
Meng and Ding Boundary Value Problems  (2016) 2016:32 
DOI 10.1186/s13661-016-0542-6

R E S E A R C H Open Access

Periodic solutions for a class of second
order delay differential systems
Qiong Meng* and Juntang Ding

*Correspondence:
mengqiong@qq.com
School of Mathematical Science,
Shanxi University, Taiyuan, Shanxi
030006, P.R. China

Abstract
Consider the periodic boundary value problem

{
ü(t) + ru(t – τ ) +∇F(t,u(t – τ )) = 0, a.e. t ∈ [0, 2τ ],
u(0) – u(2τ ) = u̇(0) – u̇(2τ ) = 0,

where τ > 0 is a given constant, r ∈ R is a parameter. Periodic solutions are obtained
by using linking theorems.

MSC: 34K13; 34K18; 58E50

Keywords: periodic boundary value problem; delay differential systems; linking
theorems

1 Introduction
Consider the periodic boundary value problem

{
ü(t) + ru(t – τ ) + ∇F(t, u(t – τ )) = , a.e. t ∈ [, τ ],
u() – u(τ ) = u̇() – u̇(τ ) = ,

(.)

where τ >  is a given constant, r ∈ R is a parameter. F : [, τ ] × RN → R satisfies the
following assumptions:

(A) F(t, x) is measurable with respect to t, for all x ∈ RN , continuously differentiable in x,
for a.e. t ∈ [, τ ], and there exist a ∈ C(R+; R+) and b ∈ L([, τ ]; R+) such that

∣∣F(t, x)
∣∣, ∣∣∇F(t, x)

∣∣ ≤ a
(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [, τ ].
Variational methods are very powerful techniques in nonlinear analysis and are exten-

sively used in many disciplines of pure and applied mathematics, including ordinary and
partial differential equations, mathematical physics, and geometrical analysis. The exis-
tence and multiplicity of solutions for Hamilton systems and Schrödinger equations have
been studied extensively via critical point theory; see [–].

In the past several years, some results on the existence of periodic solutions for the func-
tional differential equation by the critical point theory have been obtained (see [–]). In

© 2016 Meng and Ding. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0542-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0542-6&domain=pdf
mailto:mengqiong@qq.com


Meng and Ding Boundary Value Problems  (2016) 2016:32 Page 2 of 12

[], the authors obtained the multiplicity results for periodic solutions to (.) by using
critical point theory. Our proof method in this paper is different from the literature [].

Motivated by the above observation, in this paper, we study the existence of periodic
solutions to the system (.). The following theorems are the main results of our paper.

(H) There exists a constant R >  such that
(i) F(t, x) ≥ , ∀|x| ≤ R, t ∈ [, τ ]; or

(ii) F(t, x) ≤ , ∀|x| ≤ R, t ∈ [, τ ].
(H) lim|x|→∞ inf F(t,x)

|x| >  uniformly for t ∈ [, τ ].
(H) lim|x|→

|∇F(t,x)|
|x| =  uniformly for t ∈ [, τ ].

(H) There exist α >  and a >  such that

∣∣∇F(t, x)
∣∣ ≤ a

(|x|α + 
)
, ∀(t, x) ∈ [, τ ] × RN .

(H) There exist μ > ,  < β < , R > , and a function b(t) ∈ L([, τ ]; R+) such that

μF(t, x) ≤ (∇F(t, x), x
)

+ b(t)|x|β , ∀|x| ≥ R, t ∈ [, τ ].

(H′) There exist β > α ≥  and b > , R >  such that

(∇F(t, x), x
)

– F(t, x) ≥ b|x|β , ∀|x| ≥ R, t ∈ [, τ ].

Theorem . Assume that (H)-(H) hold, if  is an eigenvalue of L (L is defined in Sec-
tion ), BVP (.) has at least one nontrivial solution.

Theorem . Assume that (H)-(H) and (H′) hold, if  is an eigenvalue of L (L is defined
in Section ), BVP (.) has at least one nontrivial solution.

