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Abstract
In this paper, we establish the new expression and properties of Green’s function for
anm-point boundary value problem with a delayed argument. Furthermore, using
Hölder’s inequality and a fixed point theorem due to Leggett and Williams, the
existence of at least three positive solutions is also given. We discuss our problem
with a delayed argument. In this case, our results coverm-point boundary value
problems without delayed arguments and are compared with some recent results. An
example is included to illustrate our main results.
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1 Introduction
It is well known that multi-point boundary value problems for ordinary differential equa-
tions arise in different areas of applied mathematics and physics. For example, the vibra-
tions of a guy wire of uniform cross-section composed of N parts of different densities
can be set up as a multi-point boundary value problem. Many problems in the theory of
elastic stability can be handled as multi-point boundary value problems too. Recently, the
existence and multiplicity of positive solutions for multi-point boundary value problems
of ordinary differential equations have received a great deal of attention. To identify a few,
we refer the reader to [–] and the references therein. Recently, Sun and Liu [] applied
the Leray-Schauder nonlinear alternative to study the existence of a nontrivial solution for
the problem given by

{
u′′(t) + f (t, u) = ,  < t < ,
u() = , u() = αu(η),

where η ∈ (, ), α ∈ R and α �= .
At the same time, a type of boundary value problems with deviating arguments has also

received much attention. For example, in [], Yang et al. studied the existence and mul-
tiplicity of positive solutions to a three-point boundary value problem with an advanced
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argument

{
u′′(t) + a(t)f (u(α(t))) = , t ∈ (, ),
u() = , bu(η) = u(),

(.)

where  < η < , b >  and  – bη > . The main tool is the fixed point index theory.
It is easy to see that the solution of problem (.) is concave when a(t) ≥  on [, ] and

f (u) ≥  on [,∞). However, few papers have reported the same problems where the solu-
tion is without concavity; for example, see some recent excellent results and applications
of the case of ordinary differential equations with deviating arguments to a variety of prob-
lems from Jankowski [–], Jiang and Wei [], Wang [], Wang et al. [] and Hu et
al. [].

In the present paper, we shall investigate the existence of triple positive solutions for the
following m-point boundary value problem with a delayed argument:

{
Lx = ω(t)f (t, x(α(t))),  < t < ,
x′() = , x() =

∑m–
i= βix(ξi),

(.)

where ξi ∈ (, ), βi ∈ (, +∞) (i = , , . . . , m – ) are given constants and L denotes the
linear operator

Lx := –x′′ – ax′ + bx,

here a ∈ C([, ], [, +∞)) and b ∈ C([, ], (, +∞)).
Throughout this paper, we assume that α(t) �≡ t on J = [, ]. In addition, ω, f and βi

(i = , , . . . , m – ) satisfy:

(H) ω ∈ Lp[, ] for some p ∈ [, +∞), and there exists n >  such that ω(t) ≥ n a.e. on J ;
(H) f ∈ C([, ] × [, +∞), [, +∞)), α ∈ C(J , J) with α(t) ≤ t on J ;
(H)

∑m–
i= βiφ(ξi) < , where φ satisfies

Lφ = , φ′() = , φ() = . (.)

Remark . By a positive solution of problem (.) we mean a function x ∈ C(, ) ∩
C[, ] with x(t) >  on (, ) that satisfies (.).

Remark . Generally, when y(t) ≥  on J , the solution x is not concave for the linear
equation

Lx – y(t) = .

This means that the method depending on concavity is no longer valid, and we need to
introduce a new method to study this kind of problems.

For the case α(t) ≡ t on J , problem (.) reduces to the problem studied by Feng and Ge
in []. By using the fixed point theorem in a cone, the authors obtained some sufficient
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conditions for the existence, nonexistence and multiplicity of positive solutions for prob-
lem (.) when α(t) ≡ t on J . However, Feng and Ge did not obtain any results of triple
solutions on problem (.). This paper will resolve this problem.

In this paper, we present several new and more general results for the existence of triple
positive solutions for problem (.) by using Leggett-Williams’ fixed point theorem. An-
other contribution of this paper is to study the expression and properties of Green’s func-
tion associated with problem (.). The expression of the integral equation is simpler than
that of [].

The organization of this paper is as follows. In Section , we present the expression
and properties of Green’s function associated with problem (.). In Section , we present
some definitions and lemmas which are useful to obtain our main results. In Section ,
we formulate sufficient conditions under which delayed problem (.) has at least three
positive solutions. In Section , we provide an example to illustrate our main results.

