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Abstract
In this paper we propose a mathematical model for Reynolds’ equation of a
compressible fluid on a multiconnected field which simulates the function of a hybrid
bearing. The boundary conditions on the inner boundaries are derived from the
flow-rate continuity through the supplying orifices and are expressed by means of an
integro-differential nonlinear equation. We propose a numerical method to solve this
mathematical model.
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1 Introduction
There are many studies dedicated to hybrid bearings. Some of such papers can be found
in the complete book []. The aim of our present paper is to generalize the studies (done,
for instance, in [–]) of hybrid bearings. In the previous papers, the domain in which the
equation of Reynolds was solved is supposed multiconnected field with inside boundaries
represented by continuous lines, so-called ‘supplying lines.’

We consider a multiconnected domain in which the inside frontiers have a rectangu-
lar form, which has permitted, through passing to the limit of the dimensions and of the
number of frontiers, the simulation of a supplying line, so we could compare our results
with those of above mentioned researchers. The physical situation considered in this pa-
per has the feature that the boundary conditions on the inner boundaries are of more
difficult forms. These boundary conditions become nonlinear integral-differential expres-
sions with respect to the solution of the Reynolds equation. With the aim to compare our
results with those reported in the open literature, we consider that the inner boundaries
are disposed in a normal plane to the bearing surfaces, but it is worth to mention that this
is not a mandatory condition for our method. An iterative procedure of linearization, as
proposed in [–], is used in the present study. The resulting algebraic system is solved on
using a ‘column-wise’ technique (see, for instance, Castelli and Pirvies []).

In [] the authors use the Cesaro means for the components of energy and prove the
asymptotic equipartition in mean of the kinetic and strain energies. Some results from
the theory of semigroups of linear operators are used in [] in order to prove the exis-
tence and uniqueness of a weak solution. The paper [] is dedicated to heat conduction
in deformable bodies which depends on two temperatures. The first one is the conductive
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temperature, the second is the thermodynamic temperature, and the difference between
them is proportional to the heat supply.

Also, we must outline the minimum principle in [] and remark that the solution pro-
posed in [] can be used for Maxwell’s fluids and, also, for Newtonian fluids.

2 Basic notions
Consider a circular bearing supplying with a compressible fluid through feed pocket dis-
posed in planes normal on the bearing axis. The geometrical elements which appear in
our mathematical model, are:

- L = the length of the bearing;
- R = the radius of the shaft;
- C = the radial clearance;
- ε = the eccentricity;
- c = the length of a feed pocket;
- d = the width of a feed pocket;
- θ = the polar angle measured from the line of centers bearing surfaces;
- H = the thickness of fluid film, H = C + ε cos θ .
We use a Cartesian system of orthogonal axes such that the Ox and Ox are included in

the bearing shaft surface, with the origin O in the intersection of the normal plane on the
rotation axis, in an end of the bearing, with the plane determined by the axes of bearing
shaft and bearing baking. Also, the Ox-axis is parallel with the rotation axis, the Ox has
the sense of the rotation of bearing shaft. In this system the coordinates of the centers of
the feed pockets are (xm, xm), where m is a generic index. If the number of feed pockets
is n, then m = , n. The domain represented by the surface of the bearing shaft, on which
are projected the feed pockets can by assimilated with a domain of band type, having width
L in the direction of Ox and being periodic in the direction of Ox, with period πR. Based
on the periodicity, we can consider the mathematical model in the domain

D = [, π ] × [, L] \
⋃

m
Dm,

where

Dm =
(

xm –
c


, xm +
c


)
×

(
xm –

d


, xm +
d


)
,

with c the length of a feed pocket and d the width of a feed pocket.

3 The mathematical model
We use the notations:

- P = the pressure in the fluid film;
- H = the gap between the rotating shaft and the bushing;
- � = the density of the fluid;
- μ = the dynamic viscosity of the fluid;
- V = the relative speed of the axis bearing;
- pa = the pressure on the ends of the bearing.

