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Abstract
We consider a Gelfand triple E′ → H → E, so that E is a separable complex Banach
space with dual E′, and H is its dense Hilbert subspace. We investigate the problem of
analytic extensions on an open ballQ ⊂ E′ and their radial boundary values in the
Hardy spacesHp

μ (1≤ p ≤ ∞) using the Poisson integrals on the unitary group U(∞)
over H endowed with an invariant probability measure μ. For this purpose, we
construct a Poisson-type kernel with the help of the symmetric Fock space Γ
generated by H and prove that the set of radial boundary values of these analytic
functions entirely coincides withHp

μ.
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1 Introduction
A goal of the current work is to describe a certain type of complex-valued Poisson ker-
nels generated by symmetric Fock spaces and associated Poisson integrals in the case of
Hardy spaces in infinite-dimensional settings. This allows us to get a solution of the radial
boundary problem for the corresponding analytic extensions.

The main results of the paper are as follows. We consider a Gelfand triple E′ → H → E
consisting of a separable complex Banach space E with dual E′ and a densely embedded
Hilbert subspace H . In Section  we investigate the space H of analytic functions on an
open ball Q in E′, which is conjugate-linearly isometric to the symmetric Fock space Γ

generated by H . Its orthogonal polynomial basis is described in Section .
In Section  we introduce an invariant probability Wiener-type measure μ on the

infinite-dimensional unitary group U(∞) =
⋃

U(j), irreducibly acting in H , where U(j)
are subgroups of unitary (j × j)-matrices. This measure is defined as the projective limit
of probability Haar measures μj on U(j) and is a group analog of probability Wiener mea-
sures on Banach spaces, which were introduced by Gross []. Its description substantially
uses the theory of invariant measures over infinite-dimensional unitary groups developed
by Neretin [] and Olshanski [].

Using the known Prokhorov criterion and the Schwartz theorem, we show in Theo-
rem . that μ is invariant under the right actions of U(∞) over U(∞) and that μ is a
weak limit of a subsequence (μjk ). In Theorem . a concentration property of the se-
quence (μj) is established.
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The Hardy spaces Hp
μ ( ≤ p ≤ ∞) of Lp

μ-integrable complex-valued functions are de-
scribed in Section . An orthogonal polynomial basis in the Hilbert space H

μ is given by
Theorem .. Integral formulas for analytic extensions to the open ball Q⊂ E′ by means
of a group generalization of the Paley-Wiener map associated with μ are established in
Theorems . and ..

The tools are applied in Section  to describe the radial boundary values of functions
defined by the integral Poisson formula. In the space Hp

μ with  ≤ p < ∞ this problem is
described by Theorem .. The existence of weak radial boundary values in H∞

μ is estab-
lished in Theorem ..

Note that the Hardy spaces Hp
μ of analytic functions on infinite-dimensional polydiscs

were considered in the works of Cole and Gamelin [] and Ørted and Neeb []. Similar
spaces on more general infinite-dimensional domains that are not necessarily polydiscs
were investigated by Pinasco and Zalduendo [], Carando et al. [], and others.

2 On analyticity associated with Gelfand triples
Let (E,‖ · ‖) be a complex separable Banach space, and E′ be its normed dual. Consider
a complex separable Hilbert space H with scalar product 〈· | ·〉 and norm ‖ · ‖H = 〈· | ·〉/

such that the sequence of linear mappings E′ → H
J
� E forms a Gelfand triple with a

continuous dense embedding J .
Denote B := {h ∈ H : ‖h‖H < } and S := {h ∈ H : ‖h‖H = }. The Hermitian dual H∗ of

H is identified with H via the conjugate-linear isomorphism ∗ : H∗ → H∗∗ = H such that
η(h) = 〈h | η∗〉 for all h ∈ H , η ∈ H∗.

Since the embedding J is dense and H is reflexive, the transpose mapping J t : E′ → H∗

is injective continuous and has the dense range R(J t).
Fix an orthonormal basis (ej)j∈N in H so that every functional e∗

j = 〈· | ej〉 belongs to R(Jt).
Following [], we define the involution † : h �→ h† :=

∑
ē∗

j (h)ej for any h =
∑

e∗
j (h)ej ∈ H .

If η ∈ H∗, then η† is defined so that (η†)∗ = (η∗)†, that is, η(h†) = η̄†(h). These involutions
in H and H∗ are isometric and depend on the basis chosen.

Thus, we have the Gelfand triple E′ J∗→ H
J
� E with an injective covariance operator

J ◦ J∗ ∈ L (E′, E) such that J∗ := ∗ ◦ † ◦ Jt , where the injective mapping J∗ is continuous and
has the dense range R(J∗). The unbounded inverse A = (J ◦ J∗)– is defined on the dense
domain D(A) = H in E. Denote by

Q :=
{

z ∈ E′ : h = J∗z ∈ B
}

the inverse image of the open unit ball B with respect to the injective mapping J∗ : E′ → H .
Clearly, the set Q is the open unit ball in the dual space E′ endowed with the norm ‖z‖J∗ :=
‖J∗z‖H induced from H .

It is important to note that the set Q is also open with respect to the norm topology in
E′ because this topology is stronger than that induced by J∗, so it contains all open sets
induced from H .

Let H⊗n be the complete nth tensor power of H endowed with the scalar product
〈ψn | ψ ′

n〉 = 〈h | h′
〉 · · · 〈hn | h′

n〉 for all ψn = h ⊗ · · · ⊗ hn, ψ ′
n = h′

 ⊗ · · · ⊗ h′
n ∈ H⊗n and

hi, h′
i ∈ H (i = , . . . , n).

As σ : {, . . . , n} �→ {σ (), . . . ,σ (n)} runs through all n-element permutations, the com-
plete symmetric nth tensor power H�n is defined as the range of H⊗n under the orthogonal
projector Sn : ψn �→ h � · · · � hn := (n!)– ∑

σ hσ () ⊗ · · · ⊗ hσ (n).
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As usual, the symmetric Fock space is defined to be the orthogonal sum

Γ =
⊕

n∈Z+

H�n, H� = C,

of all series ψ =
⊕

n ψn convergent with respect to the norm ‖ · ‖Γ = 〈· | ·〉/ defined by
the scalar product 〈ψ | ψ ′〉 =

∑〈ψn | ψ ′
n〉.

