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1 Introduction
In this paper, we are concerned with the following evolutionary p-Laplacian under dy-
namic boundary condition:

∂u
∂t

= div
(|∇u|p–∇u

)
–

→
g (u) · ∇u + f (u), x ∈ �, t > , (.)

σut + |∇u|p–∇u · ν = , x ∈ ∂�, t > , (.)

u(x, ) = u(x), x ∈ �, (.)

where p > ,
→
g : R →R

N , f : R →R, � ⊂R
N is a bounded domain with smooth boundary

∂�, and ν : ∂� →R
N is the outer unit normal vector.

The quasilinear parabolic problems with dynamic boundary conditions of type (.)-
(.) arise in numerous areas such as heat conduction, chemical reactor theory, colloid
chemistry and population growth, see [, ] and the references therein. Many reaction-
diffusion equations under dynamic boundary conditions have been considered in the past
years. An early study of problem (.)-(.) with p =  and

→
g = � was carried out by Below

and Mailly [] who showed a complete result about the blow-up phenomena as well as the
lower and upper bounds for the blow-up time. Moreover, some of the techniques were also
applied to the porous medium equation with reaction. Later on, for the evolutionary p-
Laplacian with p ≥ N/(N + ), where N is the dimension of the domain, Gal and Warma
[] considered the following equation without convection:

∂u
∂t

– div
(|∇u|p–∇u

)
+ f (u) = g(x), x ∈ �, t > ,
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coupled with dynamic boundary conditions. The well-posedness and the existence of a
global attractor results were established. More recently, Mailly and Rault [] studied the
nonlinear convection problem (.)-(.) with p =  and proved the global existence and
blow-up phenomena of local solutions. For other results about the solvability of quasilin-
ear parabolic equations with dynamic boundary conditions, we refer the readers to [–],
etc.

Throughout this paper, we suppose that the dissipativity condition holds

σ > , σ ∈ C(∂� × [, +∞)
)
, (.)

and the functions in problem (.)-(.) are smooth

f ∈ C(R), f (s) ≥  for s ≥ ,
→
g ∈ C(

R,RN)
, (.)

the initial data is non-negative and satisfies

u ≥ , u ∈ L∞(�) ∩ W ,p(�). (.)

In Section  we develop the comparison principle for a regularized problem and the
local existence of weak and strong solutions of problem (.)-(.). In Section  we de-
rive the global existence of the strong solutions, while in Section  we prove the blow-up
phenomenon of strong solutions by formulating a family of radially symmetric lower so-
lutions.

2 Comparison principle and local existence
In this section, we use the regularization method and compactness theorems to prove the
local existence of the solutions to problem (.)-(.).

Consider the following regularized problem:

∂u
∂t

= div

((

n

+ |∇u|
) p–

 ∇u
)

–
→
g (u+) · ∇u + fM(u), x ∈ �, t > , (.)

σut +
(


n

+ |∇u|
) p–

 ∇u · ν = , x ∈ ∂�, t > , (.)

u(x, ) = u,n(x), x ∈ �, (.)

where fM(s) = min{f+(s), M}, s+ = max{s, }, M > , n ∈ Z
+, u,n ∈ C∞(�) satisfies

inf
�

u ≤ u,n ≤ sup
�

u, ‖u,n‖W ,p ≤ ‖u‖W ,p , lim
n→∞‖u,n – u‖W ,p = .

Since f ,
→
g ∈ C, we can verify that fM ,

→
g (s+) are locally Lipschitz continuous.

Hereafter, we suppose that the regularized problem (.)-(.) has a classical solution
un,M ∈ C,(� × [, Tn,M)) with the maximal existence time  < Tn,M ≤ +∞. Let QT = � ×
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(, T) for T >  and define

Fn,M[u] = Fn,M(u,∇u) = div

((

n

+ |∇u|
) p–

 ∇u
)

–
→
g (u+) · ∇u + fM(u),

Bn[u] = σut +
(


n

+ |∇u|
) p–

 ∇u · ν.

Notice that, in the dynamic boundary condition, Bn[u] is nonlinear with respect to ∇u.
First, we need the following comparison principles which are simple variations of the com-
parison principles in [].

