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1 Introduction
A boundary value problem is said to be at resonance one if the corresponding homoge-
neous boundary value problem has non-trivial solutions. Mawhin’s continuation theorem
[] is an effective tool to investigate the boundary value problems at resonance with linear
or semilinear differential operators (see [–] and the references cited therein). Bound-
ary value problems with p-Laplacian have been widely studied owing to their importance
in theory and application of mathematics and physics (see [–]). But the p-Laplacian
boundary value problems at resonance cannot be solved by Mawhin’s continuation theo-
rem. In order to solve these problems, Ge and Ren extended Mawhin’s continuation the-
orem and used it to study boundary value problems with p-Laplacian []. In their new
theorem, two projectors (Definition .) P and Q must be constructed. But it is difficult
to give the projector Q in many boundary value problems with p-Laplacian. In [], the
author extended the theorem in [] and studied the problem

{
(ϕp(u′′))′(t) = f (t, u(t), u′(t), u′′(t)), t ∈ [, ],
u′′() = , u′() =

∫ 
 g(t)u′(t) dt, u′() =

∫ 
 h(t)u′(t) dt

in finite interval, where Q is not a projector but satisfies suitable conditions, ϕp(s) = |s|p–s,
p > ,

∫ 
 g(t) dt = ,

∫ 
 h(t) dt = .

Boundary value problems on the half-line arise in various applications such as in the
study of the unsteady flow of gas through a semi-infinite porous medium, in analyzing the
heat transfer in radial flow between circular disks, in the study of plasma physics, in an
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analysis of the mass transfer on a rotating disk in a non-Newtonian fluid, etc. []. In [],
using the continuation theorem of Ge and Ren [], the author investigated the existence
of solutions for the problem

{
(ϕp(u′))′ + f (t, u, u′) = ,  < t < +∞,
u() = , ϕp(u′(+∞)) =

∑n
i= αiϕp(u′(ξi))

on the half-line, where Q is a projector, αi > , i = , , . . . , n,
∑n

i= αi = .
In this paper, we study the boundary value problem

{
(ϕp(u′))′(t) = ψ(t)f (t, u(t), u′(t)), t ∈ [, +∞),
u′(+∞) = , u() =

∫ +∞
 h(t)u(t) dt

(.)

in infinite interval, where Q is not a projector, ϕp(s) = |s|p–s, p > . To the best of our
knowledge, this is the first paper to study the boundary value problems at resonance on
the half-line where the operator Q is not a projector.

In this paper, we will always suppose that the following conditions hold.

(H)
∫ +∞

 h(t) dt = , th(t) ∈ L[, +∞), ψ(t) ∈ L[, +∞) ∩ C[, +∞), h(t) ≥ , ψ(t) > ,
t ∈ [, +∞).

(H) f (t, u, v) is continuous in [,∞) × R
. For any r > , there exists a constant Mr > 

such that if |u|
+t ≤ r, |v| ≤ r, t ∈ [, +∞) then |f (t, u, v)| ≤ Mr , and for any ε >  there

exists δ >  such that |f (t, u, v) – f (t, u, v)| < ε for t ∈ [, +∞), ui, vi ∈ R, i = , ,
satisfying |u–u|

+t < δ, |v – v| < δ and |ui|
+t ≤ r, |vi| ≤ r.

The paper is organized as follows. The first section provides a short overview of the
problem. Section  recalls some preliminary facts. Section  contains the main result of
the paper.

2 Preliminaries
Definition . ([]) Let X and Z be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Z , respec-
tively. An operator M : X ∩ dom M → Z is said to be quasi-linear if

(i) Im M := M(X ∩ dom M) is a closed subset of Z,
(ii) Ker M := {x ∈ X ∩ dom M : Mx = } is linearly homeomorphic to R

n, n < ∞,
where dom M denotes the domain of the operator M.

In this paper, an operator T : X → Z is said to be bounded if T(V ) ⊂ Z is bounded for
any bounded subset V ⊂ X.

Definition . P is a projector if P : Y → Y is linear and Px = Px, where Y is a vector
space.

Let X = Ker M, P : X → X be a projector and X be the complement space of X in X
with X = X ⊕ X. Let � ⊂ X be an open and bounded set with the origin θ ∈ �.