With these notations, the mathematical model becomes []:
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Figure 1 Journal bearing schematic.

Figure 2 Definition of the journal eccentricity.

- the Reynolds equation for the steady state condition of a gas journal bearing:

∂

∂x

(
PH ∂P

∂x

)
+

∂

∂x

(
PH ∂P

∂x

)
= μV

∂

∂x
(PH); ()

- the equation of state, which is supplemented with the assumption that the gas
undergoes an isothermal process:

� =
P
RT

; ()

- the conditions on boundary of the domain D, where () is applied:

P(x, ) = P(x, L) = pa; ()
∮

Cm

�

(
VH


–

H

μ
grad P

)
n dl = qm, (x, x) ∈ Cm, ()

where the integral represents the flow-rate through the surface into the surface
determined by Cm, the boundary of the domain Dm, and the generators of length H .
qm is the flow-rate through the incoming orifice (n is the outside normal of the curve
Cm).

The location of the minimum film thickness is defined by the attitude angle Φ (see Fig-
ures  and ). The film thickness function h = h(x, x) depends on the position of the
center of the shaft according to

h = C + ex cos(Θ) + ey sin(Θ),

where C = Rb – Rj is the radial clearance of the bearing and Θ = θ + Φ .
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In the equations of the mathematical model, we use the following non-dimensional vari-
ables:

θ =
x

R
, h =

H
C

=  + e cos θ , ω =
V
R

, z =
x

R
, p =

P
pa

.

With these variables, () and the conditions () and () become

∂

∂θ

(
ph ∂p

∂θ

)
+

∂

∂z

(
ph ∂p

∂z

)
= Λ

∂

∂θ
(ph), ()

p(θ , ) = p
(

θ ,
L
R

)
= , ()

∮

Cm

(
Λphi – Rhp grad P

)
n dl = qm, ()

where

Λ =
μω

pa

(
R
C

)

is the bearing number,

qm =
πΛs

n

(
ps

pa

)
√

 + δ

h
m + δ hmGm,

δ =
a

dC
,

Λs =
μna

psC

√
RT

 + δ ,

Gm = CDγ 
(


γ + 

)(γ +)/(γ –)

, if
pm

ps
≤

(


γ + 

)γ /(γ –)

,

Gm = CD

{
γ

γ – 

(
pm

ps

) 
γ
[

 –
(

pm

ps

) γ –
γ

]} 


, if
(


γ + 

) γ
γ –

<
pm

ps
≤ ;

()

where θ and z are the coordinates in the circumferential and axial direction, respectively;
c is the radial clearance, h is the thickness of the fluid film on the ridge region;

- ps = the supplying pressure;
- pm = the pressure on the curve Cm;
- hm = the film thickness on the curve Cm;
- a = the radius of the feed orifice;
- γ = the adiabatic constant and its value is about ,;
- CD = a coefficient, depending on the form of the feed orifice, experimentally was

obtained: CD ∈ [., ].
Because of the fact that the coefficients of () depend only on the parameter Λ, which is

constant with regard to θ and z, and with regard to h, which is a periodical function on θ ,
one finds, as a result, the solution of the equation is periodical:

p(θ , z) = p(θ + π , z). ()

It is easy to see that the equations of the mathematical model are nonlinear. The lineariza-
tion of these equations is made, in the usual way, by introducing the function Q = (ph).
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Figure 3 The representation of the curve Cm .

With this new variable, (), (), and () become

∂Q
∂θ +

∂Q
∂z –


h

(
∂h
∂θ

+
Λ

ph

)
∂Q
∂θ

–

h

∂h
∂θ Q = , ()

Q(θ , ) = Q
(

θ ,
L
R

)
= h, ()

Q(θ , z) = Q(θ + π , z). ()

In order to obtain the new form of (), we consider the domain corresponding to a feed
pocket.