Lemma . Let u, v ∈ C,(QT ) ∩ C(QT ) satisfying

ut – Fn,M[u] > vt – Fn,M[v], (x, t) ∈ QT ,

Bn[u] > Bn[v], (x, t) ∈ ∂� × (, T),

u(x, ) > v(x, ), x ∈ �.

Then

u(x, t) > v(x, t), (x, t) ∈ QT .

Proof Suppose that there exists (x, t) ∈ QT such that u(x, t) ≤ v(x, t). Let

t∗ = sup
{
τ ∈ (, T); u(x, t) > v(x, t),∀(x, t) ∈ Qτ

}
.

Then t∗ ∈ (, t] ⊂ (, T) and minQt∗ {u – v} = . Thus, u – v attains its minimum  at some
point (x∗, t∗) with x∗ ∈ �. If x∗ ∈ �, then

u = v, ut ≤ vt , ∇u = ∇v, Du ≥ Dv at
(
x∗, t∗),

which contradicts ut – Fn,M[u] > vt – Fn,M[v]. If x∗ ∈ ∂�, then

ut ≤ vt ,
∂u
∂ν

≤ ∂v
∂ν

,
∂u
∂μi

=
∂v
∂μi

at
(
x∗, t∗),

where ∂
∂μi

, i = , , . . . , N –, are the tangential derivatives in the local coordinates at (x∗, t∗).
We can verify that

(

n

+ |∇u|
) p–

 ∇u · ν =

(

n

+
N–∑

i=

∣∣∣
∣
∂u
∂μi

∣∣∣
∣



+
∣∣∣
∣
∂u
∂ν

∣∣∣
∣


) p–


∂u
∂ν

,

which is increasing with respect to ∂u
∂ν

since p > . Therefore, Bn[u] ≤ Bn[v]. We arrive at
another contradiction. �

Using Lemma ., we can prove the following comparison principle, which is similar to
Theorem . in [], but without the global one-side Lipschitz condition.
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Lemma . Let u, v ∈ C,(QT ) ∩ C(QT ) satisfying

ut – Fn,M[u] ≥ vt – Fn,M[v], (x, t) ∈ QT ,

Bn[u] ≥ Bn[v], (x, t) ∈ ∂� × (, T),

u(x, ) ≥ v(x, ), x ∈ �.

Then

u(x, t) ≥ v(x, t), (x, t) ∈ QT .

Proof For any given T > , ε > , since u, v ∈ C(�×[, T]), by the continuities and u(x, ) ≥
v(x, ), there exists δ = δε >  such that

u(x, t) > v(x, t) – ε, x ∈ �, t ∈ (, δ].

Notice that v ∈ C,(�× [δ, T – ε]), v+(x, t) ∈ [, maxQT
v], and

→
g ∈ C([, maxQT

v]). There
exists a constant K >  such that

∣∣→g
(
(v – s)+

) · ∇v –
→
g (v+) · ∇v

∣∣ ≤ sup
�×[δ,T–ε]

|∇v| · ∣∣→g (
(v – s)+

)
–

→
g (v+)

∣∣ ≤ K


s,

∣∣fM(v – s) – fM(v)
∣∣ ≤ K


s, s ≥ .

Define ϕ = v – εe(K+)(t–δ). Thus,

ϕt – Fn,M[ϕ] ≤ vt – (K + )εe(K+)(t–δ) – Fn,M[v] + Kεe(K+)(t–δ)

< vt – Fn,M[v] ≤ ut – Fn,M[u], (x, t) ∈ � × [δ, T – ε],

Bn[ϕ] = Bn[v] – (K + )σεe(K+)(t–δ) < Bn[v] ≤ Bn[u], (x, t) ∈ ∂� × (δ, T – ε),

ϕ(x, δ) = v(x, δ) – ε < u(x, δ), x ∈ �.

Lemma . implies u(x, t) ≥ ϕ(x, t) for (x, t) ∈ � × [δε , T – ε]. Therefore, u(x, t) ≥
min{v(x, t) – ε, v(x, t) – εe(K+)(t–δε )} for (x, t) ∈ � × (, T – ε]. By the arbitrariness of ε > ,
we deduce u(x, t) ≥ v(x, t) for (x, t) ∈ � × (, T). �

Lemma . There exists at most one classical solution of problem (.)-(.).