Definition . ([]) Suppose that Nλ : � → Z, λ ∈ [, ] is a continuous and bounded
operator. Denote N by N . Let �λ = {x ∈ � : Mx = Nλx}. Nλ is said to be M-quasi-compact
in � if there exists a vector subspace Z of Z satisfying dim Z = dim X and two operators
Q and R such that the following conditions hold:
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(a) Ker Q = Im M,
(b) QNλx = θ , λ ∈ (, ) ⇔ QNx = θ ,
(c) R(·, ) is the zero operator and R(·,λ)|�λ

= (I – P)|�λ
,

(d) M[P + R(·,λ)] = (I – Q)Nλ,
where Q : Z → Z is continuous, bounded with Q(I – Q) = , QZ = Z and R : �× [, ] →
X is continuous and compact with Pu + R(u,λ) ∈ dom M, u ∈ �, λ ∈ [, ].

Theorem . ([]) Let X and Z be two Banach spaces with the norms ‖ · ‖X , ‖ · ‖Z , re-
spectively, and � ⊂ X be an open and bounded nonempty set. Suppose that

M : X ∩ dom M → Z

is a quasi-linear operator and that Nλ : � → Z, λ ∈ [, ] is M-quasi-compact. In addition,
if the following conditions hold:

(C) Mx = Nλx, ∀x ∈ ∂� ∩ dom M, λ ∈ (, ),
(C) deg{JQN ,� ∩ Ker M, } = ,

then the abstract equation Mx = Nx has at least one solution in dom M ∩�, where N = N,
J : Im Q → Ker M is a homeomorphism with J(θ ) = θ , deg is the Brouwer degree.

Remark In the proof of Theorem . in [], the continuity of the operator M is not
needed. And dom M may not be a linear space. But the operators P, R satisfy Pu + R(u,λ) ∈
dom M, u ∈ �, λ ∈ [, ].

Lemma . ([]) Let ϕp : R → R be a function given by the formula ϕp(s) = |s|p–s, where
p > . Then, for any u, v ≥ , we have

() ϕp(u + v) ≤ ϕp(u) + ϕp(v),  < p ≤ .
() ϕp(u + v) ≤ p–(ϕp(u) + ϕp(v)), p ≥ .

3 Main results
In the following, we will always assume that q satisfies /p + /q = .

Let X = {u ∈ C[, +∞) : u′(+∞) = , supt∈[,+∞)
|u(t)|
+t < +∞} be endowed with the follow-

ing norm ‖u‖X = max{‖u′‖∞,‖ u(t)
+t ‖∞}, Y = {y ∈ C[, +∞) : supt∈[,+∞) |y(t)| < ∞} be en-

dowed with the following norm ‖y‖Y = supt∈[,+∞) |y(t)| := ‖y‖∞. Take Z = {ψy : y ∈ Y }×R,
with norm ‖(ψy, c)‖Z = max{‖y‖∞, |c|}. We know that (X,‖ · ‖X) and (Z,‖ · ‖Z) are Banach
spaces.

Define operator T : Y → R by Ty = c, for y ∈ Y , where c satisfies

∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

(
y(r) – c

)
dr

)
ds dt = . (.)

The following lemma shows that the operator T is well defined.

Lemma . For y ∈ Y , there is only one constant c ∈ R such that Ty = c with |c| ≤ ‖y‖∞,
T : Y →R is continuous and T(ky) = kT(y), k ∈R.
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Proof For y ∈ Y , let

F(c) =
∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

(
y(r) – c

)
dr

)
ds dt.

Obviously, F is continuous and strictly decreasing in R. If y is a constant, the results hold,
clearly. Assume y is not a constant. Take a = inft∈[,+∞) y(t), b = supt∈[,+∞) y(t). It is easy to
see that F(a) > , F(b) < . So, there exists a unique constant c ∈ (a, b) such that F(c) = ,
i.e., there is only one constant c ∈R such that Ty = c with |c| ≤ ‖y‖∞.