Suppose that the pressure is constant on the boundary of the feed pocket,

p(θ , z) = pm, (θ , z) ∈ Cm,

and consider a mean value of h on Cm, that is, h̃m, and a mean value of qm on Cm, that is,
q̃m. Then we have as a result a constant value for Q:

Q(θ , z) = (pmh̃m) = Qm, (θ , z) ∈ Cm.

The outline Cm is a rectangle with the sides AB‖CD‖Ox and BC‖DA‖Ox (see Figure ).
The equations of the sides are:

- AB: z = zm, θ ∈ [θm, θm];
- BC: θ = θm, z ∈ [zm, zm];
- CD: z = zm, θ ∈ [θm, θm];
- DA: θ = θm, z ∈ [zm, zm].
With these hypotheses, () becomes

qm =
∮

Cm

(
Λphi – Rhp grad P

)
n dl

=
∫

AB

[
Λphi – hp

(
∂p
∂θ

i +
∂p
∂z

i

)]
nAB dl

+
∫

BC

[
Λphi – hp

(
∂p
∂θ

i +
∂p
∂z

i

)]
nBC dl

+
∫

CD

[
Λphi – hp

(
∂p
∂θ

i +
∂p
∂z

i

)]
nCD dl
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+
∫

DA

[
Λphi – hp

(
∂p
∂θ

i +
∂p
∂z

i

)]
nDA dl

=
∫

AB
hp

∂p
∂z

dθ +
∫

BC

(
Λph – hp

∂p
∂θ

)
dz

+
∫

CD
hp

∂p
∂z

dθ +
∫

DA

(
Λph – hp

∂p
∂θ

)
dz,

q̃m =


h̃
m

[∫

AB
h ∂Q

∂z
dθ +

ΛhG

pm
(zC – zB)Qm – h

G

∫

BC

∂Q
∂θ

dz

+
∫

CD
h ∂Q

∂θ
dθ +

Λh

pm
(zA – zD)Qm – h



∫

DA

∂Q
∂θ

dz
]

.

We approximate the derivatives of the function Q on the outline by the values in the points
F , G, H , I (the mid-points of the sides AB, BC, CD, DA):

(
∂Q
∂z

)

AB
≈

(
∂Q
∂z

)

F
,

(
∂Q
∂θ

)

BC
≈

(
∂Q
∂θ

)

G
,

(
∂Q
∂z

)

CD
≈

(
∂Q
∂z

)

H
,

(
∂Q
∂θ

)

DA
≈

(
∂Q
∂z

)

I
,

such that, for the flow, we obtain the expression

q̃m =


h̃
m

{[(
∂Q
∂z

)

F
–

(
∂Q
∂z

)

H

]∫

AB
h dθ

– B̄C
[

h
G

(
∂Q
∂θ

)

G
– h

(
∂Q
∂θ

)

I

]
+

ΛB̄C
pm

(hG – h)Qm

}
. ()

To obtain the convergence of our procedure, the function Gm from () is prolonged on the
domain pm/ps > .

4 The solution
In order to solve the system of equations of the mathematical model, we use the method of
finite difference. The domain D is covered with a grid of parallel lines with Ox and Ox.
The feed pocket center is a node. We have

Gm = CDγ /
(


γ + 

)(γ +)/(γ –)

, if
pm

ps
≤

(


γ + 

)γ /(γ –)

,

Gm = CD

{
γ

γ – 

(
pm

ps

) 
γ
[

 –
(

pm

ps

) γ –
γ

]} 


, if
(


γ + 

) γ
γ –

<
pm

ps
≤ , ()

Gm = –CD

{
γ

γ – 

(
pm

ps

) 
γ
[

 –
(

pm

ps

) γ –
γ

]} 


, if
pm

ps
> .

If the dimensions of the grid are N × M, then the coordinates of a node are

θj = (j – )Δθ , j = , N ,

zi = (i – )Δz, i = , M,
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where

Δθ =
π

N – 
, Δz =

L
R(M – )

.