2 Expression and properties of Green’s function
Lemma . Assume that

∑m–
i= βiφ(ξi) �= . Then, for any y ∈ C[, ], the boundary value

problem

{
Lx = y(t),  < t < ,
x′() = , x() =

∑m–
i= βix(ξi)

(.)

has a unique solution

x(t) =
∫ 


H(t, s)q(s)y(s) ds, (.)

where

q(t) = exp

(∫ t


a(s) ds

)
, H(t, s) = G(t, s) + G(t, s),

G(t, s) =

�

{
φ(s)ψ(t), if  ≤ s ≤ t ≤ ,
φ(t)ψ(s), if  ≤ t ≤ s ≤ ,

(.)

G(t, s) =
φ(t)

∑m–
i= βiG(ξi, s)

 –
∑m–

i= βiφ(ξi)
,

� := –φ()ψ ′(),

here φ and ψ satisfy (.) and

Lψ = , ψ() = , ψ() = , (.)

respectively.

Proof First suppose that x is a solution of problem (.). Similar to the proof of Lemma .
in [], we can get

x(t) =
∫ 


G(t, s)q(s)y(s) ds + Aφ(t),
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where

A =
∑m–

i= βi
∫ 

 G(ξi, s)q(s)y(s) ds
 –

∑m–
i= βiφ(ξi)

.

So

x(t) =
∫ 


G(t, s)q(s)y(s) ds + Aφ(t)

=
∫ 


G(t, s)q(s)y(s) ds + φ(t)

∫ 



∑m–
i= βiG(ξi, s)

 –
∑m–

i= βiφ(ξi)
q(s)y(s) ds

=
∫ 



[
G(t, s) + φ(t)

∑m–
i= βiG(ξi, s)

 –
∑m–

i= βiφ(ξi)

]
q(s)y(s) ds

=
∫ 



[
G(t, s) + G(t, s)

]
q(s)y(s) ds

=
∫ 


H(t, s)q(s)y(s) ds.

Then the proof is completed. �

Remark . The proof of Lemma . is supplementary of Theorem  in [], which helps
the readers to understand that (.) holds.

Remark . The expression of the integral equation (.) is different from that of (.) in
[] and that of (.) in [], which shows that we can use a completely different technique
from that of [] and [] to study problem (.).

Remark . It is not difficult from [, ] to show that � >  and that (i) φ is nondecreas-
ing on J and φ >  on J ; (ii) ψ is strictly decreasing on J .

Remark . Noticing a(t) ∈ C([, ], [, +∞)), it follows from the definition of q(t) that

 ≤ q(t) ≤ eM for t ∈ J , (.)

where

M = max
t∈J

a(t).

Lemma . (See []) Let ξ ∈ (, ), G(t, s), G(t, s) and H(t, s) be given as in Lemma ..
Then we have the following results:

G(t, s) ≥ , G(t, s) ≥ , H(t, s) ≥ , ∀t, s ∈ J , (.)

G(t, s) ≤ G(s, s), G(t, s) ≤ G(, s), H(t, s) ≤ H(s) ≤ H, ∀t, s ∈ J , (.)

G(t, s) ≥ σG(s, s), G(t, s) ≥ φ()G(, s),

H(t, s) ≥ σH(s) ≥ σH, ∀t ∈ [, ξ ], s ∈ J ,
(.)
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where

H(s) = G(s, s) + G(, s), H = max
s∈J

H(s),

H = min
s∈J

H(s), σ = min
{
ψ(ξ ),φ()

}
.

(.)

Remark . From (.) it follows that

H(t, s) >


σH.

Remark . By (.), (.) and the definition of σ , we obtain

 < σ < .

3 Preliminaries
In this section, we provide some background material from the theory of cones in Banach
spaces, and then we state Hölder’s inequality and Legget-Williams’ fixed point theorem.
The following definitions can be found in the book by Deimling [] as well as in the book
by Guo and Lakshmikantham [].

Definition . Let E be a real Banach space over R. A nonempty closed set K ⊂ E is said
to be a cone provided that the following two conditions are satisfied:

(i) au + bv ∈ K for all u, v ∈ K and all a ≥ , b ≥ ;
(ii) u, –u ∈ K implies u = .
Note that every cone K ⊂ E induces an ordering in E given by x ≤ y if and only if

y – x ∈ K .

Definition . A map � is said to be a nonnegative continuous concave functional on a
cone K of a real Banach space E if � : K → R+ is continuous and

�
(
tx + ( – t)y

) ≥ t�(x) + ( – t)�(y)

for all x, y ∈ K and t ∈ J .

Definition . An operator is called completely continuous if it is continuous and maps
bounded sets into pre-compact sets.