The set of elements h⊗n := h ⊗ · · · ⊗ h = h � · · · � h := h�n with any h ∈ H is total in
H�n by virtue of the polarization formula for symmetric tensor products h � · · · � hn =
(nn!)– ∑

θ,...,θn=± θ · · · θnh⊗n with h =
∑n

k= θkhk for any h, . . . , hn ∈ H (see, e.g., [], Sec-
tion .).

Let us consider the Γ -valued function with a total range

Q � z �→ (
 – J∗z

)–⊗ :=
∑

n∈Z+

h⊗n, h = J∗z ∈ B, h⊗ = ,

which is analytic because ‖( – h)–⊗‖
Γ =

∑‖h‖n
H = ( – ‖h‖

H )– < ∞. Using this func-
tion, we define the Hilbert space of analytic complex-valued functions in the variable
z ∈Q, associated with the symmetric Fock space Γ , as

H :=
{
ψ�(z) =

〈(
 – J∗z

)–⊗ | ψ 〉
: ψ ∈ Γ

}
,

〈
ψ� | ϕ�

〉
H := 〈ϕ | ψ〉.

The space H is endowed with the Hilbertian norm ‖ψ�‖H := ‖ψ‖Γ . Note that ψ�(z) =
(ψ� ◦ A)(h) for all h = J∗z ∈ B. The mapping ψ �→ ψ� is a conjugate-linear isometry from
Γ on H.

Functions ψ� ∈ H are analytic in the variable z ∈ Q, as a composition of the analytic
Γ -valued function z �→ ( – J∗z)–⊗ and the linear continuous functional ψ∗ = 〈· | ψ〉 (see,
e.g., [], Proposition ..).

3 Orthogonal homogenous polynomials
Denote by λ = (λ, . . . ,λj) ∈ N

j with λ ≥ λ ≥ · · · ≥ λj >  a partition of n ∈N, that is, n =
|λ| := λ + · · · + λj. Any λ may be identified with a Young diagram of length 
(λ) = j. Let Y
denote all Young diagrams, and Yn := {λ ∈ Y : |λ| = n}. Assume that Y includes the empty
partition ∅ = (, , . . .).

Let N
(λ)∗ := {ı = (ı, . . . , ı
(λ)) ∈N

(λ) : ıj �= ık ,∀j �= k}. An orthogonal basis in H�n is formed

by the system of symmetric tensor products

e�Yn =
⋃{

e�λ
ı := e⊗λ

ı � · · · � e⊗λ
(λ)
ı
(λ) : (λ, ı) ∈Yn ×N


(λ)
∗

}
, e�∅

ı = ,

with the norm (see [], Section ..)

∥
∥e�λ

ı

∥
∥

Γ
=

√
λ!/n!, where λ! := λ! · . . . · λ
(λ)!. (.)

Then e�Y :=
⋃{e�Yn : n ∈ Z+} forms an orthogonal basis in Γ .

Throughout the paper we assume that there exists a unique sequence (zj) ⊂ E′ such
that the elements J∗zj = ej form an orthonormal basis of H∗ dual to (ej). To any index pair
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(λ, ı) ∈Yn ×N

(λ)∗ , we uniquely assign the n-homogenous polynomial

ζ λ
ı (z) :=


(λ)∏

k=

ζ λk
ık

(z) =
〈
h⊗n | e�λ

ı

〉
, h = J∗z ∈ H , ζ ∅

ı ≡ ,

considered as a function in the variable z ∈ E′ and defined via the Fourier coefficients
ζj(z) := 〈J∗z | ej〉 of an element h = J∗z ∈ H . In other words, ζ λ

ı (z) = (ζ λ
ı ◦ A)(h) where

ζj(z) = 〈h | ej〉.

Lemma . The system of n-homogeneous polynomials in the variable z ∈ E′,

ζY =
{
ζ λ
ı (z)

∥
∥e�λ

ı

∥
∥–

Γ
: (λ, ı) ∈Y×N


(λ)
∗

}

with norms ‖ζ λ
ı ‖H = ‖e�λ

ı ‖Γ forms an orthonormal basis in H. Every function ψ� ∈H

for any z ∈Q has the following Fourier expansion with respect to ζY:

ψ�(z) =
∑

(λ,ı)∈Y×N

(λ)∗

ψ̃�(λ, ı)ζ λ
ı (z), ψ̃�(λ, ı) :=

∥
∥e�λ

ı

∥
∥–

Γ

〈
ψ� | ζ λ

ı

〉
H . (.)

Proof It suffices to observe that the following orthogonality relation holds:

〈
ζ λ
ı | ζμ

j

〉
H =

〈
e�μ
j | e�λ

ı

〉
=

{
‖e�λ

ı ‖
Γ : ı = j ,λ = μ,

 : ı �= j or λ �= μ. �

Taking into account that J∗z =
∑

ζj(z)ej and using the tensor multinomial theorem and
(.), we obtain the following Fourier decomposition with respect to the basis e�Y in Γ :

(
 – J∗z

)–⊗ =
∑

n∈Z+

(
J∗z

)⊗n

=
∑

n∈Z+

(∑

k∈N
ζk(z)ek

)⊗n

=
∑

(λ,ı)∈Y×N

(λ)∗

ζ λ
ı (z)e�λ

ı

‖e�λ
ı ‖

Γ

(.)

for all z ∈Q. Applying this, we conclude that every analytic function ψ� ∈ H with ψ =
⊕

n ψn ∈ Γ (ψn ∈ H�n) has the Taylor expansion at zero

ψ�(z) =
∑

n∈Z+

〈(
J∗z

)⊗n | ψn
〉
, z ∈Q,

where

〈(
J∗z

)⊗n | ψn
〉

=
∑

(λ,ı)∈Yn×N

(λ)∗

〈e�λ
ı | ψn〉
‖e�λ

ı ‖
Γ

ζ λ
ı (z)

are Hilbert-Schmidt polynomials in the variable h = J∗z ∈ H with any z ∈ E′.

Lemma . Each analytic function ψ� ∈H can be uniquely written as

ψ�(z) =
〈
ψ�(·) | C(·, z)

〉
H =

〈
ψ�(·) |P(·, z)

〉
H , z, z′ ∈Q, (.)

where C(z′, z) = 〈( – J∗z′)–⊗ | ( – J∗z)–⊗〉 and P(z′, z) = |C(z′, z)|/C(z, z).
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Proof From (.) it follows that the complex-valued function C(z′, z) in the variable z ∈Q
with fixed z′ ∈Q belongs to H. Using that J∗z =

∑
ζj(z)ej, we obtain

C
(
z′, z

)
=
∑

n∈Z+

〈(
J∗z′)⊗n | (J∗z

)⊗n〉 =


 – 〈J∗z′ | J∗z〉

=
∑

n∈Z+

(∑

j∈N
ζj
(
z′)ζ̄j(z)

)n

=
∑

(λ,ı)∈Y×N

(λ)∗

ζ λ
ı (z′)ζ̄ λ

ı (z)
‖e�λ

ı ‖
Γ

.