For y, y ∈ Y , assume Ty = a, Ty = b. By h(t) ≥ , ψ(t) > ,
∫ +∞

 h(t) dt =  and ϕq being
strictly increasing, we obtain that if b – a > supt∈[,+∞)(y(t) – y(t)), then

 =
∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

(
y(r) – b

)
dr

)
ds dt

=
∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

[(
y(r) – a

)
+

(
y(r) – y(r) – (b – a)

)]
dr

)
ds dt

<
∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

(
y(r) – a

)
dr

)
ds dt = ,

a contradiction. On the other hand, if b – a < inft∈[,+∞)(y(t) – y(t)), then

 =
∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

(
y(r) – b

)
dr

)
ds dt

=
∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

[(
y(r) – a

)
+

(
y(r) – y(r) – (b – a)

)]
dr

)
ds dt

>
∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)

(
y(r) – a

)
dr

)
ds dt = ,

a contradiction, too. So, we have inft∈[,+∞)(y(t) – y(t)) ≤ b – a ≤ supt∈[,+∞)(y(t) – y(t)),
i.e., |b – a| ≤ ‖y – y‖∞. So, T : Y → R is continuous. Obviously, T(ky) = kT(y), k ∈ R.
The proof is completed. �

Define operators M : X ∩ dom M → Z, Nλ : X → Z as follows:

Mu(t) =
[(

ϕp
(
u′))′(t), T

(
(ϕp(u′))′(t)

ψ(t)

)]
, Nλu(t) =

[
λψ(t)f

(
t, u(t), u′(t)

)
, 

]
,

where dom M = {u ∈ X| (ϕp(u′))′
ψ(t) ∈ Y }.

Definition . u is a solution of (.) if u ∈ dom M satisfies (.).

It is clear that u ∈ dom M is a solution of (.) if and only if it satisfies Mu = Nu, where
N = N.

Lemma . M is a quasi-linear operator.

Proof It is easy to get that Ker M = {c|c ∈ R} := X.
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For u ∈ X ∩ dom M, if Mu = (ψy, c), then c satisfies (.) with y. On the other hand, if
y ∈ Y , Ty = c, take

u(t) = –
∫ t


ϕq

(∫ +∞

s
ψ(r)y(r) dr

)
ds.

By a simple calculation, we get u ∈ X ∩ dom M and Mu = (ψy, c). Thus

Im M =
{

(ψy, Ty)|y ∈ Y
}

=
{

(ψy, c)|y ∈ Y , c satisfying (.) with y
}

.

By the continuity of T , we get that Im M ⊂ Z is closed. So, M is quasi-linear. The proof is
completed. �

Take a projector P : X → X and an operator Q : Z → Z as follows:

(Pu)(t) = u(), Q(ψy, c) = (, c – Ty),

where Z = {(, c)|c ∈ R}. Obviously, QZ = Z and dim Z = dim X.
Define an operator R as

R(u,λ)(t) = –
∫ t


ϕq

(∫ +∞

s
λψ(r)f

(
r, u(r), u′(r)

)
dr

)
ds, (u,λ) ∈ X × [, ].

Lemma . ([]) V ⊂ X is relatively compact if { u(t)
+t |u ∈ V } and {u′(t)|u ∈ V } are both

bounded, equicontinuous on any compact intervals of [, +∞) and equiconvergent at infin-
ity.

Lemma . R : � × [, ] → X is continuous and compact, Pu + R(u,λ) ∈ dom M, u ∈ �,
λ ∈ [, ], where X = {u ∈ X : u() = }, � ⊂ X is an open bounded set.

Proof Firstly, we prove that R : �× [, ] → X and Pu + R(u,λ) ∈ dom M, u ∈ �, λ ∈ [, ].
Obviously, R(u,λ)(t) ∈ C[, +∞), R(u,λ)′(+∞) = – limt→+∞ ϕq(

∫ +∞
t λψ(s)f (s, u(s),

u′(s)) ds) = . By (H), we get |R(u,λ)(t)|
+t ≤ ϕq(‖ψ‖M‖u‖X ) < +∞, u ∈ X. Therefore, R(u,λ) ∈

X. It is clear that R(u,λ)() = . Thus R(u,λ) ∈ X. Clearly, R(u,λ) + Pu ∈ X. It fol-
lows from (ϕp(R(u,λ)(t) + Pu(t))′)′ = λψ(t)f (t, u(t), u′(t)) and (H) that (ϕp(R(u,λ)(t)+Pu(t))′)′

ψ(t) =
λf (t, u(t), u′(t)) ∈ Y . So, R(u,λ) + Pu ∈ dom M.