Remark . The condition (H) and the condition (H′) are appeared, respectively, in []
and [].

2 Preliminaries
In order to seek τ -periodic orbits of (.), let us transform (.) to

{
ü(t) + rλu(t – π ) + λ∇F(λt, u(t – π )) = , a.e. t ∈ [, π ],
u() – u(π ) = u̇() – u̇(π ) = ,

(.)

by making the change of variable t → π
τ

t = λ–t, which implies that a π-periodic solution
of (.) corresponds to a τ -periodic solution of (.). Hence we will only look for the π-
periodic solutions of (.) in the sequel.

Let L(S, RN ) be the space of square integrable π-periodic vector-valued functions
with dimension N, and C∞(S, RN ) be the space of π-periodic C∞ vector-valued func-
tions with dimension N. For any u ∈ C∞(S, RN ), it has the following Fourier expansion in
the sense that it is convergent in the space L(S, RN ):

u(t) =
a√
π

+
√
π

+∞∑
j=

(aj cos jt + bj sin jt),
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where a, aj, bj ∈ RN . Let H(S, RN ) be the closure of C∞(S, RN ) with respect to the
Hilbert norm

‖u‖ =

[
|a| +

+∞∑
j=

(
 + j)(|aj| + |bj|

)]/

.

More specifically, H(S, RN ) = {u ∈ L(S, RN ) : ‖u‖ < +∞} with the inner product

〈u, v〉 =
∫ π



[(
u(t), v(t)

)
+

(
u̇(t), v̇(t)

)]
dt

for any u, v ∈ H(S, RN ), where (·, ·) denotes the usual inner product in RN . The norm on
H(S, RN ) is defined by

‖u‖ =
[∫ π



(∣∣u(t)
∣∣ +

∣∣u̇(t)
∣∣)dt

]/

. (.)

It is well known that H(S, RN ) is compactly embedded in C(S, RN ) (see Proposition .
of []). Define two operators L and L from H(S, RN ) into H∗(S, RN ) as follows: for any
u ∈ H(S, RN ), which are given by

(Lu)(v) =
∫ π



(
u̇(t + π ), v̇(t)

)
dt,

(Lu)(v) = –rλ
∫ π



(
u(t), v(t)

)
dt,

for all v ∈ H∗(S, RN ), where u̇(t) and H∗(S, RN ) denote the weak derivative of u and the
dual space of H(S, RN ), respectively. By the Riesz representation theorem, we can iden-
tify H∗(S, RN ) with H(S, RN ). Thus, Liu can also be viewed as an element belonging to
H(S, RN ) such that 〈Liu, v〉 = (Liu)(v) for all u, v ∈ H(S, RN ), where i =  or . It is easy
to check that L and L are bounded linear operators on H(S, RN ). Note that H(S, RN )
is compactly embedded in C(S, RN ), thus L is compact on H(S, RN ).

Lemma . [] The operator L := L + L, that is,

〈Lu, v〉 = (Lu)(v) =
∫ π



(
u̇(t + π ), v̇(t)

)
dt – rλ

∫ π



(
u(t), v(t)

)
dt

is self-adjoint on H(S, RN ). The operators L and L are also self-adjoint on H(S, RN ).

Lemma . [] The essential spectrum of L on H(S, RN ) is just {–, }.

In view of the above facts,  is not in the essential spectrum of L as it is a compact
perturbation of the self-adjoint operator L. This implies that  is at most an eigenvalue
of finite multiplicity of L.

Remark . H(S, RN ) has an orthogonal decomposition

H(S, RN)
= H+ ⊕ H– ⊕ H,
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where H = Ker L is finite dimensional, and H+, H– are L-invariant subspaces such that
for some σ > ,

〈Lu, u〉 ≥ σ‖u‖ (.)

for all u ∈ H+,

〈Lu, u〉 ≤ –σ‖u‖ (.)

for all u ∈ H–.

Remark . By [], we can choose the proper r to make that the set {j ≥ | (–)j j–rλ

j+ =
} �= ∅, which means H �= ∅, where j ∈ Z.