Expanding any ψ� ∈ H in the orthogonal series with respect to ζY, we obtain (.).
Substituting (.) into formula (.) and applying Lemma ., we get

〈
ψ�

(
z′) | C(z′, z

)〉
H =

〈∑

(λ,ı)

ζ λ
ı (z′)〈ψ� | ζ λ

ı 〉H

‖e�λ
ı ‖

Γ

∣
∣
∣
∑

(λ,ı)

ζ λ
ı (z′)ζ̄ λ

ı (z)
‖e�λ

ı ‖
Γ

〉

=
∑

(λ,ı)

ζ λ
ı (z)〈ψ� | ζ λ

ı 〉H

‖e�λ
ı ‖

Γ

.

So, the first equality in (.) holds. If ω�(z′) := 〈ψ�(·) | C(z′, ·)[C(z′, z′)]–C(·, z′)〉H , then
ω�(z) = ψ�(z) for all z ∈Q. As a result, we obtain

ψ�(z) =
〈
ω�(·) | C(·, z)

〉
H

=
〈
C(z, ·)[C(z, z)

]–
ψ�(z) | C(·, z)

〉
H =

〈
ψ�(·) |P(·, z)

〉
H .

Hence, the second equality in (.) holds. Finally, the totality in Γ of elements ( – J∗z)–⊗

with any z ∈Q yields the uniqueness of these representations. �

4 Invariant Wiener measures on U(∞)
We still assume that the orthonormal basis (ej) of H lies in the range of J∗ : E′ → H , that
is, there exist (zj) ⊂ E′ such that J∗zj = ej.

Let U(∞) =
⋃

U(j) be the infinite-dimensional unitary matrix group with unit 1. The
group U(∞) acts irreducibly on H . Denote U(∞) := U(∞) × U(∞) and U(j) := U(j) ×
U(j). The right action on U(∞) (similarly, on U(j)) is defined as

u · g = w–uv for all u ∈ U(∞), g = (v, w) ∈ U(∞). (.)

Following [, ], we write every uj ∈ U(j) with j >  in the block matrix form uj =
[ vj– a

b t

]

with t ∈ C corresponding to the partition j = (j – ) +  so that vj– is a (j – ) × (j – )-
matrix. Consider the projective limit lim←–– U(j) taken with respect to the Livšic-type map-
ping (which is not a group homomorphism)

π
j
j– : uj =

[
vj– a
b t

]

�→ uj– =

{
vj– – [a( + t)–b] : t �= –,
vj– : t = –,

from U(j) on U(j – ), which is Borel and surjective and is commuted with the right ac-
tion of U(j – ) (see [], Proposition ., [], Lemma .). In particular, it follows that
π

j
j– :

[ vj– 
 

] �→ vj– for all vj– ∈ U(j – ).
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Let πj : lim←–– U(j) � (uj) �→ uj ∈ U(j) be the projection, so that πj– = π
j
j– ◦ πj.

In what follows, every U(j) is identified with its range under the natural inclusion
U(j) � U(∞) that assigns to any uj ∈ U(j) the block matrix

[ uj 
 1

] ∈ U(∞), and let U(∞) be
endowed with the topology of inductive limit under the natural inclusions U(j – ) � U(j).
Accordingly, π

j
j– are defined over U(∞) as block matrices transformations. Let π k

j :=
π

j+
j ◦ · · · ◦ π k

k– for j < k and π k
j for j = k be the identical mapping over U(∞).

Let us consider the dense injective mapping τ : U(∞) � lim←–– U(j) that to any uk ∈ U(k)
assigns the unique stabilized sequence (uj) such that (see [], n. )

τ : U(k) � uk �→ (uj) ∈ lim←–– U(j), uj =

⎧
⎪⎨

⎪⎩

π k
j (uk) : j < k,

uk : j = k,
[ uk 

 1

]
: j > k.

(.)

Denote by Uτ (∞) the group U(∞) endowed with the induced topology under the mapping
τ : U(∞) � lim←–– U(j). From (.) it follows that the identical mapping U(∞) �→ Uτ (∞) is
continuous.

We equip every group U(j) with the probability Haar measure μj. As is well known
[], Theorem ., the image measure π

j
j–(μj) is equal to μj–. In other words, μj–(�) =

[μj ◦ (π j
j–)–](�) for all Borel sets � in U(j – ). Following [], Lemma . and [], n. .,

with the help of the Kolmogorov consistency theorem, we uniquely define on lim←–– U(j) the
probability Radon measure ←–μ as the projective limit of the sequence (μj) under the map-
pings π

j
j–:

←–μ := lim←––μj so that μj = πj(←–μ ) for all j ∈N,

where the image πj(←–μ ) is such that μj(�) = (←–μ ◦ π–
j )(�) for all Borel sets � in U(j).

Theorem . There exists a unique probability Radon measure μ on U(∞) such that
←–μ (�) = (μ ◦ τ–)(�) for all Borel sets � ⊂ lim←–– U(j) and

∫

f (u · g) dμ(u) =
∫

f (u) dμ(u), g ∈ U(∞), f ∈ Cb
(
U(∞)

)
, (.)

where Cb(U(∞)) is the algebra of bounded continuous complex-valued functions on U(∞).
Moreover, there exists a subsequence of Haar measures (μjk ) that weakly converges to μ in
the sense that

lim
k→∞

∫

f dμjk =
∫

f dμ for all f ∈ Cb
(
Uτ (∞)

)
, (.)

where Cb(Uτ (∞)) is the subalgebra in Cb(U(∞)) of continuous functions on Uτ (∞).