Proof Lemma . yields the uniqueness of classical solutions of problem (.)-(.). �

Lemma . The solution un,M of problem (.)-(.) satisfies

inf
�

u ≤ un,M(x, t) ≤ sup
�

u + Mt, (x, t) ∈ � × (, Tn,M). (.)

Thus, the maximal existence time Tn,M = +∞.
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Proof For any given T ∈ (, Tn,M) and ε > , define uε = inf� u – ε – εt, uε = sup� u + ε +
(M + ε)t. Then

∂un,M

∂t
– Fn,M[un,M] =  > –ε ≥ ∂uε

∂t
– Fn,M[uε],

Bn[un,M] =  > –σε = Bn[uε],

un,M(x, ) = u,n(x) > u(x) – ε ≥ uε .

Lemma . implies un,M ≥ uε . Since ε >  is arbitrary, we have un,M ≥ inf� u. The proof
of un,M ≤ sup� u + Mt follows similarly. �

Lemma . For M ≥ M > , there holds

un,M ≥ un,M , x ∈ �, t > .

Proof For any given T > , we see that un,M , un,M ∈ C,(QT ) ∩ C(QT ) and fM (s) ≥ fM (s)
for s ∈R. Thus,

∂un,M

∂t
– Fn,M [un,M ] ≥ ∂un,M

∂t
– Fn,M [un,M ] =  =

∂un,M

∂t
– Fn,M [un,M ].

Using Lemma ., we complete this proof. �

Lemma . There exist constants δ, M >  independent of n, M such that

sup
n,M

un,M(x, t) ≤ sup
�

u + Mδ, x ∈ �, t ∈ (, δ].

Proof Let u = inf� u and u = sup� u. Set M =  maxs∈{u,u} f (s) +  and define

h(t) = max
u≤s≤u+Mt

∣
∣f (s)

∣
∣.

Since f ∈ C([u, u + M]), we see that h is Lipschitz continuous on [, ] and h() =
maxs∈{u,u} f (s) < M. Thus, there exists a constant  < δ <  such that h(t) < M for all
t ∈ [, δ]. By Lemma ., un,M ∈ [u, u + Mt]. Therefore,

f
(
un,M (x, t)

) ≤ h(t) < M, x ∈ �, t ∈ [, δ], (.)

and

fM

(
un,M (x, t)

)
= min

{
f
(
un,M (x, t)

)
, M

}
= f

(
un,M (x, t)

)
, (x, t) ∈ � × (, δ].

If M′ ≤ M, Lemma . implies

un,M′ ≤ un,M ≤ sup
�

u + Mδ, (x, t) ∈ � × (, δ].

If M′ > M, since un,M′ ∈ C(Qδ ) and un,M′ (x, ) = u,n(x) ∈ [u, u], we have

f
(
un,M′ (x, )

) ≤ h() < M, x ∈ �,
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and there exists a constant δM′ >  such that

f
(
un,M′ (x, t)

)
< M, (x, t) ∈ � × (, δM′ ]. (.)

Thus,

fM

(
un,M′ (x, t)

)
= f

(
un,M′ (x, t)

)
= fM′

(
un,M′ (x, t)

)
, (x, t) ∈ � × (, δM′ ].

We see that un,M , un,M′ are two classical solutions of problem (.)-(.) with M = M on
� × (, δM′ ]. According to the uniqueness, Lemma ., we have

un,M (x, t) = un,M′ (x, t), (x, t) ∈ � × (, δM′ ].

By the continuity of un,M′ (x, t) and inequality (.), we can take δM′ = δ in inequality (.).
Then we have

un,M′ (x, t) = un,M (x, t) ≤ sup
�

u + Mδ, (x, t) ∈ � × (, δ].

We arrive at a locally uniform bound of un,M . �

Remark Lemma . shows that un,M ≤ sup� u + Mt. However, the family {sup� u +
Mt}M> is not uniformly bounded on any interval (, δ], δ > . Lemma . provides the
locally uniform bound of un,M .