Lemma . [] There exists C >  such that

‖u‖Lp ≤ C‖u‖, ‖u‖∞ ≤ C‖u‖, (.)

for p =  + α, , ‖u‖∞ = maxt∈[,π ] |u(t)|, ∀u ∈ H(S, RN ).

Now consider the functional ϕ defined on H(S, RN ) given by

ϕ(u) =


〈Lu, u〉 – λ

∫ π


F
(
λt, u(t)

)
dt. (.)

Since F satisfies the assumption (A), a standard argument shows the following.

Lemma . [] The functional ϕ is continuously differentiable on H(S, RN ) and ϕ′ is
defined by

〈
ϕ′(u), v

〉
= 〈Lu, v〉 – λ

∫ π



(∇F
(
λt, u(t)

)
, v(t)

)
dt (.)

for all v ∈ H(S, RN ).

Lemma . [] A critical point u ∈ H(S, RN ) of functional ϕ is equivalent to a π -
periodic solution of system (.).

In this paper, we will use the following local linking Theorem A to prove our theorems.
The following concepts appeared in [, , ].

Let X be a real Banach space with direct decomposition X = X ⊕ X. Consider two
sequences of subspaces:

Xj
 ⊂ Xj

 ⊂ · · · ⊂ Xj

such that Xj =
⋃

n∈N Xj
n, j = , . For every multi-index α = (α,α) ∈ N, we denote by Xα

the space Xα ⊕ Xα . We say α ≤ β if α ≤ β, α ≤ β.
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Definition . [] A sequence {αn} ⊂ N is said to be admissible if, for every α ∈ N there
is m ∈ N such that n ≥ m ⇒ αn > α.

Definition . [] Let f ∈ C(X, R). Then the function f satisfies the (PS)∗ condition if
every sequence {uαn} such that {αn} is admissible and

uαn ∈ Xαn , sup
n

f (uαn ) < ∞, f ′
αn (uαn ) → 

contains a subsequence which converges to a critical point of f , where fα = f |Xα .

Definition . [] Let X be a Banach space with a direct sum decomposition X = X ⊕X.
The function f ∈ C(X, R) has a local linking at , with respect to (X, X), if, for some r > ,

f (x) ≥ , ∀x ∈ X,‖x‖ ≤ r,

f (x) ≤ , ∀x ∈ X,‖x‖ ≤ r.

Theorem A [] Suppose that f ∈ C(X, R) satisfies the following assumptions:
(f) f has a local linking at  and X �= {};
(f) f satisfies (PS)∗ condition;
(f) f maps bounded sets into bounded sets;
(f) for every m ∈ N , f (x) → –∞ as ‖x‖ → ∞ on X

m ⊕ X.
Then f has at least one nonzero critical point.

3 Proofs of theorems
In this section, ci stand for different positive constants for i ∈ Z+, Z+ is the set of all positive
integers.

Let

X = X ⊕ X, (.)

where X = H+, X = H– ⊕ H.

Lemma . Under assumption (H), (H)-(H), the functional ϕ satisfies the (PS)∗ condi-
tion.

Proof Let {uαn} be a sequence such that {αn} is admissible and

uαn ∈ Xαn , sup
n

ϕ(uαn ) < ∞, ϕ′
αn (uαn ) → .

For the sake of notational simplicity, set un = uαn .
Claim . {un} is bounded in X.
If not, passing to a subsequence if necessary, we assume that ‖un‖ → ∞ as n → ∞. Set

vn = un
‖un‖ , then {vn} is bounded in X. Hence, there exists a subsequence, still denoted by

{vn}. Write vn = v+
n + v–

n + v
n and v = v+ + v– + v, then

vn ⇀ v, v
n → v in X, vn → v in C

(
S, RN)

.
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In view of (H), we have

∣∣F(t, x)
∣∣ ≤ c

(|x|+α + |x|), ∀x ∈ RN and t ∈ [, τ ]. (.)