Proof Let Ǔ(j) ⊂ U(j) be the set of matrices for which {–} is not an eigenvalue. As is
known [], n. , Ǔ(j) is open in U(j), and μj(U(j) \ Ǔ(j)) = . In virtue of [], Lemma .,
the restrictions π

j
j– : Ǔ(j) → Ǔ(j – ) are continuous and surjective. Define the projective

limit lim←–– Ǔ(j) under these continuous mappings. Note that πj : lim←–– Ǔ(j) → Ǔ(j) are also
continuous and surjective.
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As is well known (see, e.g., [], Theorem ), by the Prokhorov criterion there exists a
Radon probability measure μ̌ on lim←–– Ǔ(j) such that πj(μ̌) = μj for all j ∈N iff for every
ε > , there exists a compact set K in lim←–– Ǔ(j) such that (μj ◦ πj)(K) ≥  – ε for all j ∈N. In
this case, μ̌ is uniquely determined by the formula

μ̌(K) = inf
j

(μj ◦ πj)(K).

Apply this criterion. Since μk(U(k) \ Ǔ(k)) = , supKk⊂Ǔ(k) μk(Kk) =  as Kk runs over all
compact sets in Ǔ(k). It follows that for every ε > , there exists a compact set Kk ⊂ Ǔ(k)
such that

μk(Kk) ≥  – ε. (.)

In accordance with (.), we put Kj := π k
j (Kk) for j < k and Kj :=

[ Kk 
 1

]
for j ≥ k. Taking

into account the definition of image measures, we have

μj(Kj) =

{
μk(Kk) = [μk ◦ (π k

j )–](Kj) : j < k,
μk(Kk) : j ≥ k

for all j ∈N. (.)

Thus, for any compact set K = (Kj) ⊂ lim←–– Ǔ(j) such that condition (.) for Kk = πk(K) with
fixed k is satisfied and Kj = πj(K) for all other j �= k are defined in accordance with (.),
the following condition holds:

(μj ◦ πj)(K) = μk(Kk) ≥  – ε for all j ∈N.

So, the necessary and sufficient conditions of Prokhorov’s criterion are satisfied. Thus,
there exists a unique Radon probability measure μ̌ on lim←–– Ǔ(j) such that πj(μ̌) = μj for all
j ∈ N and

μ̌(K) = inf
j

μj(Kj) = μk(Kk) (.)

because of equalities (.). This measure μ̌ can be extended to lim←–– U(j) \ lim←–– Ǔ(j) as zero
since μk is zero on U(k) \ Ǔ(k). Consequently, μ̌(K · g) = infj μj(Kj · g) = μk(Kk · g) for all
g ∈ U(k). The invariance property of the Haar measures μk yields

μ̌(K · g) = μk(Kk · g) = μk(Kk) = μ̌(K) for all g ∈ U(k). (.)

Hence, μ̌ is invariant under the right actions (see also [], Proposition .). It remains to
note that the uniqueness property of the projective limit lim←––μj implies that μ̌ = ←–μ .

The inductive limit Uτ (∞) is regular because inclusions U(j) � U(j + ) are compact.
Hence, any compact subset of Uτ (∞) is contained in a subgroup U(k) with fixed k. In
virtue of (.) and the equality μ̌ = ←–μ , we obtain

sup
K

←–μ (K) = 
(

since sup
Kk⊂U(k)

μk(Kk) = 
)

, (.)



Lopushansky Boundary Value Problems  (2016) 2016:29 Page 8 of 17

where the supremum is taken over all compact sets K = (Kj) in lim←–– U(j) such that τ–(K)
coincides with Kk = πk(K). By the known Schwartz theorem (see, e.g., [], Theorem )
condition (.) is necessary and sufficient for the existence of a unique probability Radon
measure μ on Uτ (∞) such that ←–μ (�) = (μ◦τ–)(�) for all Borel sets � ⊂ lim←–– U(j). In other
words, the measure ←–μ coincides with the image of μ under τ , that is, ←–μ = τ (μ). By (.)
and the equality μ̌ = ←–μ ,

μ(K · g) = μ(K) for all K = τ–(�) ⊂ U(∞), g ∈ U(∞),

which directly yields (.).
Let Cb(Uτ (∞)) be endowed with the uniform norm. Since Uτ (∞) is metric, the

Prokhorov criterion provides the relative compactness property of the sequence (μj) in
the dual space C′

b(Uτ (∞)) endowed with the weak topology. This gives the equality (.)
since it holds over the dense subspace C(Uτ (∞)) of functions with compact supports.

�

Corollary . The following integral formulas hold:

∫

f dμ =
∫

dμ(u)
∫

U(j)
f (u · g) d(μj ⊗ μj)(g), (.)

∫

f dμ =


π

∫

dμ(u)
∫ π

–π

f
[
exp(iϑ)u

]
dϑ , f ∈ Cb

(
U(∞)

)
. (.)

Proof Applying the invariance property (.) and the Fubini theorem, similarly to [],
Lemma , we get the integral formulas (.)-(.). �

Consider a concentration property of a relatively compact sequence of Haar measures
(μj) in the case where the corresponding group U(j) is endowed with the normalized
Hilbert-Schmidt metric

dHS(u, v) =
√

j–tr|u – v|HS, where |u – v|HS =
√

(u – v)∗(u – v).

This metric is a standard 
-distance between matrices u, v ∈ U(j), viewed as elements of a
j-dimensional Hilbert space, which is normalized so as to make the identity (j × j)-matrix
have norm one. The bi-invariance dHS(u, v) = dHS(u · g, v · g) for all g ∈ U(j) is a conse-
quence of the trace property tr(uv) = tr(vu). We define the ε-neighborhood of Kj ⊂ U(j)
by

(Kj)ε :=
{

uj ∈ U(j) : dHS(uj, Kj) < ε
}

.

Theorem . For every ε >  and closed set K ⊂ U(∞) such that μj(Kj) ≥ / where Kj :=
K ∩ U(j) for all j ∈N, the following equalities hold:

μ(Kε+η) = lim
j→∞μj

[
(Kj)ε

]
= , Kε+η :=

⋃
(Kj)ε+η, η > .