Next, we derive some estimates on the solution un,M .

Lemma . Suppose that σ does not depend on time. For any given T > , M > , there
exists a constant C = C(M, T) independent of n such that

∫

�

u
n,M(x, t) dx,

∫

∂�

σu
n,M(x, t) dS,

∫

QT

|∇un,M|p dx dt ≤ C, t ∈ (, T).

Moreover, if T = δ (the constant in Lemma .), then the constant C = C(δ) is independent
of n, M.

Proof We write u = un,M in this proof for the sake of convenience. Since u ∈ C,(QT ) ∩
C(QT ), multiplying equation (.) by u and integrating by parts over Qτ , τ ∈ (, T], we
have

∫

Qτ

uut dx dt +
∫

Qτ

(

n

+ |∇u|
) p–

 |∇u| dx dt

–
∫ τ



∫

∂�

u
(


n

+ |∇u|
) p–

 ∇u · ν dS dt

= –
∫

Qτ

(→
g (u+) · ∇u

)
u dx dt +

∫

Qτ

fM(u)u dx dt.
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Using the dynamic boundary condition (.), we conclude

∫

Qτ

uut dx dt +
∫

Qτ

(

n

+ |∇u|
) p–

 |∇u| dx dt +
∫ τ



∫

∂�

σuut dS dt

= –
∫

Qτ

(→
g (u+) · ∇u

)
u dx dt +

∫

Qτ

fM(u)u dx dt.

That is,




∫

�

u(x, τ ) dx +
∫

Qτ

(

n

+ |∇u|
) p–

 |∇u| dx dt +



∫

∂�

σu(x, τ ) dS

=



∫

�

u
,n(x) dx +




∫

∂�

σu
,n(x) dS –

∫

Qτ

(→
g (u+) · ∇u

)
u dx dt +

∫

Qτ

fM(u)u dx dt.

Notice that u,n ≤ sup� u,

∣
∣∣∣

∫

Qτ

(→
g (u+) · ∇u

)
u dx dt

∣
∣∣∣ ≤ 



∫

Qτ

|∇u|p dx dt + C
∫

Qτ

(∣∣→g (u+)
∣∣u

) p
p– dx dt,

and

|∇u|p ≤
(


n

+ |∇u|
) p–

 |∇u|, p ≥ ,

|∇u|p ≤ 
–p



(

n

+ |∇u|
) p–

 |∇u| +
(


n

) p


≤ 
(


n

+ |∇u|
) p–

 |∇u| + ,  < p < .

Lemma . implies |u| ≤ sup� u + MT for (x, t) ∈ QT . Therefore,

∫

�

u(x, t) dx,
∫

∂�

σu(x, t) dS,
∫

QT

|∇u|p dx dt ≤ C(M, T).

If T = δ, Lemma . shows |u| ≤ sup� u + Mδ for (x, t) ∈ Qδ , which is a uniform bound
independent of n, M. �

Lemma . Suppose that σ does not depend on time and p ≥ . For any given T > , M > ,
there exists a constant C = C(M, T) independent of n such that

∫

�

|∇un,M|p dx,
∫

QT

∣
∣∣
∣
∂un,M

∂t

∣
∣∣
∣



dx dt,
∫ T



∫

�

σ

∣
∣∣
∣
∂un,M

∂t

∣
∣∣
∣



dS dt ≤ C.

Moreover, if T = δ (the constant in Lemma .), then the constant C = C(δ) is independent
of n, M.

Proof We write u = un,M in this proof for the sake of convenience. Since fM , g(s+) are Lip-
schitz continuous, the classical regularity results in [] imply that ut ∈ C,(� × (, T)).
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Multiplying equation (.) by ut and integrating over Qτ , we have

∫

Qτ

u
t dx dt +

∫

Qτ

(

n

+ |∇u|
) p–

 ∇u · ∇ut dx dt +
∫ τ



∫

∂�

σu
t dS dt

= –
∫

Qτ

(→
g (u+) · ∇u

)
ut dx dt +

∫

Qτ

fM(u)ut dx dt.