If we use the notations Q(θj, zi) = Qj,i, then the derivatives can be written as follows:

(
∂Q
∂θ

)

j,i
=

Qj+,i – Qj–,i

Δθ
,

(
∂Q
∂z

)

j,i
=

Qj,i+ – Qj,i–

Δz
,

(
∂Q
∂θ

)

j,i
=

Qj+,i – Qj,i + Qj–,i

(Δθ ) ,
(

∂Q
∂z

)

j,i
=

Qj,i+ – Qj,i + Qj,i–

(Δz) .
()

In the neighborhood of the feed pocket, the formulas will be modified.
The derivatives of the functions Q, in the node (k, l) in the neighborhood of the outline

Cm can be calculated as follows:
- if (l – ) · Δz ∈ [zm, zm] and  < k · Δθ – θm = Δθ < Δθ , then

(
∂Q
∂θ

)

k,l
=

Δθ

Δθ(Δθ + Δθ)
Qm –

Δθ – Δθ

ΔθΔθ
Qk,l –

Δθ

Δθ(Δθ + Δθ)
Qk–,l,

(
∂Q
∂θ

)

k,l
=


Δθ(Δθ + Δθ)

Qm –


ΔθΔθ
Qk,l –


Δθ(Δθ + Δθ)

Qk–,l;
()

- if (l – ) · Δz ∈ [zm, zm] and  < (k – ) · Δθ – θm < Δθ , then

(
∂Q
∂θ

)

k,l
=

Δθ

Δθ(Δθ + Δθ)
Qk+,l +

Δθ – Δθ

ΔθΔθ
Qk,l –

Δθ

Δθ(Δθ + Δθ)
Qm,

(
∂Q
∂θ

)

k,l
=


Δθ (Δθ + Δθ)

Qk+,l –


ΔθΔθ
Qk,l +


Δθ(Δθ + Δθ)

Qm.
()

With a similar procedure we can obtain the derivatives with regard to z:
- if (k – ) · Δθ ∈ [θm, θm] and  < l · Δz – zm = Δz < Δz, then

(
∂Q
∂z

)

k,l
=

Δz
Δz(Δz + Δz)

Qm –
Δz – Δz

ΔzΔz
Qk,l –

Δz

Δz(Δz + Δz)
Qk,l–; ()

- if (k – ) · Δθ ∈ [θm, θm] and  < (l – ) · Δz – zm < Δz, then

(
∂Q
∂z

)

k,l
=

Δz

Δz(Δz + Δz)
Qk+,l +

Δz – Δz

ΔzΔz
Qk,l –

Δz
Δz(Δz + Δz)

Qm,

(
∂Q
∂z

)

k,l
=


Δz(Δz + Δz)

Qk+,l –


ΔzΔz
Qk,l +


Δz(Δz + Δz)

Qm.
()

In order to determine Qm, we made in () the approximations

(
∂Q
∂z

)

F
=

Qm – Qj,i
Δz

,
(

∂Q
∂z

)

H
=

Qj,i – Qm

Δz
,

(
∂Q
∂θ

)

I
=

Qm – Qj,i

Δθ
,

(
∂Q
∂θ

)

G
=

Qj,i – Qm

Δθ
,

()
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where

i =
zm – Δz

Δz
+ , i =

zm + Δz

Δz
+ ,

j =
θm – Δθ

Δθ
+ , j =

θm + Δθ

Δθ
+ .