Proof As is well known (see []), (U(j), dHS,μj) forms the Lévy sequence, that is,
limj→∞ μj[(Kj)ε] =  for any ε >  and any closed set K ⊂ U(∞) such that μj(Kj) ≥ /
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for all j ∈N. The topological space Uτ (∞) is completely regular. Hence, the closed set
Kε =

⋃
(Kj)ε can be separated by a continuous function. Taking in (.) a function

f ∈ Cb(Uτ (∞)) such that  ≤ f ≤  where f |Kε ≡  and f |U(∞)\Kε+η ≡ , we obtain

μ(Kε+η) ≥
∫

f dμ = lim
k→∞

∫

f dμjk ≥ lim
k→∞

μjk
[
(Kjk )ε

]
= 

for a weakly convergent subsequence (μjk ). It follows that μ(Kε+η) =  because  =
μ(U(∞)) ≥ μ(Kε+η). �

5 Hardy spaces Hp
μ (1 ≤ p ≤ ∞)

In what follows, the space of complex functions f on U(∞) endowed with the norm

‖f ‖Lp
μ

=

⎧
⎨

⎩

p
√∫ |f |p dμ,  ≤ p < ∞,

ess supu∈U(∞) |f (u)|, p = ∞,

is denoted by Lp
μ. It is clear that L∞

μ � Lp
μ and ‖f ‖Lp

μ
≤ ‖f ‖L∞

μ
for all f ∈ L∞

μ .
We still assume that for any basis element ej in H , there exist zj ∈ E′ such that J∗zj = ej. By

transitivity the orbits {u(e) : u ∈ U(∞)} ⊂ S do not depend on the choice of e ∈ S ∩ R(J∗).
Fix an arbitrary e ∈ S ∩ R(J∗).

To a pair (λ, ı) ∈ Y × N

(λ)∗ , we assign the 
(λ)-dimensional complex subspace Hı =

span{eı , . . . , eı
(λ)}. On the dense subspace
⋃

Hı in H there is well defined the Cb(U(∞))-
valued linear mapping

φ : h �→ φh(u) =
〈
u(e) | h

〉
, u ∈ U(∞). (.)

It can be shown that φ may be isometrically extended onto H as an L
μ-valued mapping,

which is still defined on E′ as φ ◦ A.

Remark . Note that in the case of a Gaussian measure μ on E there exists a unique
extension φ : h �→ 〈· | h〉 from R(J∗) to the isometric embedding H � L

μ, which is called
the Paley-Wiener map (see, e.g., []).

By the polarization formula for symmetric tensor products, to every e�λ
ı ∈ e�Y there

uniquely corresponds the function

φλ
ı (u) :=


(λ)∏

k=

φλk
eık

(u) =
〈[

u(e)
]⊗|λ| | e�λ

ı

〉
, φeık

(u) =
〈
u(e) | eık

〉
, (.)

belonging to Cb(U(∞)) in the variable u ∈ U(∞), where φık := φeık
.

We define the Hardy space Hp
μ ( ≤ p ≤ ∞) with respect to the Wiener measure μ as-

sociated with the covariance operator J ◦ J∗ (resp., its subspace Hp,n
μ with a fixed n ∈ Z+)

to be the Lp
μ-closed complex linear span of the system

φY =
{
φλ

ı : (λ, ı) ∈Y×N

(λ)
∗

} (
resp.,φYn =

{
φλ

ı ∈ φY : (λ, ı) ∈ Yn ×N

(λ)
∗

})
,

where φ∅
ı ≡ . The following theorem for a different case is proved in [], Theorem .
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Theorem . The system φY is orthogonal in L
μ, and

∥
∥φλ

ı

∥
∥

L
μ

=
(
(λ) – )!λ!

(
(λ) –  + |λ|)! , (λ, ı) ∈ Y×N

(λ)
∗ . (.)

Proof The orthogonal property φλ′
j ⊥ φλ

ı with |λ′| �= |λ| follows from (.) since

∫

φλ′
j φ̄λ

ı dμ =


π

∫

φλ′
j φ̄λ

ı dμ

∫ π

–π

exp
[
i
(∣
∣λ′∣∣ – |λ|)ϑ]dϑ = 

for any λ′,λ ∈ Y \ {∅}. Let |λ′| = |λ| and 
(λ′) > 
(λ) for definiteness. Then there exists an
index k with an appropriate nonzero integer λ′

k in the diagram λ′ = (λ′
, . . . ,λ′

k , . . . ,λ′

(λ′)) ∈

Y \ {∅} such that 
(λ) < k ≤ 
(λ′). In this case, we have φλ′
j ⊥ φλ

ı because formula (.)
implies

∫

φλ′
j φ̄λ

ı dμ =


π

∫

φλ′
j φ̄λ

ı dμ

∫ π

–π

exp
(
iλ′

kϑ
)

dϑ = .

Consider the case |λ′| = |λ| and 
(λ′) = 
(λ). If φλ′
j �= φλ

ı , then λ′ �= λ. There exists an index
 < k ≤ 
(λ) such that λ′

k �= λk . Similarly as before, φλ′
j ⊥ φλ

ı because

∫

φλ′
j φ̄λ

ı dμ =


π

∫

φλ′
j φ̄λ

ı dμ

∫ π

–π

exp
[
i
(
λ′

k – λk
)
ϑ
]

dϑ = .

Let Hı with ı = (ı, . . . , ı
(λ)) ∈ N

(λ)∗ be the 
(λ)-dimensional subspace in H spanned by

{eı , . . . , eı
(λ)}, and U(ı) be the unitary subgroup of U(∞) acting in Hı . Let gı = (1ı , wı) ∈
U(ı). Using (.) with U(ı) instead of U(j) recursively by k = , . . . ,
(λ), we get

∫
∣
∣φλ

ı

∣
∣ dμ =

∫

dμ(u)

(λ)∏

k=

∫

U(ı)

∣
∣
〈
w–

ı u(e) | eık

〉∣
∣ dμı(wı).

Integrals with the Haar measures μı are independent of u ∈ U(∞). Hence,

∫

U(ı)

∣
∣
〈
w–

ı u(e) | eık

〉∣
∣ dμı(wı) =

(
(λ) – )!λ!
(
(λ) –  + |λ|)!

by the well-known integral formula for unitary groups [], n. ... It remains to note that
the last formulas immediately yield (.) because

∫
dμ = . �

Theorem . directly implies that φ has an isometric extension onto H and that the
following orthogonal expansion holds:

H
μ = C⊕H,

μ ⊕H,
μ ⊕ · · · . (.)

Remark . In the case of a Gaussian measure μ on E, decomposition (.) is called the
Wiener-Itô chaos expansion.
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6 Inverse integral formulas
The correspondence e�λ

ı �→ φλ
ı allows us to define a conjugate-linear isomorphism Γ →

H
μ. As a result, the linear isometry Φ : H → H

μ and its adjoint Φ∗ : H
μ →H can be

uniquely defined by the change of orthonormal bases

Φ : H � ζ λ
ı

∥
∥e�λ

ı

∥
∥–

Γ
�→ φλ

ı

∥
∥φλ

ı

∥
∥–

L
μ

∈H
μ, λ ∈Y, ı ∈N


(λ)
∗ .