Next, we show that

∫

Qτ

(

n

+ |∇u|
) p–

 ∇u · ∇ut dx dt

=
∫

Qτ




∂

∂t

∫ |∇u(x,t)|



(
s +


n

) p–


ds dx dt

=
∫

Qτ


p

∂

∂t

((

n

+
∣
∣∇u(x, t)

∣
∣

) p


–
(


n

) p

)

dx dt

=

p

∫

�

(

n

+
∣∣∇u(x, τ )

∣∣
) p


dx –


p

∫

�

(

n

+
∣∣∇u,n(x)

∣∣
) p


dx

≥ 
p

∫

�

∣
∣∇u(x, τ )

∣
∣p dx –


p


p


∫

�

|∇u,n|p dx –

p


p
 |�|.

Young’s inequality yields
∣
∣∣
∣–

∫

Qτ

(→
g (u+) · ∇u

)
ut dx dt

∣
∣∣
∣ ≤ 



∫

Qτ

u
t dx dt +

∫

Qτ

∣∣→g (u+)
∣∣|∇u| dx dt

≤ 


∫

Qτ

u
t dx dt + C(M, T)

∫

Qτ

|∇u|p dx dt, p ≥ ,

∣∣
∣∣

∫

Qτ

fM(u)ut dx dt
∣∣
∣∣ ≤ 



∫

Qτ

u
t dx dt +

∫

Qτ

f 
M(u) dx dt.

We conclude the estimate. �

Now, we define the following two types of weak solutions of problem (.)-(.).

Definition . A function u ∈ Lp((, T); W ,p(�)) is called a local weak solution of prob-
lem (.)-(.) if the integral equality

–
∫

�

uϕ dx –
∫

QT

uϕt dx dt +
∫

QT

|∇u|p–∇u · ∇ϕ dx dt –
∫ T



∫

∂�

u(σϕ)t dS dt

= –
∫

QT

(→
g (u) · ∇u

)
ϕ dx dt +

∫

QT

f (u)ϕ dx dt (.)

holds for any ϕ ∈ C∞(QT ) that satisfies ϕ(x, T) =  for x ∈ �, ϕ(x, ) =  for x ∈ ∂�.

Definition . A function u ∈ Lp((, T); W ,p(�)) is called a local strong solution of prob-
lem (.)-(.) if ut ∈ L(QT ), u is the a.e. limit function of a subsequence {unk ,Mk } of clas-
sical solutions to the regularized problem (.)-(.), and the integral equality (.) holds
for any ϕ ∈ C∞(QT ) that satisfies ϕ(x, T) =  for x ∈ �, ϕ(x, ) =  for x ∈ ∂�.
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Theorem . Suppose that σ does not depend on time. Problem (.)-(.) admits at least
one local weak solution.

Proof For any T > , ϕ ∈ C∞(QT ) that satisfies ϕ(x, T) =  for x ∈ �, ϕ(x, ) =  for x ∈ ∂�,
multiplying (.) by ϕ, integrating over QT , we have

∫

QT

∂un,M

∂t
ϕ dx dt +

∫

QT

(

n

+ |∇un,M|
) p–

 ∇un,M · ∇ϕ dx dt

–
∫ T



∫

∂�

(

n

+ |∇un,M|
) p–

 ∇un,M · νϕ dS dt

= –
∫

QT

(→
g
(
(un,M)+

) · ∇un,M
)
ϕ dx dt +

∫

QT

fM(un,M)ϕ dx dt.

By the dynamic boundary condition (.), we obtain

–
∫ T



∫

∂�

(

n

+ |∇un,M|
) p–

 ∇un,M · νϕ dS dt

=
∫ T



∫

∂�

σ
∂un,M

∂t
ϕ dS dt = –

∫ T



∫

∂�

un,M(σϕ)t dS dt.

Thus,

–
∫

�

u,nϕ dx –
∫

QT

un,Mϕt dx dt +
∫

QT

(

n

+ |∇un,M|
) p–

 ∇un,M · ∇ϕ dx dt

=
∫ T



∫

∂�

un,M(σϕ)t dS dt –
∫

QT

(→
g (un,M) · ∇un,M

)
ϕ dx dt +

∫

QT

fM(un,M)ϕ dx dt.