Secondly, we show that R is continuous.
Since � is bounded, there exists a constant r >  such that ‖u‖X ≤ r, u ∈ �. By (H),

there exists a constant Mr >  such that |f (t, u(t), u′(t))| ≤ Mr , u ∈ �, t ∈ [, +∞). So, we
get

∣∣∣∣
∫ +∞

t
ψ(s)f

(
s, u(s), u′(s)

)
ds

∣∣∣∣ ≤ ‖ψ‖Mr , t ∈ [, +∞), u ∈ �.

By the uniform continuity of ϕq(x) in [–‖ψ‖Mr , max{,‖ψ‖Mr}], we obtain that for any
ε > , there exists a constant δε >  such that

∣∣ϕq(x) – ϕq(x)
∣∣ < ε, |x – x| ≤ δε , x, x ∈ [

–‖ψ‖Mr , max
{

,‖ψ‖Mr
}]

.
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For α = δε
‖ψ‖

, by (H), there exists a constant δα >  such that if u, v ∈ �, ‖u – v‖X < δα ,
then |f (t, u(t), u′(t)) – f (t, v(t), v′(t))| < α, t ∈ [,∞). So, we have

∣∣∣∣
∫ +∞

t
ψ(s)f

(
s, u(s), u′(s)

)
ds –

∫ +∞

t
ψ(s)f

(
s, v(s), v′(s)

)
ds

∣∣∣∣
≤

∫ +∞

t
ψ(s)

∣∣f (s, u(s), u′(s)
)

– f
(
s, v(s), v′(s)

)∣∣ds ≤ δε , ‖u – v‖X < δα .

Take δ = min{δε , δα}. For u, v ∈ �, λ,μ ∈ [, ], if ‖u – v‖X < δ, |λ – μ| < δ, then

∣∣R(u,λ)′(t) – R(v,μ)′(t)
∣∣

=
∣∣∣∣ϕq

(∫ +∞

t
λψ(s)f

(
s, u(s), u′(s)

)
ds

)
– ϕq

(∫ +∞

t
μψ(s)f

(
s, v(s), v′(s)

)
ds

)∣∣∣∣
=

∣∣∣∣ϕq(λ)ϕq

(∫ +∞

t
ψ(s)f

(
s, u(s), u′(s)

)
ds

)
– ϕq(μ)ϕq

(∫ +∞

t
ψ(s)f

(
s, v(s), v′(s)

)
ds

)∣∣∣∣
≤ [

 + ϕq
(‖ψ‖Mr

)]
ε, t ∈ [, +∞).

This, together with

|R(u,λ)(t) – R(v,μ)(t)|
 + t

=
| ∫ t

 ϕq(
∫ +∞

s λψ(r)f (r, u(r), u′(r)) dr) ds –
∫ t

 ϕq(
∫ +∞

s μψ(r)f (r, v(r), v′(r)) dr) ds|
 + t

≤
∫ t

 |ϕq(
∫ +∞

s λψ(r)f (r, u(r), u′(r)) dr) – ϕq(
∫ +∞

s μψ(r)f (r, v(r), v′(r)) dr)|ds
 + t

=
∫ t

 |R(u,λ)′(s) – R(v,μ)′(s)|ds
 + t

≤ ∥∥R(u,λ)′ – R(v,μ)′
∥∥∞,

means that R : � × [, ] → X ∩ dom M is continuous.
We will prove that R : � × [, ] → X ∩ dom M is compact.
It is easy to get that {R(u,λ)(t)

+t : u ∈ �,λ ∈ [, ]} and {R(u,λ)′(t) : u ∈ �,λ ∈ [, ]} are
bounded.

For any T > , t, t ∈ [, T], t > t, u ∈ �, λ ∈ [, ], we have

∣∣∣∣R(u,λ)(t)
 + t

–
R(u,λ)(t)

 + t

∣∣∣∣
=

∣∣∣∣ 
 + t

∫ t


ϕq

(∫ +∞

s
λψ(r)f

(
r, u(r), u′(r)

)
dr

)
ds

–


 + t

∫ t


ϕq

(∫ +∞

s
λψ(r)f

(
r, u(r), u′(r)

)
dr

)
ds

∣∣∣∣
≤

∣∣∣∣ 
 + t

–


 + t

∣∣∣∣ϕq
(
Mr‖ψ‖

)
T + ϕq

(
Mr‖ψ‖

)|t – t|.
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Since t and 
+t are uniformly continuous on [, T], we get that {R(u,λ)(t)

+t , u ∈ �,λ ∈ [, ]} is
equicontinuous on [, T].