Clearly, Φ∗ : φλ
ı ‖φλ

ı ‖–
L
μ

�→ ζ λ
ı ‖e�λ

ı ‖–
Γ since 〈Φζλ

ı | f 〉L
μ

= 〈ζ λ
ı | Φ∗f 〉H for all f ∈H

μ.

Hence, for any ψ� ∈H with the Fourier coefficients ψ̃�(λ, ı) defined in (.), we obtain

Φψ� =
∑

(λ,ı)∈Y×N

(λ)∗

ψ̃�(λ, ı)
‖e�λ

ı ‖
Γ

‖φλ
ı ‖

L
μ

φλ
ı , where

‖e�λ
ı ‖

Γ

‖φλ
ı ‖

L
μ

=
(
(λ) –  + |λ|)!
(
(λ) – )!|λ|! .

In particular, φJ∗z =
∑

ζ̄j(z)φej and ‖φJ∗z‖
L
μ

=
∑ |ζj(z)| = ‖z‖

J∗ for any z ∈ E′. Hence, if
E′ is endowed with the norm ‖ · ‖J∗ , then the embedding

φ ◦ A :
(
E′,‖ · ‖J∗

) � z �→ φJ∗z ∈ L
μ (.)

is the isometric extension of (.), and its image coincides with the subspace H,
μ .

We call the isometric embedding (.) the Paley-Wiener map corresponding to μ.
Thus, the mapping Φ is an isometric extension of the Paley-Wiener map φ ◦ A since

Φ|E′ = φ ◦ A.

Lemma . The vector-valued functions with respect to the variable u ∈ U(∞), Q � z �→
(Φ ◦ C)(u, z) and Q � z �→ (Φ ◦P)(u, z), take values in the space L∞

μ and may be written as
follows:

(Φ ◦ C)(u, z) =


 – φJ∗z(u)
, (Φ ◦P)(u, z) =

 – ‖z‖
J∗

| – φJ∗z(u)| . (.)

Proof Let h = J∗z. The Fourier decomposition h =
∑

ζj(z)ej yields φh =
∑

ζ̄j(z)φej . Apply-
ing Φ to the Fourier decomposition of C(z′, z) under the variable z′ ∈Q, we obtain

(Φ ◦ C)(u, z) =
∑

(λ,ı)

ζ̄ λ
ı (z)φλ

ı (u)
‖e�λ

ı ‖
Γ

=
∑

n∈Z+

(∑

j∈N
ζ̄j(z)φej (u)

)n

=


 – φh(u)

because ‖e�λ
ı ‖–

Γ = n!/λ! coincide with multinomial coefficients. It follows that |(Φ ◦
C)(u, z)| ≤ ( – |φh|)– < ∞ for all z ∈Q.

Similarly, applying Φ to the Fourier decomposition of P(·, z), we obtain

(Φ ◦P)(u, z) =
∣
∣
∣
∣

∑

(λ,ı)

ζ̄ λ
ı (z)φλ

ı (u)
‖e�λ

ı ‖
Γ

∣
∣
∣
∣

(∑

(λ,ı)

|ζ λ
ı (z)|

‖e�λ
ı ‖

Γ

)–

=
 – ‖z‖

J∗

| – φh(u)| .

Again using Theorem ., we get

(Φ ◦P)(u, z) =
 – ‖z‖

J∗

| – φh(u)| ≤ (
 – ‖z‖

J∗
)
(∑

n∈Z+

‖z‖n
J∗

)

=
 – ‖z‖J∗

( – ‖z‖J∗ ) =
 + ‖z‖J∗

 – ‖z‖J∗
.

As a result, (Φ ◦ C)(·, z) and (Φ ◦P)(·, z) with z ∈Q take values in L∞
μ . �
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Theorem . For any f ∈H
μ, the function

C[f ](z) :=
〈(
Φ∗ ◦ f

)
(·) | C(·, z)

〉
H =

〈(
Φ∗ ◦ f

)
(·) |P(·, z)

〉
H , z ∈Q,

belongs to the space of analytic functions H and has the integral representations

C[f ](z) =
∫ f dμ

 – φ̄J∗z
=
∫  – ‖z‖

J∗

| – φ̄J∗z(u)| f (u) dμ(u). (.)

The mapping f �→ C[f ] generated by Φ∗ produces the isometry H
μ �H.

Proof Consider the orthogonal decomposition with respect to φY and its Φ∗-image

f =
∑

(λ,ı)∈Y×N

(λ)∗

f̃ (λ, ı)φλ
ı , Φ∗f =

∑

(λ,ı)∈Y×N

(λ)∗

f̃ (λ, ı)
‖φλ

ı ‖
L
μ

‖e�λ
ı ‖

Γ

ζ λ
ı ,

respectively, where f̃ (λ, ı) := ‖φλ
ı ‖–

L
μ

∫
f φ̄λ

ı dμ are the Fourier coefficients. Substituting
their to C[f ] and taking into account Lemma . together with orthogonal properties, we
get the first equality in (.)

C[f ](z) =
∑

(λ,ı)

f̃ (λ, ı)ζ λ
ı (z)‖φλ

ı ‖
L
μ
〈ζ λ

ı | ζ λ
ı 〉H

‖e�λ
ı ‖

Γ

=
∫ ∑

(λ,ı)

ζ λ
ı (z)φ̄λ

ı

‖e�λ
ı ‖

Γ

f dμ =
∫

(Φ ◦ C)(·, z)f dμ =
∫ f dμ

 – φ̄J∗z
.

To check the second equality in (.), we also apply Lemma .. As a result,

C[f ](z) =
〈(
Φ∗ ◦ f

)
(·) |P(·, z)

〉
H

=
∫

(Φ ◦P)(z, ·)f dμ =
∫  – ‖z‖

J∗

| – φ̄J∗z(u)| f (u) dμ(u).

Hence, both integral representations in (.) hold. Since R(Φ∗) = H, Lemma . implies
that the mapping Φ∗ : H

μ � f �→ C[f ] ∈H is surjective. �

Remark . The L∞
μ -valued function Q � z �→ (Φ ◦P)(·, z) is a Poisson-type kernel for the

infinite-dimensional ball Q. The second integral formula in (.) is a Poisson-type formula
over the Hardy space H

μ.