By the uniform estimates in Lemma . and Lemma ., there exist a subsequence {unk ,Mk }
(nk → ∞, Mk → ∞, as k → ∞) and a function u ∈ Lp((, δ); W ,p(�)) such that unk ,Mk

converges weakly to u in L(Qδ ), ∇unk ,Mk converges weakly to ∇u in Lp(Qδ ), and unk ,Mk

converges weakly to u in Lp(∂� × (, δ)) in the sense of trace. Hence the above inte-
gral equality converges to (.) for T = δ and u is a local weak solution to problem (.)-
(.). �

Theorem . Suppose that σ does not depend on time and p ≥ . Problem (.)-(.) ad-
mits at least one local strong solution.

Proof By the uniform estimates in Lemma ., Lemma ., and Lemma ., the norms
‖un,M‖H(Qδ ), ‖∇un,M‖Lp(Qδ ) are uniformly bounded. There exist a subsequence {unk ,Mk }
(nk → ∞, Mk → ∞, as k → ∞) and a function u ∈ Lp((, δ); W ,p(�)), ut ∈ L(Qδ ) such
that {unk ,Mk } converges weakly to u in H(Qδ ), ∇unk ,Mk converges weakly to ∇u in Lp(Qδ ).
Hence unk ,Mk → u almost everywhere and the integral equality (.) holds. �

Remark For any given M > , by the estimates in Lemma . and Lemma ., using the
diagonal procedure, we can choose a subsequence {unk ,M} ({nk} might depend on M) and
a function uM such that unk ,M converges to uM on QT for any T >  in the manner stated in
the proof of Theorem .. Furthermore, we can verify that uM is the global strong solution
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to the following equation:

∂u
∂t

= div
(|∇u|p–∇u

)
–

→
g (u) · ∇u + fM(u)

coupled with the initial-boundary value conditions (.)-(.). Using the diagonal proce-
dure again, we can choose a subsequence {nk} independent of M and then choose uM

such that unk ,M converges to uM for any M ∈ Z
+ in the same manner. Lemma . implies

unk ,M ≥ unk ,M for M ≥ M. Thus, {uM}M∈Z+ is monotone with respect to M. Define

T∗ = sup
{

T > ; sup
M∈Z+

sup
(x,t)∈�×(,T)

uM(x, t) < ∞
}

,

and

u(x, t) = sup
M∈Z+

uM(x, t), (x, t) ∈ � × (
, T∗).

Lemma . shows T∗ ≥ δ. Similar to the proof of Theorem . and Theorem ., we can
prove that u is a strong solution to problem (.)-(.) with maximal existence time T∗.

3 Global existence
In this section, we study the global existence of local strong solutions to problem (.)-
(.) defined in Section . We need to find an appropriate upper-solution to the regular-
ized problem (.)-(.) which is independent of n, M and exists globally. If p = , the
p-Laplacian is reduced to Laplacian, so we only consider p >  in this section.

Lemma . Let α = p–
p– , p > , K > , η ∈ C([, +∞)). For a fixed integer  ≤ j ≤ N , define

xj = min� xj, xj = max� xj, and

U(x, t) =

α

(
Keη(t) + xj – xj

)α , x ∈ �, t ≥ .

Then U is an upper solution of the regularized problem (.)-(.) provided

Keη() + xj – xj ≥ ,

α

(
Keη() + xj – xj

)α ≥ sup
�

u,

η′(t) ≥ αp, σ (x, t)η′(t) ≥ p, x ∈ ∂�, t ≥ ,

and

gj(s)s


p– ≥ f (s), s ≥ 
α

(
Keη() + xj – xj

)α .