Lemma . (Arzelà-Ascoli) A set M ⊂ C(J , R) is said to be a pre-compact set provided that
the following two conditions are satisfied:

(i) All the functions in the set M are uniformly bounded. It means that there exists a
constant r >  such that |u(t)| ≤ r, ∀t ∈ J , u ∈ M;

(ii) All the functions in the set M are equicontinuous. It means that for every ε > , there
is δ = δ(ε) > , which is independent of the function u, such that

∣∣u(t) – u(t)
∣∣ < ε

whenever |t – t| < δ, t, t ∈ J .
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Lemma . (Hölder) Let u ∈ Lp[a, b] and v ∈ Lq[a, b], where p, q ∈ (, +∞) and 
p + 

q = .
Then uv ∈ L[a, b] and

‖uv‖ ≤ ‖u‖p‖v‖q.

Let u ∈ L[a, b], v ∈ L∞[a, b]. Then uv ∈ L[a, b] and

‖uv‖ ≤ ‖u‖‖v‖∞.

The basic space used in this paper is E = C[, ]. It is well known that E is a real Banach
space with the norm ‖ · ‖ defined by

‖x‖ = max
t∈J

∣∣x(t)
∣∣.

Define a cone K in E by

K =
{

x ∈ E : x(t) ≥ , min
t∈[,ξ ]

x(t) ≥ σ‖x‖
}

. (.)

Define an operator T : K → K by

(Tx)(t) =
∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds. (.)

Lemma . Assume that (H)-(H) hold. Then T(K) ⊂ K and T : K → K is completely
continuous.

Proof For x ∈ K , it follows from (.) and (.) that

‖Tx‖ = max
t∈J

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤
∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds. (.)

It follows from (.), (.) and (.) that

min
t∈[,ξ ]

(Tx)(t) = min
t∈[,ξ ]

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ σ

∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ σ‖Tx‖.

Thus, T(K) ⊂ K .
Next we shall show that operator T is completely continuous. We break the proof into

several steps.
Step . Operator T is continuous. Since the function f (t, x) is continuous on J × [, +∞),

this conclusion can be easily obtained.
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Step . For each constant l > , let Bl = {x ∈ K : ‖x‖ ≤ l}. Then Bl is a bounded closed
convex set in K . ∀x ∈ Bl , from (.), we have

‖Tx‖ = max
t∈J

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤
∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eM
∫ 


H(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eM‖H‖q‖ω‖pL,

where L = supt∈J ,‖x‖≤l f (s, x(α(s))). This proves that T(Br) is uniformly bounded.
Step . The family {Tx : x ∈ Bl} is a family of equicontinuous functions. Since H(t, s)

is continuous on J × J , and noticing J = [, ], H(t, s) is uniformly continuous on J × J .
Therefore, for all ε > , there exists l > , when |t – t| < l, such that

∣∣H(t, s) – H(t, s)
∣∣ <

ε

eM‖ω‖|L .

Then, for all x ∈ Bl , when |t – t| < δ, we get

∣∣Tx(t) – Tx(t)
∣∣ =

∣∣∣∣
∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

–
∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

∣∣∣∣
=

∣∣∣∣
∫ 



[
H(t, s) – H(t, s)

]
q(s)ω(s)f

(
s, x

(
α(s)

))
ds

∣∣∣∣
≤ eM‖ω‖L

∫ 



∣∣H(t, s) – H(t, s)
∣∣ds

< ε.

Thus, the set {Tx : x ∈ Bl} is equicontinuous.
As a consequence of Step  to Step  together with Lemma ., we can prove that T :

K → K is completely continuous. �

Remark . From Lemma . and (.), we know that x ∈ E is a solution of problem (.)
if and only if x is a fixed point of operator T .

Let  < r < r be given and let β be a nonnegative continuous concave functional on the
cone K . Define the convex sets Kr , K(β , r, r) by

Kr =
{

x ∈ K : ‖x‖ < r
}

,

K(β , r, r) =
{

x ∈ K : r ≤ β(x),‖x‖ ≤ r
}

.

Finally we state Leggett-Williams’ fixed point theorem [].
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Lemma . Let K be a cone in a real Banach space E, A : K̄c → K̄c be completely continu-
ous and β be a nonnegative continuous concave functional on K with β(x) ≤ ‖x‖ (∀x ∈ K̄c).
Suppose that there exist  < d < a < b ≤ c such that

(i) {x ∈ K(β , a, b) : β(x) > a} �= ∅ and β(Ax) > a for x ∈ K(β , a, b);
(ii) ‖Ax‖ < d for ‖x‖ ≤ d;

(iii) β(Ax) > a for x ∈ K(β , a, c) with ‖Ax‖ > b.
Then A has at least three fixed points x, x, x satisfying

‖x‖ < d, a < β(x), ‖x‖ > d and β(x) < a.