Remark . Since Φ∗ : H
μ � f �→ C[f ] ∈ H is isometric and surjective, the integral for-

mulas (.) are inverse to the transform Φ , which is an isometric extension of the Paley-
Wiener map φ ◦ A.

7 Directional derivatives
Now we calculate the directional derivatives of an analytic function ψ� ∈H at any point
z ∈Q:

daψ
�(z) := lim

t→

ψ�(z + ta) – ψ�(z)
t

=
dψ�(z + ta)

dt

∣
∣
∣
∣
t=

, a ∈Q, t ∈R.
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Consider the projector S ⊗ Sn– : H⊗n → H ⊗ H�(n–) and its restriction Sn/ :=
Sn|H⊗H�(n–) defined as η � ψn– = Sn/(η ⊗ ψn–) ∈ H�n for all η ∈ H and ψn– ∈ H�(n–).
The projector Sn possesses the decomposition Sn = Sn/ ◦ (S ⊗ Sn–). For any λ ∈ Y such
that |λ| = n –  and ı ∈N


(λ),


n
∥
∥em ⊗ e�λ

ı

∥
∥ =


n

(λ)!
(n – )!

=
(λ)!
n!

=
∥
∥Sn/

(
em ⊗ e�λ

ı

)∥
∥, so ‖Sn/‖ =


n

.

In fact, it suffices to decompose an element of H ⊗ H�(n–) with respect to the basis ele-
ments em ⊗ e�λ

ı .
Define the operator δa,n : H�(n–) → H�n for a nonzero a ∈Q as

δa,n
(
J∗z

)⊗(n–) := nSn/
[
J∗a ⊗ (

J∗z
)⊗(n–)]

=
d(J∗z + tJ∗a)⊗n

dt

∣
∣
∣
∣
t=

= nJ∗a � (
J∗z

)⊗(n–),

where the last equality is a consequence of the well-known tensor binomial formula (x +
ty)⊗n =

∑n
m=

(m
n
)
(ty)⊗m � x⊗(n–m) with any x, y ∈ H . Summing over n ≥ , we define

δa
(
 – J∗z

)–⊗ :=
⊕

n≥

d(J∗z + tJ∗a)⊗n

dt

∣
∣
∣
∣
t=

=
⊕

n≥

nJ∗a � (
J∗z

)⊗(n–).

Taking into account that ‖Sn/‖ = n–, we obtain

∥
∥δa

(
 – J∗z

)–⊗∥∥
Γ

=
∑

n≥

∥
∥nJ∗a � (

J∗z
)⊗(n–)∥∥

Γ

≤ ‖a‖
J∗
∑

n≥

‖z‖(n–)
J∗ = ‖a‖

J∗
∥
∥
(
 – J∗z

)–⊗∥∥
Γ

. (.)

Inequality (.) and the totality of {( – J∗z)–⊗ : z ∈Q} in Γ imply that the adjoint operator
δ∗

z of δz on Γ can be defined as δ∗
z ψ =

⊕
n≥ δ∗

z,nψn. Here δ∗
z,n : H�n � ψn → δ∗

z,nψn ∈ H�(n–)

is defined as the adjoint operator δ∗
z,n of δz,n on H⊗n via the equality

〈
δz,n

(
J∗z

)⊗(n–) | ψn
〉

=
〈(

J∗z
)⊗(n–) | δ∗

z,nψn
〉
.

In fact, the image of J∗ contains all elements (em); hence, {(J∗z)⊗(n–) : z ∈Q} is total in
H�(n–). So, by Riesz’s theorem there exists unique δ∗

z,nψn ∈ H�(n–), and δ∗
z,n is well defined.

As a consequence, from (.) we get ‖δ∗
aψ‖Γ ≤ ‖a‖J∗‖ψ‖Γ for all a ∈Q and ψ ∈ Γ ,

which means that δ∗
aψ ∈ Γ . So we have proved the following statement.

Lemma . For any function ψ� ∈ H associated with an element ψ ∈ Γ , we have that
daψ

� ∈H and daψ
�(z) = 〈( – J∗z)–⊗ | δ∗

aψ〉 for all a, z ∈Q.

Theorem . For any function f ∈ H
μ, we have daC[f ] ∈ H, and the following formula

holds:

daC[f ](z) =
∫ f (u)φ̄J∗a(u) dμ(u)

( – φ̄J∗z(u))
, a, z ∈Q. (.)
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Proof First, note that f φJ∗a ∈H
μ for all a ∈Q because φJ∗a ∈H∞

μ . Moreover, daC[f ] ∈H

by Lemma .. Using the first integral formula (.), we can write that

daC[f ](z) =
dC[f ](z + ta)

dt

∣
∣
∣
∣
t=

= lim
t→


t

∫ (
f (u)

 – φ̄J∗(z+ta)(u)
–

f (u)
 – φ̄J∗z(u)

)

dμ(u)

= lim
t→


t

∫ (
f (u)

 – 〈J∗(z + ta) | u(e)〉 –
f (u)

 – 〈J∗z | u(e)〉
)

dμ(u)

= lim
t→


t

∫ t〈J∗a | u(e)〉f (u) dμ(u)
( – 〈J∗(z + ta) | u(e)〉)( – 〈J∗z | u(e)〉)

= lim
t→

∫
φ̄J∗a(u)f (u) dμ(u)

( – φ̄J∗(z+ta)(u))( – φ̄J∗z(u))
.

Now we need to prove that, as t → ,

∫
φ̄J∗a(u)f (u) dμ(u)

( – φ̄J∗(z+ta)(u))( – φ̄J∗z(u))
–
∫ f (u)φ̄J∗a(u) dμ(u)

( – φ̄J∗z(u))

=
∫ tφ̄

J∗a(u)f (u) dμ(u)
( – φ̄J∗(z+ta)(u))( – φ̄J∗z(u))

→ .

For a fixed z ∈Q, we put α := min{| – φ̄J∗z(u)| : u ∈ U(∞)}, so | – φ̄J∗z(u)| > α,

α ≤ ∣
∣ – φ̄J∗z(u)

∣
∣≤ ∣

∣ – φ̄J∗(z+ta)(u)
∣
∣ +

∣
∣tφ̄J∗a(u)

∣
∣.