Substituting hm with h̃m in the expression of q̃m from (), one finds, as a result,

πΛspsh̃
m

n

√
 + δ

h̃
m + δ

Gm

=
[


Δz

∫ θm

θm

h dθ +
zm – zm

Δθ

(
h

G + h

)

+
Λ(zm – zm )

pm
(hG – h)

]
Qm

–


zP

∫ θm

θm

h dθ (Qj,i + Qj,i ) –
zm – zm

Δθ

(
h

GQj,i + h
 Qj,i

)
. ()

As an initial iteration we use the function Q() which satisfies the boundary conditions ()
and the periodicity conditions (), such that Q() = h. In () we consider the unknown
variable x = pm/ps. The coefficients of this variable can be calculated as a function of the
previous iteration, such that () can be written in the form

AGm(x) – B(r–)x + C(r–) = , ()

where

A =
πΛsp

s h̃
m

n

√
 + δ

h̃
m + δ

,

B =
[


Δz

∫ θm

θm

h dθ +
zm – zm

Δθ

(
h

G + h

)

+
Λ(zm – zm )

pm
(hG – h)

]
p

s h̃
m,

C =


Δz

∫ θm

θm

h dθ
(
Q(r–)

j,i + Q(r–)
j,i

)

+
zm – zm

Δθ

(
h

GQ(r–)
j,i + h

 Q(r–)
j,i

)
, r ≥ .

()

The solution of () is obtained by using the chord method, because x ∈ [, ]. In the case
x > , by using the transformation x = /x′ and (),

Ax′G
(
x′) – Cx′ + B = . ()

After () or () is solved, we can calculate Qm:

Qm =

⎧
⎨

⎩
(psxh̃m), if x ≤ ,

(ps(x′)–h̃′
m), if x > .

()
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In the inside points of the domain D, the algebraic system of equations, which results by
using the finite difference in (), is


Δz Q(r)

j,i– – 
[


Δθ +


Δz +


hj,i

(
∂h
∂θ

)

j,i

]
Q(r)

j,i +


Δz Q(r)
j,i+

+
{


Δθ +


Δθhj,i

[(
∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

j–,i

+
{


Δθ –


Δθhj,i

[(
∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

j+,i

= , ()

where j = , N , i = , M – .
For j =  and j = N in () is used the periodicity condition:

Q(r)
,i– = Q(r)

N ,i–, Q(r)
N+,i = Q(r)

,i . ()

For i =  and i = M the conditions on the outside boundary become

Q(r)
j, = h

j , Q(r)
j,M = h

j . ()

In the neighborhood of Cm the equations are:
- if (i – ) · Δz ∈ [zm, zm] and  < j · Δθ – θm < Δθ , then


Δz Q(r)

j,i– – 
{


ΔθΔθ

+


Δz +


hj,i

Δθ – Δθ

ΔθΔθ

×
[(

∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]
+


hj,i

(
∂h
∂θ

)

j,i

}
Q(r)

j,i

+


Δz Q(r)
j,i– +

{


Δθ (Δθ + Δθ)
+


hj,i

× Δθ

Δθ (Δθ + Δθ)

[(
∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

j–,i

=
{

–


Δθ (Δθ + Δθ)
+


hj,i

Δθ

Δθ(Δθ + Δθ)

×
[(

∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

m ; ()

- if (i – ) · Δz ∈ [zm, zm] and  < (j – ) · Δθ – θm < Δθ , then


Δz Q(r)

j,i– – 
{


ΔθΔθ

+


Δz +


hj,i

Δθ – Δθ

ΔθΔθ

×
[(

∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]
+


hj,i

(
∂h
∂θ

)

j,i

}
Q(r)

j,i

+


Δz Q(r)
j,i– +

{


Δθ (Δθ + Δθ)
–


hj,i
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× Δθ

Δθ (Δθ + Δθ)

[(
∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

j+,i

=
{

–


Δθ (Δθ + Δθ)
–


hj,i

Δθ

Δθ(Δθ + Δθ)

[(
∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

m ; ()

- if (j – ) · Δθ ∈ [θm, θm] and  < i · Δz – zm < Δz, then


Δz(Δz + Δz)

Q(r)
j,i+ – 

[


Δθ +


ΔzΔz
+


hj,i

(
∂h
∂θ

)

j,i

]
Q(r)

j,i

+
{


Δθ +


Δθhj,i

[(
∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

j–,i

+
{


Δθ –


Δθhj,i

[(
∂h
∂θ

)

j,i
+

Λ

(Q(r–)
j,i )/

]}
Q(r)

j+,i

= –


Δz(Δz + Δz)
Q(r)

m . ()