4 Existence of triple positive solutions
In this section, we apply Lemma . and Lemma . to establish the existence of three
positive solutions for problem (.). We consider the following three cases for ω ∈ Lp[, ] :
p > , p = , and p = ∞. Case p >  is treated in the following theorem.

For convenience, we write

� = eM‖H‖q‖ω‖p, � =



nσH.

Let the nonnegative continuous concave functional � on the cone K be defined by

�(x) = min
[,ξ ]

∣∣x(t)
∣∣.

Note that for x ∈ K , �(x) ≤ ‖x‖.

Theorem . Assume that (H)-(H) hold. In addition, there exist constants  < d < l <
l
σ

≤ c such that

(H) f (t, x) ≤ c
�

for (t, x) ∈ J × [, c];
(H) f (t, x) ≥ l

�
for (t, x) ∈ [, ξ ] × [l, l

σ
];

(H) f (t, x) ≤ d
�

for (t, x) ∈ J× ∈ [, d].

Then problem (.) has at least three positive solutions x, x and x satisfying

‖x‖ < d, l < �(x), d < ‖x‖ and �(x) < l. (.)

For details, see Figure .

Figure 1 The relationship of x1, x2 and x3.
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Proof By the definition of operator T and its properties, it suffices to show that the con-
ditions of Lemma . hold with respect to T .

Let x ∈ P̄c. Then  ≤ x(t) ≤ c on J . Since  ≤ α(t) ≤ t ≤  on J , it follows from  ≤ x(t) ≤ c
on J that  ≤ x(α(t)) ≤ c on J .

Consequently, for t ∈ J and x ∈ Pc, it follows from (H), (.) and (.) that

‖Tx‖ = max
t∈J

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤
∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eM
∫ 


H(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eM‖H‖q‖ω‖p

∫ 


f
(
s, x

(
α(s)

))
ds

≤ eM‖H‖q‖ω‖p
c
�

≤ c, (.)

which implies Tx ∈ Pc. This proves that T : P̄c → P̄c is completely continuous.
We first show that the condition (i) of Lemma . holds.
Take x(t) = 

 (l + l
σ

), ∀t ∈ J . Then

‖x‖ =



(
l +

l
σ

)
<

l
σ

, �(x) = min
t∈[,ξ ]

x(t) =



(
l +

l
σ

)
> l.

This shows that

{
x ∈ K

(
�, l,

l
σ

)
: �(x) > l

}
�= ∅.

Therefore, for all {x ∈ K(�, l, l
σ

) : �(x) > l} and t ∈ J , we have

l ≤ x(t) ≤ l
σ

.

Since  ≤ α(t) ≤ t ≤ ξ on [, ξ ], it follows from l ≤ x(t) ≤ l
σ

on [, ξ ] that l ≤ x(α(t)) ≤ l
σ

for t ∈ [, ξ ].
Therefore, it follows from Remark . and (H) that

�(Tx) = min
t∈[,ξ ]

∣∣(Tx)(t)
∣∣

≥ σ

∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ nσ

∫ 


H(s)f

(
s, x

(
α(s)

))
ds

≥ nσ

∫ ξ


H(s)f

(
s, x

(
α(s)

))
ds
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>



nσH
l
�

= l. (.)

Therefore, we have

�(Tx) > l, ∀x ∈ K
(

�, l,
l
σ

)
.

This implies that condition (i) of Lemma . is satisfied.
Secondly, we prove that condition (ii) of Lemma . is satisfied. If x ∈ Kd , then  ≤ x(t) ≤

d on J .
Since  ≤ α(t) ≤ t ≤  on J , it follows from  ≤ x(t) ≤ d on J that  ≤ x(α(t)) ≤ d on J .
Thus it follows from (H) that

‖Tx‖ = max
t∈J

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤
∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eM
∫ 


H(s)ω(s) ds

∣∣f (s, x
(
α(s)

))∣∣
≤ eM‖H‖q‖ω‖p

d
�

= d. (.)

Hence, the condition (ii) of Lemma . is satisfied.
Finally, we prove that the condition (iii) of Lemma . is satisfied.
In fact, for all x ∈ K(�, l, c) and ‖Tx‖ > l

σ
, it follows from (.), (.), (.) and (.) that

�(Tx) = min
t∈[,ξ ]

∣∣(Tx)(t)
∣∣

= min
t∈[,ξ ]

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ σ

∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≥ σ‖Tx‖

> σ
l
σ

= l. (.)