This yields | – φ̄J∗(z+ta)(u)| ≥ α – |tφ̄J∗a(u)| ≥ α/ for |tφ̄J∗a(u)| ≤ α/. It follows that

∣
∣
∣
∣

∫ tφ̄
J∗a(u)f (u) dμ(u)

( – φ̄J∗(z+ta)(u))( – φ̄J∗z(u))

∣
∣
∣
∣≤

|t|
α/ · α

∫

|f |dμ ≤ |t|
α/ · α ‖f ‖L

μ
→ 

as t → . Hence, the integral formula (.) holds. �

8 Radial boundary values
Set J∗z = rv(e) with z ∈Q,  ≤ r < , and v ∈ U(∞), where e ∈ S ∩ R(J∗) is a fixed element.
Note that the corresponding complex-valued function

U(∞) � u �→ φJ∗z(u) =
〈
u(e) | rv(e)

〉

satisfies the equalities φJ∗z(u) = φrv(e)(u) = rφv(e)(u) = rφe(v–u) where v–u = u · g is defined
as the right action with g = (1, v) ∈ U(∞). In particular, φe(1) = .

We define the Poisson kernel as follows:

Pr(v, u) :=
 – r

| – rφ̄e(v–u)| , v, u ∈ U(∞),  ≤ r < .

The Poisson integral is defined for any function f ∈Hp
μ ( ≤ p ≤ ∞) as

Pr[f ](v) :=
∫

Pr(v, u)f (u) dμ(u), v ∈ U(∞),  ≤ r < .
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It is easy to see that Pr[Re f ] = RePr[f ] for all f ∈ Hp
μ. The following statement is an ex-

tension of Theorem . to the Hardy space Hp
μ with an arbitrary  ≤ p ≤ ∞.

Theorem . For every function f ∈Hp
μ ( ≤ p ≤ ∞), the equalities

Pr[f ](v) =
∫ f dμ

 – φ̄J∗z
=
∫  – ‖z‖

J∗

| – φJ∗z| f dμ, z = rAv(e) ∈Q, (.)

hold, where the integrals are analytic in the variable z ∈Q.

Proof The space Hp
μ is defined as the Lp

μ-closed linear span of the orthogonal system φY.
On the other hand, the kernel Pr is related to the kernel Φ ◦P in (.) by the equalities

Pr(v, ·) = (Φ ◦P)(z, ·) =
 – ‖z‖

J∗

| – φJ∗z(·)| , z = rAv(e) ∈Q,

where Φ ◦P is an L∞
μ -valued function in the variable z via Lemma .. Therefore, equalities

(.) hold for any f ∈Hp
μ by orthogonality. The L∞

μ -valued function Q � z �→ ( – φ̄J∗z)– is
analytic. Hence, the first integral in (.) is a complex-valued analytic function in the vari-
able z ∈Q as the composition of this L∞

μ -valued function and the bounded linear func-
tional L∞

μ � g �→ ∫
gf dμ with f ∈ Hp

μ because the embedding L∞
μ � Lp

μ ( ≤ p ≤ ∞) is
continuous. �

Lemma . For any u, v ∈ U(∞) and  ≤ r < , the kernel Pr satisfies the conditions

Pr(u, v) = Pr(v, u) > ,
∫

Pr(u, v) dμ(v) =  =
∫

Pr(u, v) dμ(u).

Proof The first equality is a consequence of the kernel Pr definition. Putting f ≡  in (.)
and using the first equality, we obtain the other equalities. �

Theorem . For every f ∈ Lp
μ ( ≤ p ≤ ∞), we have ‖Pr[f ]‖Lp

μ
≤ ‖f ‖Lp

μ
for all r ∈ [, ).

If, in addition,  ≤ p < ∞, then

lim
r→

∥
∥Pr[f ] – f

∥
∥

Lp
μ

= , f ∈Hp
μ. (.)

Proof First, note that the invariant property (.) yields

Pr[f ](v) =
∫

Pr
(
1, v–u

)
f (u) dμ(u) =

∫

Pr(1, s)f (vs) dμ(s), f ∈ L∞
μ .

So, if p = ∞, then ‖Pr[f ]‖L∞
μ

≤ ‖f ‖L∞
μ

∫
Pr(1, s) dμ(s) = ‖f ‖L∞

μ
for all f ∈ L∞

μ .
Let  ≤ p < ∞. Using the Jensen inequality and the Fubini theorem, we get

∥
∥Pr[f ]

∥
∥

Lp
μ

≤
∫ (∫

∣
∣f (vu)

∣
∣p dμ(v)

)/p

Pr(1, u) dμ(u) ≤ ‖f ‖Lp
μ

for all f ∈ Cb(U(∞)). Via the denseness of Cb(U(∞)), this inequality holds for all f ∈ Lp
μ.
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By Lemma ., Pr[f ](v) – f (v) =
∫

[f (vu) – f (v)]Pr(1, u) dμ(u). Replacing in the previous
reasoning Pr[f ] by Pr[f ] – f , we similarly get

∥
∥Pr[f ] – f

∥
∥

Lp
μ

≤
∫ (∫

∣
∣f (vu) – f (v)

∣
∣p dμ(v)

)/p

Pr(1, u) dμ(u)

for all f ∈ Lp
μ. Under the continuity of the shift operator in Lp

μ ( ≤ p < ∞), for every r ∈
[, ), there exists δ >  such that

∫ |f (vu)– f (v)|p dμ(v) ≤ (–r)p for all u ∈ U(∞) such that
Re φe(u) < δ. On the other hand, if r → , then for every δ > , uniformly on u, v ∈ U(∞)
such that Re φe(v–u) ≥ δ,

Pr(v, u) =
 – r

 – rRe φe(v–u) + r|φe(v–u)| ≤  – r

 – r – rRe φe(v–u)
→ .

It immediately follows that

∫

Re φe(u)≥δ

Pr(1, u) dμ(u) →  as r → .

This proves the existence of the required limit relation (.) for all f ∈Hp
μ. �

Theorem . For all functions f ∈H∞
μ and η ∈ L

μ,

lim
t→

∫

Pr[f ]η dμ =
∫

f η dμ. (.)

Proof Using the Fubini theorem and Theorem . in the case p = , we obtain

∫

Pr[f ]η dμ =
∫ ∫

Pr(v, u)f (u) dμ(u)η(v) dμ(v)

=
∫ ∫

Pr(v, u)η(v) dμ(v)f (u) dμ(u) →
∫

ηf dμ

for any function η ∈ L
μ. �

Remark . The limit relation (.) holds for any f ∈ Lp
μ ( ≤ p < ∞). As well, (.) holds

for any f ∈ L∞
μ . However, in these cases the approximating functions Pr[f ] are not analytic

but harmonic in a suitable meaning.
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