Proof By a simple computation, we have

div

((

n

+ |∇u|
) p–

 ∇u
)

=
(


n

+ |∇u|
) p–


�u + (p – )

(

n

+ |∇u|
) p–

 –
∂u
∂xi

∂u
∂xj

∂u
∂xi ∂xj

.
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Notice that α >  and (α – )(p – ) = α. We show that

|∇U| =
∂U
∂xj

=
(
Keη(t) + xj – xj

)α– ≥ ,

Ut =
(
Keη(t) + xj – xj

)α–Keη(t)η′(t) ≥ (
Keη(t) + xj – xj

)α
η′(t),

∣∣∣
∣

(

n

+ |∇U|
) p–

 ∇U · ν
∣∣∣
∣ ≤ 

p–
 |∇U|p– ≤ p(Keη(t) + xj – xj

)α ,

div

((

n

+ |∇U|
) p–

 ∇U
)

≤ 
p–

 |∇U|p–�U + (p – ) max
{


p–

 –, 
}|∇U|p– ∂U

∂x
j

≤ αp(Keη(t) + xj – xj
)α–.

Thus,

Bn[U] = σUt –
(


n

+ |∇U|
) p–

 ∇U · ν ≥ ,

Ut – Fn,M[U] = Ut – div

((

n

+ |∇U|
) p–

 ∇U
)

+
→
g (U) · ∇U – f (U)

≥ gj(U)(αU)


p– – f (U) ≥ , x ∈ �, t > ,

and

U(x, ) =

α

(
Keη() + xj – xj

)α ≥ sup
�

u ≥ u,n(x), x ∈ �.

Lemma . implies that U(x, t) is an upper solution of problem (.)-(.). �

Now we give some conditions on the functions f , g , and σ , which ensure the global
existence of local solutions.

Theorem . Suppose p > , (infx∈∂� σ (x, ·))– ∈ L
loc([, +∞)), there exist an integer  ≤

j ≤ N and a constant M >  such that

gj(s)s


p– ≥ f (s), s ≥ M.

Then the strong solution of problem (.)-(.) is a global solution.

Proof Take K = max{, (α sup� u) 
α , (αM) 

α } + xj – xj, and define

η(t) = p
∫ t



(
inf

x∈∂�
σ (x, τ )

)–
dτ + αpt,

where α, xj, xj are the constants defined in Lemma .. Thus, U(x, t) = 
α

(Keη(t) + xj – xj)α

is an upper solution to the regularized problem (.)-(.) for any n ∈ Z
+ and M > . That
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is, un,M(x, t) ≤ U(x, t) for x ∈ � and t ≥ . According to the definition of strong solution,
we have u(x, t) ≤ U(x, t). Hence u does not blow up in finite time. �

4 Blow-up
In this section, we investigate the blow-up phenomenon of problem (.)-(.). We need to
construct a family of lower solutions of the regularized problem (.)-(.) whose supre-
mum blows up in finite time.

Lemma . Suppose that p > , � is a convex domain, and there exist constants C, C > 
such that

f (s) ≥ Csp–,
∣
∣→g (s)

∣
∣ ≤ Csp–, s ≥ .

Choose x ∈ � with Br(x) ⊂ �, r > . For A, B >  and ϕM ∈ C([, +∞)), define

vM(x, t) =
(
A – B|x – x|

)
ϕM(t), x ∈ �, t ≥ .

Then the function vM is a lower solution of the regularized problem (.)-(.) pro-
vided

A ≥ Bd, BdϕM() ≥ , AϕM() ≤ inf
�

u, C
(
AϕM(t)

)p– ≤ M,

ϕ′
M ≥ , σAϕ′

M ≤ (Br)p–δϕ
p–
M , Aϕ′

M ≤ Kϕ
p–
M ,

where d = sup� |x – x|, δ = inf∂�
x–x
|x–x| · ν >  (by the convexity of �), and

K =



C

(



A
)p–

– p(B)p–dp–(N + p) –
(




C

)–(p–)

Cp–
 (Bd)p–.

