t) is a global solution and

u(x, t) ≤ 	 exp

[

–
g(um)
k′(um)

(

λ –
f (um)

g(um)um

)

t
]

= exp

[

–
g(um)
k′(um)

(

 –
f (um)

g(um)um

)

t
]

≤ exp

[

–
g(	)
k′(	)

(

 –
f (	)

	g(	)

)

t
]

= e–t ,

which is the exponential decay estimate of the solution. By taking a = b = β = , it is also
easy to check that (.), (.), and (.) hold. It follows from Theorem . that

g(u)|∇u| + 
∫ u


f (s)g(s) ds + a

∫ u


sg(s) ds ≤ He–βt , (x, t) ∈ D × (,∞),

with

H = max
D

{

g(h)|∇h| + 
∫ h


f (s)g(s) ds + a

∫ h


sg(s) ds

}

= max
D

{ |∇h|
(h + ) + h

}

= max
D

{ ( cos |x|
|x| – sin |x|

|x| )

( sin(|x|)
|x| + )

+
(

sin(|x|)
|x|

)}

= ..
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Hence, we have

|∇u| ≤ 
g(u)

He–βt ≤ 
g(	)

He–βt = .e–t ,

which is the exponential decay estimate of the gradient for the solution.
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