For |x| ≤ R and t ∈ [, τ ], one has

∣∣F(t, x)
∣∣ ≤ c

(|x|+α + |x|) ≤ c
(
R+α + |R|) := A,

together with (H), one has

μF(t, x) ≤ (∇F(t, x), x
)

+ b(t)|x|β + μA, ∀x ∈ RN and t ∈ [, τ ]. (.)

Hence, by (.) and (.), we have

(
μ


– 

)
〈Lun, un〉 = μϕ(un) –

〈
ϕ′(un), un

〉
+ λ

∫ π



[
μF(λt, un) –

(∇F(λt, un), un
)]

dt

≤ c + c‖un‖ + λ
∫ π



[
b(t)|un|β + μA

]
dt

≤ c + c‖un‖ + c‖un‖β + c.

This implies that

〈Lun, un〉 ≤ c + c‖un‖ + c‖un‖β (.)

since μ > . Together with (.), we have

〈Lvn, vn〉 =
〈Lun, un〉
‖un‖ → , as n → ∞,

since  < β < . Hence,

〈Lv, v〉 = .

That means that

〈
Lv+, v+〉

+
〈
Lv–, v–〉

= .

By using (.) and (.), we discuss two cases:
If ‖v+‖ = , we have ‖v–‖ = , then we obtain ‖v‖ = ‖v‖ = ‖vn‖ = .
If ‖v+‖ �= , we have ‖v–‖ �= , then we obtain ‖v‖ �= .
So we get v(t) �≡  for t ∈ [, π ]. Set

E =
{

t ∈ [, π ] : v(t) �= 
}

,

then meas(E) > .
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From (H), we get

lim|un|→∞ inf

∫ π

 F(λt, un) dt
‖un‖

≥
∫ π

 [lim|un|→∞ inf F(λt, un)] dt
‖un‖

≥
∫

E

[
lim|un|→∞ inf

F(λt, un)
|un| |vn|

]
dt ≥

∫
E

[
lim|un|→∞ inf

F(λt, un)
|un| |v|

]
dt > . (.)

By the boundedness of ϕ(un) and (.), we have

ϕ(un)
‖un‖ =

〈Lun, un〉
‖un‖ –

λ ∫ π

 F(λt, un) dt
‖un‖ ≤ c + c‖un‖ + c‖un‖β

‖un‖ –
λ ∫ π

 F(λt, un) dt
‖un‖ ,

which together with  < β <  implies that

lim|un|→∞ inf

∫ π

 F(λt, un) dt
‖un‖ = .

This contradicts (.). Therefore, {un} is bounded in X.
Claim . {un} possesses a strong convergent subsequence in X.
Write un = u+

n + u–
n + u

n and u = u+ + u– + u, then

u±
n ⇀ u±, u

n → u in X, u±
n → u± in C

(
S, RN)

.

In view of (.) and u–
n → u– in C(S, RN ), it is easy to verify

∫ π



(∇F(λt, un) – ∇F(λt, u), u–
n – u–)

dt → , as n → ∞.

Note that

〈
ϕ′(un) – ϕ′(u), u–

n – u–〉 → , as n → ∞.

Thus,

–
〈
ϕ′(un) – ϕ′(u), u–

n – u–〉

= –
〈
L
(
u–

n – w–)
, u–

n – u–〉
+ λ

∫ π



(∇F(λt, un) – ∇F(λt, u), u–
n – u–)

dt

≥ σ
∥∥u–

n – u–∥∥ + λ
∫ π



(∇F(λt, un) – ∇F(λt, u), u–
n – u–)

dt.

This yields u–
n → u– in X. Similarly, u+

n → u+ in X. Hence un → u in X. Hence, {un} pos-
sesses a strong convergent subsequence in X. The proof of Lemma . is complete. �

Lemma . Under assumption (H), (H), and (H′), the functional ϕ satisfies the (PS)∗

condition.
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Proof Let {uαn} be a sequence such that {αn} is admissible and

uαn ∈ Xαn , sup
n

ϕ(uαn ) < ∞, ϕ′
αn (uαn ) → .