∣∣R(u,λ)′(t) – R(u,λ)′(t)
∣∣

=
∣∣∣∣ϕq

(∫ +∞

t

λψ(r)f
(
r, u(r), u′(r)

)
dr

)
– ϕq

(∫ +∞

t

λψ(r)f
(
r, u(r), u′(r)

)
dr

)∣∣∣∣.
Take G(t) =

∫ +∞
t λψ(r)f (r, u(r), u′(r)) dr. We have

∣∣G(t)
∣∣ ≤ Mr‖ψ‖,

∣∣G(t) – G(t)
∣∣ ≤ Mr

∫ t

t

ψ(r) dr.

It follows from the absolute continuity of integral and the uniform continuity of ϕq(t) in
[–Mr‖ψ‖, Mr‖ψ‖] that {R(u,λ)′(t), u ∈ �,λ ∈ [, ]} is equicontinuous on [, T].

For u ∈ �, since

∫ +∞

s
λψ(r)

∣∣f (r, u(r), u′(r)
)∣∣dr ≤ Mr

∫ +∞

s
ψ(r) dr

and

lim
s→+∞

∫ +∞

s
ψ(r) dr = ,

for any ε > , there exists a constant T >  such that

ϕq

(∫ +∞

s
λψ(r)

∣∣f (r, u(r), u′(r)
)∣∣)dr <

ε


, s > T, u ∈ �,λ ∈ [, ].

Obviously, there exists a constant T > T such that, for any t > T ,


 + t

ϕq
(
Mr‖ψ‖

)
T <

ε


.

Thus, for any t, t > T , we have

∣∣∣∣R(u,λ)(t)
 + t

–
R(u,λ)(t)

 + t

∣∣∣∣
=

∣∣∣∣ 
 + t

∫ t


ϕq

(∫ +∞

s
λψ(r)f

(
r, u(r), u′(r)

)
dr

)
ds

–


 + t

∫ t


ϕq

(∫ +∞

s
λψ(r)f

(
r, u(r), u′(r)

)
dr

)
ds

∣∣∣∣
≤ 

 + t

∫ T


ϕq

(∫ +∞

s
λψ(r)

∣∣f (r, u(r), u′(r)
)∣∣dr

)
ds

+


 + t

∫ t

T

ϕq

(∫ +∞

s
λψ(r)

∣∣f (r, u(r), u′(r)
)∣∣dr

)
ds

+


 + t

∫ T


ϕq

(∫ +∞

s
λψ(r)

∣∣f (r, u(r), u′(r)
)∣∣dr

)
ds
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+


 + t

∫ t

T

ϕq

(∫ +∞

s
λψ(r)

∣∣f (r, u(r), u′(r)
)∣∣dr

)
ds

≤ 
 + t

ϕq
(
Mr‖ψ‖

)
T +

t – T

 + t

ε


+


 + t

ϕq
(
Mr‖ψ‖

)
T +

t – T

 + t

ε


< ε

and

∣∣R(u,λ)′(t) – R(u,λ)′(t)
∣∣

=
∣∣∣∣ϕq

(∫ +∞

t

λψ(r)f
(
r, u(r), u′(r)

)
dr

)
– ϕq

(∫ +∞

t

λψ(r)f
(
r, u(r), u′(r)

)
dr

)∣∣∣∣
≤ ϕq

(∫ +∞

t

λψ(r)
∣∣f (r, u(r), u′(r)

)∣∣dr
)

+ ϕq

(∫ +∞

t

λψ(r)
∣∣f (r, u(r), u′(r)

)∣∣dr
)

< ε.

By Lemma ., we get that {R(u,λ)|u ∈ �,λ ∈ [, ]} is relatively compact. The proof is
completed. �

Lemma . Assume that � ⊂ X is an open bounded set. Then Nλ is M-quasi-compact
in �.

Proof It is clear that Im P = Ker M, Ker Q = Im M and QNλx = θ , λ ∈ (, ) ⇔ QNx = θ , i.e.,
Definition .(a) and (b) are satisfied.