The system of equations ()-() can be written in a matrix form:

[Aj]{Qj} + [Bj]{Qj–} + [Cj]{Qj+} = {Rj}, ()

where [Aj], [Bj], [Cj] are square matrices of dimension M × M and {Qj}, {Qj–}, {Qj+},
{Rj} are the column vectors of the unknown variable on the column j, j – , j + , and,
respectively, the column vector of terms in the right-sides. Here the subscripts represent
the iteration order. In () and in the relations that follow, we consider the iteration of
order r.

In order to solve the system of equations () we use the method called ‘column-wise’.
This method is based on the relation which can be written for each j:

{Qj–} = [Ej]{Qj} + {Fj} + [Dj]{QN }. ()

Substituting () in (), one finds, as a result,

(
[Aj] + [Bj]{Ej}

){Qj} = –[Cj]{Qj+} +
({Rj} – [Bj]{Fj}

)
– [Bj][Dj]{QN }. ()

By solving with regard to {Qj} and comparing with () we obtain the relations

[Ej+] = –[Tj][Cj], ()

[Fj+] = [Tj]
({Rj} – [Bj]{Fj}

)
, ()

[Dj+] = –[Tj][Bj][Dj], ()

where

[Tj] =
(
[Aj] + [Bj][Ej]

)–. ()
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The initial values for ()-() are

[E] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

  · · · 
  · · · 
· · · · · ·
· · · · · ·
· · · · · ·
  · · · 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, {F} =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



·
·
·


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, [D] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

  · · · 
  · · · 
· · · · · ·
· · · · · ·
· · · · · ·
  · · · 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. ()

After the calculation of the matrix [Ej], [Dj], {Fj}, for j = , N , we write the relation for
j = N +  and use the periodicity condition {QN+} = {Q}. We find, as a result,

{QN } =
(
I – [DN+]

)–([EN+]{Q} + {FN+}
)
. ()

From () and (), written for j = N , N – , . . . , , we obtain the following relation between
{Qj} and {Q}:

{Qj} = [Gj]{Q} + {Sj}, ()

where

[GN ] =
(
I – [DN+]

)–[EN+], ()

{SN } =
(
I – [DN+]

)–[FN+]. ()

By means of () and () we obtain the relation for the calculation of [Gj] and {Sj}, for
j = N , N – , . . . , :

[Gj–] = [Ej][Gj] + [Dj][GN ], ()

{Sj–} = [Ej][Sj] + {Fj} + [Dj]{SN }. ()

After we compute the matrix [Gj] and {Sj}, from (), written for j = , one finds, as a result,

{Q} =
(
I – [G]

)–{S}. ()

The other vectors {Qj} can be computed now from () for j = , N . The solution Q(r) is
compared with Q(r–). Our problem is solved if

∑
j,i |Q(r)

j,i – Q(r–)
j,i |

∑
j,i |Q(r–)

j,i | < ε, ()

where ε is a positive number of a suitable choice.
If the last condition () is not valid, then the calculation is repeated for a new iteration

r + .
Figure  compares the attitude angle function of the bearing number for a compliant

journal bearing at different eccentricity: ., .. Figure  represents the three dimen-
sional plot of the hydrodynamic pressure distribution for the compliant journal bearing
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Figure 4 Numerical calculated attitude angles.

Figure 5 Numerical calculated pressure profiles.

running at , rpm. The hydrodynamic pressure developed along the axial direction
has a parabolic profile wherein the pressure is maximum at the mid-section or at the center
of the bearing and the pressure is normalized at the ends of the bearing.

5 Conclusions
Even the boundary conditions become nonlinear integral-differential expressions with re-
spect to the Reynolds equation, we can solve the problem by using the ‘column-wise’ tech-
nique.
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