For the sake of notational simplicity, set un = uαn .
Claim . {un} is bounded in X.
If not, passing to a subsequence if necessary, we assume that ‖un‖ → ∞ as n → ∞. In

view of (H′), there exists c >  such that

(∇F(t, x), x
)

– F(t, x) ≥ b|x|β – c, ∀(t, x) ∈ [, τ ] × RN . (.)

Hence, we have

ϕ(un) –
〈
ϕ′(un), un

〉
= λ

∫ π



[(∇F(λt, un), un
)

– F(λt, un)
]

dt

≥ λ
∫ π



[
b|un|β – c

]
dt

= bλ
∫ π


|un|β dt – πcλ

.

This implies that

∫ T
 |un|β dt

‖un‖ → , as n → ∞. (.)

Let un = u+
n + u–

n + u
n ∈ H+ ⊕ H– ⊕ H. By (H), we have

〈
ϕ′(un), u+

n
〉

=
〈
Lu+

n , u+
n
〉
– λ

∫ π



(∇F(λt, un), u+
n
)

dt

≥ σ
∥∥u+

n
∥∥ – aλ

∫ π



(|un|α
∣∣u+

n
∣∣ +

∣∣u+
n
∣∣)dt

≥ σ
∥∥u+

n
∥∥ – aλ(π )

β–α
β

(∫ π


|un|α× β

α dt
) α

β ∥∥u+
n
∥∥∞ – πaλ∥∥u+

n
∥∥∞

≥ σ
∥∥u+

n
∥∥ – aλ(π )

β–α
β C‖un‖α

Lβ

∥∥u+
n
∥∥ – πaλC

∥∥u+
n
∥∥

for all n, where we use the Hölder inequality and (.). We have

‖u+
n‖

‖un‖ → , as n → ∞. (.)

Similarly for u–
n , we also get

‖u–
n‖

‖un‖ → , as n → ∞. (.)

Again, by (H′), we have

(∇F(t, x), x
)

– F(t, x) ≥ b|x| – c, ∀|x| ≥ R > , t ∈ [, τ ],
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since β > α ≥ . Since dimH < ∞,

ϕ(un) –
〈
ϕ′(un), un

〉
= λ

∫ π



[(∇F(λt, un), un
)

– F(λt, un)
]

dt

≥ λ
∫ π



[
b|un| – c

]
dt

≥ λ
∫ π



(
b
∣∣u

n
∣∣ – b

∣∣u+
n
∣∣ – b

∣∣u–
n
∣∣ – c

)
dt

≥ c
∥∥u

n
∥∥ – c

∥∥u+
n
∥∥ – c

∥∥u–
n
∥∥ – c.

So we get

‖u
n‖

‖un‖ → , as n → ∞. (.)

Hence by (.)-(.), one has

 =
‖un‖
‖un‖ ≤ ‖u

n‖ + ‖u+
n‖ + ‖u–

n‖
‖un‖ → , as n → ∞,

a contradiction. Therefore, {un} is bounded in X.
Using similar arguments to the proof of Claim  in Lemma ., {un} possesses a strong

convergent subsequence in X. The proof of Lemma . is complete. �

Lemma . Under assumption (H)-(H), the function ϕ satisfies the conditions (f), (f),
and (f) of Theorem A.

Proof We only consider the case (i) in (H). The other case is similar.
() We claim that ϕ has a local linking at  with respect to (X, X).
By (H), for any ε > , there exists δ >  such that

∣∣F(t, x)
∣∣ ≤ ε|x|, ∀t ∈ [, τ ], |x| ≤ δ. (.)

By (.) and (.), there exists c >  such that

∣∣F(t, x)
∣∣ ≤ ε|x| + c|x|+α , ∀t ∈ [, τ ], x ∈ RN . (.)

Hence, for u ∈ X, we have

ϕ(u) ≥ 

〈Lu, u〉 – λ

∫ π



(
ε|u| + c|u|+α

)
dt ≥ σ


‖u‖ – ελC‖u‖ – cλ

C‖u‖+α .

