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Abstract
In this paper, we construct nonconstant lower and upper solutions for the periodic
boundary value problem x′ + f (t, x) = e(t), x(0) = x(T ) and find their estimates. We
prove the existence of positive solutions for the singular problem x′ + g(x) = e(t),
x(0) = x(T ) by using these results.
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1 Introduction
The method of lower and upper solutions is an elementary but powerful tool in the exis-
tence theory of solutions to initial value problems and for periodic boundary value prob-
lems, even in cases where no special structure is assumed on the nonlinearity. Starting with
the pioneering work of Moretto [] for locally Lipschitzian ordinary differential equations,
the method of upper and lower solutions for the periodic boundary value problem

x′ + f (t, x) = , x() = x(T) (.)

has been extended to the case of a continuous right-hand side f : [, T] ×R→R (see, e.g.,
[–]).

In Franco et al. [], the method of lower and upper solutions was applied to the periodic
problem

x′ = f (t, x), x() = x(T),

and they also obtained a similar result to Lemma . below.
In order to apply these results, finding upper and lower solutions is very important. But

the problem of construction of lower and upper solutions has been solved very rarely (see,
e.g., [, ]). In this paper we fill this gap and present conditions ensuring the existence of
nonconstant lower and upper solutions to the first-order periodic boundary value problem
(.) and find their estimates. This enables us to prove the existence result for the periodic
problem with strong singularity.
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In order to explain the main results of the paper, let us introduce some notation: C[, T]
stands for the set of functions continuous on [, T]. For x ∈ C[, T], we denote

x̄ =

T

∫ T


x(s) ds, ‖x‖ =

∫ T



∣∣x(s)
∣∣ds.

If x ∈ C[, T], then we write x+(t) = max{x(t), } and x–(t) = max{–x(t), }. For e ∈
C[, T], we put

E =
∫ T


e(t) dt, E± =

∫ T


e±(t) dt,

and note that E = E+ – E–.
Let us recall first some classical definitions and results. They are taken from [].

Definition . A lower solution α (respectively, an upper solution β) of problem (.) is a
function α ∈ C[, T] such that

α′ + f (t,α) ≥ , t ∈ [, T], α() ≥ α(T),

(respectively, β ∈ C[, T] and

β ′(t) + f (t,β) ≤ , t ∈ [, T], β() ≤ β(T)).

The basic existence theorem of the method of upper and lower solutions for (.) can be
stated as follows.

Lemma . If problem (.) has a lower solution α and upper solution β such that α(t) ≤
β(t) for all t ∈ [, T] (resp. β(t) ≤ α(t) for all t ∈ [, T]), then problem (.) has at least
one solution x such that α(t) ≤ x(t) ≤ β(t) for all t ∈ [, T] (resp. β(t) ≤ x(t) ≤ α(t) for all
t ∈ [, T]).

The paper is organized as follows. In Section  we develop a method to construct lower
and upper solutions for (.). As the application, in Section , we establish an existence
result for a nonlinear first-order periodic problem with strong singularity.

2 Construction of lower and upper solutions
In this section we consider

x′ + f (t, x) = e(t), x() = x(T), (.)

where f : [, T] ×R→R and e : [, T] →R are continuous.
Let us consider an auxiliary boundary value problem

x′ + δ(t) = , x() = x(T) = ζ , (.)

where δ ∈ C[, T] satisfies δ̄ =  and ζ ∈R.
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Clearly, for all ζ ∈R, problem (.) possesses a unique solution xζ as follows:

xζ (t) = ζ –
∫ t


δ(s) ds.

Proposition . Assume that there are B ∈ R, c ∈ C[, T] such that

f (t, x) ≤ c(t) for all t ∈ [, T] and x ∈ [
B, B + ‖η‖

]
, (.)

where η(t) = φ–(t) – φ+(t) �–
�+

and φ = c – e. If

c̄ – ē ≤ , (.)

then there exists an upper solution β of (.) such that

B ≤ β ≤ B + ‖η‖ in [, T]. (.)

Proof Consider the function φ = c – e. We have two cases.
Case . Assume that �+ =

∫ T
 φ+(t) dt = . Taking β = ξ ∈ [B, B + ‖η‖] and using

c – e ≤ , it follows from (.) that β is an upper solution of (.).
Case . Assume that �+ > . Using

∫ T



[
φ+(t)�– – φ–(t)�+

]
dt = ,

it follows that there exists ω such that

ω′(t) + φ+(t)�– – φ–(t)�+ = , ω() = ω(T) = ζ .