For u ∈ �λ = {ω ∈ � ∩ dom M : Mω = Nλω}, by (H) and (H), we get

R(u,λ) = –
∫ t


ϕq

(∫ +∞

s
λψ(r)f

(
r, u(r), u′(r)

)
dr

)
ds

= –
∫ t


ϕq

(∫ +∞

s

(
ϕp

(
u′))′(r) dr

)
ds

= u(t) – u() = (I – P)u.

Clearly, R(·, ) = . Thus, Definition .(c) is satisfied. For u ∈ �, we have

M
[
Pu + R(u,λ)

]
(t) =

[
λψ(t)f

(
t, u(t), u′(t)

)
, T

(
λf

(
t, u(t), u′(t)

))]
= (I – Q)Nλu(t).

So, Definition .(d) is satisfied.
Considering (H),

∥∥Nλ(u) – Nλ(v)
∥∥

Z ≤ sup
t∈[,∞)

∣∣f (t, u(t), u′(t)
)

– f
(
t, v(t), v′(t)

)∣∣, u, v ∈ �,

and

∥∥Nλ(u)
∥∥

Z ≤ sup
t∈[,∞)

∣∣f (t, u(t), u′(t)
)∣∣, u ∈ �,

we can obtain that Nλ is continuous and bounded in �.
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It follows from the continuity and boundedness of T that Q is continuous and bounded
in Z. By a simple calculation, we can obtain that Q(I – Q)(ψy, c) = (, ), (ψy, c) ∈ Z.

These, together with Lemma ., mean that Nλ is M-quasi-compact in �. The proof is
completed. �

Theorem . Suppose that (H), (H) and the following conditions hold:

(H) There exist constants c >  and l >  such that

∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)f

(
r, u(r), u′(r)

)
dr

)
ds dt = ,

∣∣u(t)
∣∣ > c, t ∈ [, l], u ∈ X.

(H) There exist nonnegative functions a(t), b(t), c(t) with ( + t)p–a(t)ψ(t), b(t)ψ(t),
c(t)ψ(t) ∈ L[, +∞) such that

∣∣f (t, x, y)
∣∣ ≤ a(t)

∣∣ϕp(x)
∣∣ + b(t)

∣∣ϕp(y)
∣∣ + c(t), a.e. t ∈ [, +∞),

where ‖( + t)p–a(t)ψ(t)‖lp–
 + ‖b(t)ψ(t)‖ < , if  < p ≤ ; p–‖( + t)p–a(t) ×

ψ(t)‖lp–
 + ‖b(t)ψ(t)‖ < , if p ≥ , where l = max{, l}.

(H) There exists a constant d >  such that if |d| > d, then one of the following inequalities
holds:

() df (t, d, ) > , t ∈ [, l);
() df (t, d, ) < , t ∈ [, l).

Then the boundary value problem (.) has at least one solution.

In order to prove Theorem ., we show two lemmas.

Lemma . Assume (H)-(H) hold. Then the set

� =
{

u ∈ dom M|Mu = Nλu,λ ∈ (, )
}

is bounded in X.

Proof For u ∈ �, we have QNλu = , i.e., T(f (t, u(t), u′(t))) = . By (H), there exists a
constant t ∈ [, l] such that |u(t)| ≤ c. Since u(t) = u(t) +

∫ t
t

u′(s) ds, then

|u(t)|
 + t

≤ c + |t – t|‖u′‖∞
 + t

≤ c + max{, l}∥∥u′∥∥∞ = c + l
∥∥u′∥∥∞, t ∈ [, +∞).

Thus
∥∥∥∥ u

 + t

∥∥∥∥∞
≤ c + l

∥∥u′∥∥∞. (.)

It follows from Mu = Nλu, (H) and (.) that

∣∣ϕp
(
u′(t)

)∣∣
≤

∫ +∞


ψ(t)

[
a(t)

∣∣ϕp
(
u(t)

)∣∣ + b(t)
∣∣ϕp

(
u′(t)

)∣∣ + c(t)
]

dt
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≤ ∥∥ψ(t)a(t)( + t)p–∥∥
ϕp

(∥∥∥∥ u
 + t

∥∥∥∥∞

)
+ ‖ψb‖ϕp

(∥∥u′∥∥∞
)

+ ‖ψc‖

≤ ∥∥ψ(t)a(t)( + t)p–∥∥
ϕp

(
c + l

∥∥u′∥∥∞
)

+ ‖ψb‖ϕp
(∥∥u′∥∥∞

)
+ ‖ψc‖.