Taking ε = σ /(λC) and noting that α >  in (H), we can find a constant ρ >  such
that

ϕ(u) ≥ , ∀u ∈ X with ‖u‖ ≤ ρ.
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On the other hand, let u = u + u– ∈ X satisfying ‖u‖ ≤ ρ = R/(C) and let

 =
{

t ∈ [, π ]|∣∣u–∣∣ ≤ R/
}

,  =
{

t ∈ [, π ]|∣∣u–∣∣ > R/
}

.

Then we have

∣∣u∣∣ ≤ ∥∥u∥∥∞ ≤ C
∥∥u∥∥ ≤ R/

for all t ∈ [, π ]. Consequently,

|u| ≤ ∣∣u∣∣ +
∣∣u–∣∣ ≤ R, for all t ∈ .

Hence, from (H)(i), we obtain

∫


F(t, u) dt ≥ .

On the one hand, one obtains

|u| ≤ ∣∣u∣∣ +
∣∣u–∣∣ ≤ R/ +

∣∣u–∣∣ ≤ 
∣∣u–∣∣, for all t ∈ .

It follows from (.) that

∣∣F(λt, u)
∣∣ ≤ ε|u| + c|u|+α ≤ ε

∣∣u–∣∣ + +αc
∣∣u–∣∣+α ,

for all t ∈ , which implies that

∣∣∣∣
∫



F(λt, u) dt
∣∣∣∣ ≤ ε

∫


∣∣u–∣∣ dx + +αc

∫


∣∣u–∣∣+α dt

≤ ε

∫ π



∣∣u–∣∣ dx + +αc

∫ π



∣∣u–∣∣+α dt

≤ εC∥∥u–∥∥ + (C)+αc
∥∥u–∥∥+α .

Setting ε = σ /(C), we have

ϕ(u) ≤ –
σ


〈
u–, u–〉

– λ
∫ π


F(λt, u) dt ≤ –

σ


∥∥u–∥∥ + (C)+αc

∥∥u–∥∥+α .

Consequently,

ϕ(u) ≤ , ∀u ∈ X with ‖u‖ ≤ ρ,

where ρ < ρ is small enough.
() We claim that for every m ∈ N, ϕ(u) → –∞ as ‖u‖ → ∞ on X

m ⊕ X.
Since X

m and H are finite dimensional, we can choose σm > , Cm >  such that

〈
Lu+, u+〉 ≤ σm

∥∥u+∥∥, for all u+ ∈ X
m,
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‖u‖ ≤ Cm‖u‖L , for all u ∈ X
m ⊕ H.

By (H), there exists c >  such that

F(t, x) ≥ σm

Cm
|x| – c, ∀t ∈ [, τ ],∀x ∈ RN .

So for u ∈ X
m ⊕ X,

ϕ(u) =


〈
Lu+, u+〉

+


〈
Lu–, u–〉

– λ
∫ π


F
(
λt, u(t)

)
dt

≤ σm


∥∥u+∥∥ –

σ


∥∥u–∥∥ –

σm

Cm

∫ π



∣∣u(t)
∣∣ dt + c

=
σm


∥∥u+∥∥ –

σ


∥∥u–∥∥ –

σm

Cm

(∥∥u+∥∥
L +

∥∥u–∥∥
L +

∥∥u∥∥
L

)
+ c

≤ –
σm


∥∥u+∥∥ –

σ


∥∥u–∥∥ – σm

∥∥u∥∥ + c → –∞,

for ‖u‖ → ∞.
() By (.), we see that ϕ maps bounded sets into bounded sets.
The proof of Lemma . is complete. �

Proof of Theorem . By Lemmas . and ., all conditions of Theorem A are satisfied.
Thus, problem (.) has at least one nonzero critical point. �

Proof of Theorem . By Lemmas . and ., all conditions of Theorem A are satisfied.
Thus, problem (.) has at least one nonzero critical point. �
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