Taking x = 
�+

and

β(t) = ζ –
∫ t


x

[
φ+(s)�– – φ–(s)�+

]
ds,

it is easy to see that β() = β(T). Since | –
∫ t

 x[φ+(s)�– – φ–(s)�+] ds| = | ∫ t
 η(s) ds| ≤

‖η‖, choosing ζ = B + ‖η‖, we obtain

B ≤ β(t) ≤ B + ‖η‖,

which means that (.) holds.
Now, using (.), it follows that �+ ≤ �–, implying that

β ′(t) = xω
′(t) = –x

[
φ+(s)�– – φ–(s)�+

] ≤ –φ(t) = e(t) – c(t).

From (.) and (.) we deduce that

β ′(t) + f (t,β) ≤ β ′(t) + c(t) ≤ e(t) for all t ∈ [, T],

and the proof is completed. �
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Using similar arguments, one can prove the following proposition.

Proposition . Assume that there are B ∈R, c ∈ C[, T] such that

f (t, x) ≥ c(t) for all t ∈ [, T] and x ∈ [
B, B + ‖η‖

]
,

where η(t) = φ–(t) – φ+(t) �–
�+

and φ = c – e. If

c̄ – ē ≥ ,

then there exists a lower solution α of (.) such that

B ≤ α ≤ B + ‖η‖ in [, T].

Theorem . and Theorem . are simple examples of existence results which follow
immediately from Lemma ., Propositions . and ..

Theorem . Assume that there are Bi ∈R, ci ∈ C[, T] such that

(–)i+f (t, x) ≤ (–)i+ci(t), (–)i+(c̄i – ē) ≤ 

for all t ∈ [, T], x ∈ [Bi, Bi + ‖ηi‖] and all i ∈ {, },

B + ‖η‖ ≤ B. (.)

Then problem (.) possesses a solution x such that

B ≤ x(t) ≤ B + ‖η‖

(η, η are given by Proposition . and Proposition ., respectively).

Theorem . Assume that there are B, B ∈R, c, c ∈ C[, T] such that the assumptions
of Theorem . are satisfied with

B + ‖η‖ ≤ B

instead of (.). Then problem (.) possesses a solution x such that

B ≤ x(t) ≤ B + ‖η‖.

Now, we consider problem (.), i.e., e ≡ .

Proposition . Assume that there are A ∈R, b ∈ C[, T] such that b̄ =  and

f (t, x) ≥ b(t) for all t ∈ [, T] and x ∈ [
A, A + ‖b‖

]
. (.)

Then there exists a lower solution α of (.) such that

A ≤ α ≤ A + ‖b‖ in [, T]. (.)
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Proof Problem (.) with δ(t) = b(t) on [, T] has a unique solution

xζ (t) = ζ –
∫ t


b(s) ds.

Since –‖b‖ ≤ –
∫ t

 b(s) ds ≤ ‖b‖, choosing ζ = A + ‖b‖, we obtain

A ≤ xζ (t) ≤ A + ‖b‖.

Let us take α(t) = xζ (t), which means that (.) holds. According to (.) this yields

 = α′(t) + b(t) ≤ α′(t) + f (t,α) on [, T].

Furthermore, we have α() = α(T), by Definition ., the function α is a lower solution of
(.). �

The following assertion is due to Proposition . and its proof can be omitted.

Proposition . Assume that there are A ∈R, b ∈ C[, T] such that b̄ =  and

f (t, x) ≤ b(t) for all t ∈ [, T] and x ∈ [
A, A + ‖b‖

]
. (.)

Then there exists an upper solution β of (.) such that

A ≤ β ≤ A + ‖b‖ in [, T].

It is easy to see that the following results can be shown in a similar manner as in Theo-
rem ..

Theorem . Assume that there are Ai ∈R, bi ∈ C[, T] such that b̄i =  and

(–)if (t, x) ≤ (–)ibi(t)

for all t ∈ [, T], x ∈ [Ai, Ai + ‖bi‖] and all i ∈ {, },

A + ‖b‖ ≤ A. (.)

Then problem (.) possesses a solution x such that

A ≤ x(t) ≤ A + ‖b‖.

Theorem . Assume that there are A, A ∈R, b, b ∈ C[, T] such that the assumptions
of Theorem . are satisfied with

A + ‖b‖ ≤ A

instead of (.). Then problem (.) possesses a solution x such that

A ≤ x(t) ≤ A + ‖b‖.
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Problem (.) has been considered by several authors (see, e.g., [, ]). In [], Peng gave
the existence result as follows.