Whenever  < p ≤ , by Lemma ., we get

∥∥u′∥∥∞ ≤ ϕq

( ‖ψc‖ + ‖ψ(t)a(t)( + t)p–‖ϕp(c)
 – ‖ψ(t)a(t)( + t)p–‖lp–

 – ‖ψb‖

)
.

Whenever p > , by Lemma ., we get

∥∥u′∥∥∞ ≤ ϕq

( ‖ψc‖ + p–‖ψ(t)a(t)( + t)p–‖ϕp(c)
 – p–‖ψ(t)a(t)( + t)p–‖lp–

 – ‖ψb‖

)
.

These, together with (.), mean that � is bounded in X. �

Lemma . Assume (H)-(H) and (H) hold. Then

� = {u ∈ Ker M|QNu = }

is bounded in X, where N = N.

Proof For u ∈ �, we have u = a, a ∈R and Q(Nu) = , i.e.,

∫ +∞


h(t)

∫ t


ϕq

(∫ +∞

s
ψ(r)f (r, a, ) dr

)
ds dt = .

By (H), we get that |a| ≤ d. So, � is bounded. The proof is completed. �

Proof of Theorem . Let � = {u ∈ X|‖u‖ < r}, where r > d is large enough such that
� ⊃ � ∪ �.

By Lemmas . and ., we know Mu = Nλu, u ∈ dom M ∩∂� and QNu = , u ∈ Ker M ∩
∂�.

Let H(u, δ) = ρδu + ( – δ)JQNu, δ ∈ [, ], u ∈ Ker M ∩ �, where J : Im Q → Ker M is a
homeomorphism with J(, a) = a,

ρ =

{
– if (H)() holds,
 if (H)() holds.

Define a function

sgn(x) =

{
 if x ≥ ,
– if x < .

For u ∈ Ker M ∩ ∂�, we have u = a = . Thus

H(u, δ) = ρδa + ( – δ)(–T
(
f (t, a, )

)
.
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If δ = , H(u, ) = ρa = . If δ = , by QNu = , we get H(u, ) = JQN(a) = . For  < δ < ,
we now prove that H(u, δ) = . Otherwise, if H(u, δ) = , then

T
(
f (t, a, )

)
=

ρδ

 – δ
a. (.)

Since ‖u‖X = |a| = r > d, for t ∈ [, l), by (H) and Lemma ., we have

sgn
(
af (t, a, )

)
= sgn

(
T

(
af (t, a, )

))
= sgn

[
a
(
T

(
f (t, a, )

))]
= sgn

(
ρδ

 – δ
a

)
= sgn(ρ),

a contradiction with the definition of ρ . So, H(u, δ) = , u ∈ Ker M ∩ ∂�, δ ∈ [, ].
By the homotopy of degree, we get that

deg
(

JQN ,� ∩ Ker M, 
)

= deg
(

H(·, ),� ∩ Ker M, 
)

= deg
(

H(·, ),� ∩ Ker M, 
)

= deg
(
ρI,� ∩ Ker M, 

)
= deg

(
±I,� ∩ Ker M, 

)
= ± = .

By Theorem ., we can get that Mu = Nu has at least one solution in �. The proof is
completed. �

4 Example
Example . Let us consider the following boundary value problem at resonance:

{
(ϕp(u′))′(t) = ψ(t)f (t, u(t), u′(t)), t ∈ [, +∞),
u′(+∞) = , u() =

∫ +∞
 h(t)u(t) dt,

(.)

where p = 
 , h(t) = e–t ,

f (t, u, v) =

{
, t > l,
(l – t)(u 

 + sin

 v), t ≤ l, u, v ∈R,

ψ(t) = 
 ( + t)– 

 ( + l)– 
 e–t , l = max{, l}. Take a(t) = b(t) = (l – t), c(t) = , d = c = .

By a simple calculation, we can obtain ‖( + t)p–a(t)ψ(t)‖lp–
 + ‖b(t)ψ(t)‖ < . It is easy

to get that conditions (H)-(H) are satisfied. It follows from Theorem . that problem
(.) has at least one solution.
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