Proof Let ρ(x) = |x – x|. A direct calculation shows

∇vM = –BϕM(x – x),
∂vM

∂t
=

(
A – Bρ)ϕ′

M(t),

(

n

+ |∇vM|
) p–

 ∇vM = –
(


n

+ (B)ρϕ
M

) p–


BϕM(x – x),

div

((

n

+ |∇vM|
) p–

 ∇vM

)
= –

(

n

+ (B)ρϕ
M

) p–


NBϕM

– (p – )
(


n

+ (B)ρϕ
M

) p–
 –

(B)ρϕ
MBϕM

= –
(


n

+ (B)ρϕ
M

) p–
 –

BϕM

·
((


n

+ (B)ρϕ
M

)
N + (p – )(B)ρϕ

M

)
.
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Thus, we have

∣∣
∣∣div

((

n

+ |∇vM|
) p–

 ∇vM

)∣∣
∣∣ ≤

(

n

+ (B)ρϕ
M

) p–


(N + p – )BϕM

≤ (
 + (Bd)ϕ

M
) p–

 (N + p – )BϕM

≤ p(B)p–dp–(N + p)ϕp–
M , x ∈ �, t ≤ ,

and

(

n

+ |∇vM|
) p–

 ∇vM · ν = –
(


n

+ (B)ρϕ
M

) p–


BϕMρ
x – x

|x – x| · ν

≤ –
(


n

+ (B)ρϕ
M

) p–


BϕMρδ

≤ –(Br)p–δϕ
p–
M , x ∈ ∂�, t ≥ .

Young’s inequality shows

∣
∣→g (vM) · ∇vM

∣
∣ ≤ Cvp–

M |∇vM| ≤ 


Cvp–
M +

(



C

)–(p–)

Cp–
 |∇vM|p–.

We obtain

fM(vM) = min
{

M, f (vM)
} ≥ Cvp–

M ,

and

fM(vM) –
→
g · ∇vM ≥ 


Cvp–

M –
(




C

)–(p–)

Cp–
 |∇vM|p–

≥ 


C

(



AϕM

)p–

–
(




C

)–(p–)

Cp–
 (BdϕM)p–.

Furthermore,

∂vM

∂t
– Fn,M[vM] ≤ Aϕ′

M – Kϕ
p–
M ≤ , (x, t) ∈ ∂� ×R

+,

Bn[vM] = σ
∂vM

∂t
+

(

n

+ |∇vM|
) p–

 ∂vM

∂ν

≤ σAϕ′
M – (Br)p–δϕ

p–
M ≤ , (x, t) ∈ ∂� ×R

+,

vM(x, ) ≤ AϕM() ≤ inf
�

u ≤ u,n(x), x ∈ �.

Lemma . implies that vM is a lower solution of problem (.)-(.). �

Theorem . Suppose that p > , � is a convex domain, σ ∈ L∞(∂�×R
+), and there exist

constants C, C >  such that

f (s) ≥ Csp–,
∣∣→g (s)

∣∣ ≤ Csp–, s ≥ .
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Then the strong solution of problem (.)-(.) blows up in finite time provided that inf� u

is sufficiently large.

Proof Let x, r, d, δ, K be as defined in Lemma .. Since K = K(A, B) converges to
K(A, ) = 

 C( 
 A)p– >  as B tends to +, we can choose A, B >  such that

CAp– = , Bd ≤ A, K = K(A, B) > .

Then set

ϕM() =


Bd
> , σ = sup

∂�×R+
σ , γ = min

{
K
A

,
(Br)p–δ

σA

}
.

By Lemma ., the function vM = (A – B|x – x|)ϕM(t) is a lower solution provided

inf
�

u ≥ A
Bd

, ϕM(t) ≤ M


p– ,  ≤ ϕ′
M(t) ≤ γ ϕ

p–
M (t).

Define

ϕM(t) = min
{(

ϕ
–p
M () – (p – )γ t

)– 
p–

+ , M


p–
}

, t ≥ .

Although ϕM(t) is not C continuous, we can change the partial derivative ∂
∂t to the left-

ward partial derivative ∂
∂t– in the proof of Lemma ., Lemma ., and Lemma ., then

we conclude that vM is a lower solution of problem (.)-(.). Hence un,M(x, t) ≥ vM(x, t)
for (x, t) ∈ � ×R

+. By the definition of strong solution, we have

u(x, t) ≥ sup
M∈Z+

vM(x, t), x ∈ �, t ∈ (, T),

where T = (Bd)p–

(p–)γ . Since vM blows up at finite time T, the strong solution u must blow
up at time T∗ ≤ T. �
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