This gives the proof of the condition (iii) of Lemma ..
To sum up, the hypotheses of Lemma . hold. Therefore, an application of Lemma .

implies that problem (.) has at least three positive solutions x, x and x such that

‖x‖ < d, l < �(x), and x > d with �(x) < l. �

The following corollary deals with the case p = ∞.
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Corollary . Assume that (H)-(H) hold. Then problem (.) has at least three positive
solutions x, x and x satisfying (.).

Proof Let ‖H‖‖ω‖∞ replace ‖H‖q‖ω‖p and repeat the argument above, we can get the
corollary. �

Finally we consider the case of p = . Let

(H)′ f (t, x) ≤ c
�

for (t, x) ∈ J × [, c];
(H)′ f (t, x) ≤ d

�
for (t, x) ∈ J× ∈ [, d],

where

� = eMH‖ω‖.

Corollary . Assume that (H)-(H), (H)′, (H) and (H)′ hold. Then problem (.) has
at least three positive solutions x, x and x satisfying (.).

Proof Similar to the proof of (.), it follows from (.) and (H)′ that

‖Tx‖ = max
t∈J

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤
∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eM
∫ 


H(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eMH
∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≤ eMH‖ω‖

∫ 


f
(
s, x

(
α(s)

))
ds

≤ eMH‖ω‖
c
�

≤ c, (.)

which shows that Tx ∈ K̄c, ∀x ∈ K̄c.
Next turning to (H)′, we have

‖Tx‖ = max
t∈J

∫ 


H(t, s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤
∫ 


H(s)q(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eM
∫ 


H(s)ω(s)f

(
s, x

(
α(s)

))
ds

≤ eMH
∫ 


ω(s)f

(
s, x

(
α(s)

))
ds

≤ eMH‖ω‖

∫ 


f
(
s, x

(
α(s)

))
ds
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≤ eMH‖ω‖
d
�

≤ c, ∀x ∈ K̄d. (.)

Similar to the proof of Theorem ., we can get Corollary .. �

Remark . Comparing with Feng and Ge [], the main features of this paper are as
follows.

(i) Three positive solutions are available.
(ii) α(t) �≡ t is considered throughout this paper.

(iii) ω(t) is Lp-integrable, not only ω(t) ∈ C(, ) on t ∈ J .

5 An example
In this section, we present an example. Let

p = , β = e– 
 , ξ =




, a(t) ≡ , b(t) ≡ .

Example . Consider the following three-point boundary value problem:

{
–x′′(t) + x(t) = ω(t)f (t, x(α(t))),  < t < ,
x′() = , x() = e– 

 x( 
 ),

(.)

where α ∈ C(J , J), α(t) ≤ t on J and

ω(t) =


|t – 
 | 


,

f (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
�

, t ∈ J , x ∈ [, d],
d
�

× l–x
l–d + l

�
× x–d

l–d , t ∈ J , x ∈ [d, l],
l
�

, t ∈ J , x ∈ [l, l
σ

],
l
�

× c–x
c– l

σ

+ c
�

× x– l
σ

c– l
σ

, t ∈ J , x ∈ [ l
σ

, c],
c
�

, t ∈ J , x ∈ [c, +∞).

(.)

This means that problem (.) involves the delayed argument α. For example, we can
take α(t) = t. It is clear that ω is nonnegative and ω ∈ L[, ].

Conclusion . Problem (.) has at least three positive solutions x, x and x satisfying
(.).

Proof It follows from (.) and (.) that φ and ψ satisfy

Lφ = , φ′() = , φ() = ,

Lψ = , ψ() = , φ() = ,
(.)

where Lx = –x′′(t) + x(t) and

φ(t) =
e–t + e+t

 + e , φ() =
e

 + e ,
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ψ(t) =
–e–t + et

 – e , ψ ′() =
 + e

 – e , (.)

q(t) = , � := –φ()ψ ′() =
e

e – 
> , βφ(ξ) = e– 

 φ

(



)
< .

On the other hand, it follows from a(t) = , m = , α = e– 
 and ω(t) = 

|t– 
 | 


that

eM = , n = √, ‖ω‖ =
[∫ 



(
t –




)– 


dt
] 


=

√


√
.

Choosing  < d < l < l
σ

≤ c, we have

f (t, x) ≤ c
�

for (t, x) ∈ J × [, c];

f (t, x) ≥ l
�

for (t, x) ∈
[

,



]
×

[
l,

l
σ

]
;

f (t, x) =
d
�

for (t, x) ∈ J × [, d],

which shows that (H)-(H) hold.
By Theorem ., problem (.) has least three positive solutions x, x and x satisfying

(.). �
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