Theorem A Assume that there exists a positive number M such that Mx – f (t, x) ≥  for
t ∈ [, T] and x ≥ . If

(i) f = lim infx→+ mint∈[,T]
f (t,x)

x >  and f ∞ = lim supx→∞ maxt∈[,T]
f (t,x)

x < ; or
(ii) f∞ = lim infx→∞ mint∈[,T]

f (t,x)
x >  and f  = lim supx→∞ maxt∈[,T]

f (t,x)
x < .

Then problem (.) has at least one positive solution.

In this paper, we do not require f to satisfy (i) or (ii). Now we give an example.

Example . Consider the periodic boundary value problem

x′ + arctan(x – ) = , x() = x(). (.)

It is easy to see that

f = lim
x→+

f (x)
x

= –∞ and f∞ = lim
x→∞

f (x)
x

= .

So we can not obtain existence result by Theorem A. But if we choose b(t) = π
 t – π

 ,
compute that b̄ =

∫ 


π
 s – π

 ds = , and (.) holds for A =
√


 +  and

A + ‖b‖ =
√




+  + 
∫ 



∣∣∣∣π s –
π



∣∣∣∣ds =
√




+  +
π


.

By Proposition ., problem (.) has a lower solution. In fact,

α(t) = A + ‖b‖ –
∫ t


b(s) ds = –

π


t +

π


t +

π


+

√



+ 

is a lower solution.
According to Proposition ., we choose b(t) = π

 t – π
 , A =  –

√


 – π
 , compute that

A + ‖b‖ =  –
√


 and (.) hold. Then problem (.) has an upper solution

β(t) = A + ‖b‖ –
∫ t


b(s) ds =  –

√



–

π


–

π


(
t – t

)
.

Obviously, A + ‖b‖ < A. Thus, from Theorem ., problem (.) has a solution x(t)
satisfying

 <  –
√




–
π


≤ β(t) ≤ x(t) ≤ α(t) ≤

√



+  +

π


, ∀t ∈ [, ],

i.e., x is a positive solution of (.).

3 Periodic problem with strong singularity
We will consider the following singular equation with periodic conditions:

x′(t) + g(x) = e(t), x() = x(T), (.)
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where g ∈ C(,∞), e ∈ C[, T] and g has strong singularity at , i.e.,

lim
x→+

∫ 

x
g(ξ ) dξ = ∞. (.)

Theorem . Assume that (.) is fulfilled, there exists Ã ∈ (,∞) such that

g(x) ≤ ē for all x ∈ [Ã, B̃],

where

B̃ – Ã = ‖η‖, and η(t) = φ–(t) – φ+(t)
�–

�+
, φ = ē – e.

Then problem (.) has a positive solution.

Proof If g ∈ C(,∞) satisfies (.), then lim supx→+ g(x) = ∞, which implies the existence
of a sequence {εn}∞n= ⊂ (, ) such that

g(εn) >  for all n ∈N, lim
n→∞ εn = , lim

n→∞ g(εn) = ∞. (.)

Let eM = maxt∈[,T] e(t). By (.), there exists N such that

g(εn) > eM for all n > N .

We choose ε = εN+ such that g(ε) > eM . Let R ≥ B̃ be a constant. For the proof of Theo-
rem ., we deal with the auxiliary family of problems

x′ + g̃(x) = e(t), x() = x(T), (.)

where

g̃(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 if x < ,
g(ε) x

ε
if x ∈ [, ε],

g(x) if x ∈ [ε, R],
g(R) if x ≥ R.

(.)

Then g̃(x) fulfils the assumptions of Proposition . with c = ē. Thus, by Proposition .,
problem (.) has an upper solution β such that

Ã ≤ β ≤ B̃.

Since ε < Ã ≤ B̃ ≤ R, then ε < β ≤ R is a lower solution of (.).
It is easy to see that α = ε is a lower solution of (.). Thus, by Lemma ., problem (.)

has a positive solution x such that  < ε < x ≤ B. �

Example . Consider the periodic boundary value problem with strong singularity

x′ +

x

= e(t), x() = x(T). (.)
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Let g(x) = 
x , e(t) = t. We can prove that g(x) satisfies condition (.). Since ē =

∫ 
 t dt = 

 ,
then φ̂ = ē – e = 

 – t.
We have

η(t) = φ̂–(t) – φ̂+(t)
�̂–

�̂+
= –φ̂ = t –




, ‖η‖ =



.

We can choose A = , then B = A + ‖η‖ = 
 and g satisfies

g(x) =

x

≤ 


∀x ∈
[

,



]
.

By Theorem ., problem (.) has a positive solution.
In fact, α = 

 is a lower solution of (.).

β(t) =



+



t –



t

is an upper solution of (.).
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