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Abstract
In this paper, we prove the existence of global attractor and exponential attractor in
some stronger spaces for the strongly damped nonlinear wave equation when the
nonlinear term f (u,ut) depends on ut and contains a critical exponent with respect to
u and the external forcing term gmerely belongs to the weak space H–1(�).
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1 Introduction
We study the following strongly damped nonlinear wave equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �ut – �u + f (u, ut) = g t > , x ∈ �,

u(x, t) =  t > , x ∈ ∂�,

u(x, ) = u(x), ut(x, ) = u(x) t = , x ∈ �.

(.)

Here u = u(x, t) is a real-valued function defined on � × [,∞). � is an open bounded set
of R with a smooth boundary ∂�. f (u, v) ∈ C(R×R,R), and g ∈ H–(�).

In the case that f = f (u) ∈ C(R,R) with lim inf|r|→∞ f (r)
r > –λ, where λ is the first eigen-

value of –� on H
(�), Webb first considered the asymptotic behavior of strongly damped

wave equations in []. Then, in [], Carvalho et al. showed the existence of the global at-
tractor for wave equations with the critical nonlinearity. The regularity of solutions was
also investigated via a bootstrapping technique in [, ], and we mention that a similar
result has also been given by Pata et al. in [, ]. Recently, Sun and Yang in [, ] proved
the existence of global attractor and exponential attractor for the same equation with the
weaker external term g ∈ H–(�).

For another case, f = f (u, ut) ∈ C(R×R,R), Massatt [] and Hale [] proved the exis-
tence of global attractor when the continuous semigroup of the mapping S(t) : {u, u} �→
{u, ut} is pointwise dissipative and a bounded map. Moreover, under the assumptions that
f (u, ut) is subcritical with respect to u and the external force term g belongs to L(�), the
author in [] proved the existence of global attractor in the space H = H

(�) × L(�).
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In this paper, we investigate the latter case with the conditions given in [, ]. Com-
pared with those in [], the nonlinear term f (u, ut) satisfies the critical exponent growth
condition with respect to u (see (.)) and the external force g ∈ H–(�), which is weaker
than the assumptions in []. We also remove the additional assumptions (.), (.)
in []. Motivated by the key ideas in [], by making a shifting on the semigroup {S(t)}t≥

with a (proper) fixed point φ(x), we first show the global attractor A – φ(x) is bounded in
a stronger topology. More precisely, A– φ(x) is bounded in the space Hσ = D((–�) +σ

 ) ×
D((–�) σ

 ), σ ∈ [, 
 ) (see Theorem .). Then, by proving that the semigroup {S(t)}t≥ is

Fréchet differential with respect to the initial value, we apply our standard method estab-
lished in [] to obtain the exponential attractor for equation (.) without the restrictions
(.), (.) in []. In addition, with the regularity of solutions as in [], we establish the
existence of exponential attractor in the stronger space H

(�) × H
(�).

In order to have a comparison, we organize this paper as follows. In Section , we briefly
review some results. Section  is devoting to proving that the existence of global attractor
in the space Hσ . In Section , we obtain the exponential attractor in the space H

(�) ×
H

(�).

2 Preliminaries
Let

(u, v) =
∫

�

uv dx, ‖u‖ = (u, u)/, ∀u, v ∈ L(�),

(
(u, v)

)
=

∫

�

∇u∇v dx, ‖u‖H
(�) =

(
(u, v)

)/, ∀u, v ∈ H
(�),

H = H
(�) × L(�),

Hσ =
(
H

(�) ∩ H+σ
) × Hσ (�) = D

(
(–�)

+σ


) × D
(
(–�)

σ

)
, σ ∈

[

,



)

,

and

(y, y)H = (y, y)H
(�),L(�) =

(
(u, u)

)
+ (v, v), ‖y‖H

(�)×L(�) = (y, y)/
H

(�)×L(�),

‖yi‖σ = ‖yi‖Hσ =
∥
∥(ui, vi)T∥

∥
H+σ (�),Hσ (�),

∀yi = (ui, vi)T , y = (u, v)T ∈ H
(�) × L(�) or H+σ (�) × Hσ (�), i = , ,

denotes the usual inner products and norms in L(�), H
(�), and H

(�) × L(�),
H+σ (�) × Hσ (�), respectively.

Let ut = v, then equations (.) are equivalent to the following initial value problem in
the space H:

⎧
⎨

⎩

Ẏ = LY + F(Y ), x ∈ �, t > ,

Y () = Y = (u, u)T ∈H, t = ,
(.)
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where

Y =

(
u
v

)

, L =

(
 I

–A –A

)

, F(Y ) =

(


–f (u, ut) + g

)

,

D(L) = D(A) × D(A), D(A) = D(–�) = H(�) ∩ H
(�).

(.)

Massatt in [] proved that L defined in (.) is a sectorial operator on H and generates
an analytic compact semigroup eLt on H for t > . By the appropriate assumptions on f
and the external forcing term g ∈ L(�), they proved that there exists a unique function
Y (·) = Y (·, Y) ∈ C(R+,H) such that Y (, Y) = Y and Y (t) satisfies the integral equation

Y (t, Y) = eLtY +
∫ t


eL(t–s)F

(
Y (τ )

)
dτ ,

which is also called a mild solution of equation (.).
The main purpose here is to study the case g ∈ H–(�) and to provide some weaker

assumptions on f (u, v) than the one in [, ], that is, the function f (u, v) ∈ C(R × R,R)
with f (, ) =  satisfies the following condition:

lim inf|s|→+∞
f (s, )

s
> –λ (.)

and its partial derivatives f ′
 (u, v), f ′

(u, v), f ′′
(u, v), f ′′

(u, v), f ′′
(u, v) satisfy

∣
∣f ′

 (u, v)
∣
∣ ≤ C

(
 + |u|), ∀u, v ∈R, (.)

f ′
 (u, v) ≥ –	, ∀u, v ∈R, (.)

f ′
(u, v) ≤ δ (small enough), ∀u, v ∈ R, (.)
∣
∣f ′′

(u, v)
∣
∣,

∣
∣f ′′

(u, v)
∣
∣,

∣
∣f ′′

(u, v)
∣
∣ ≤ C

(
 + |u|), ∀u, v ∈R. (.)

Note again that in contrast to [], here f = f (u, ut) without the addition assumptions (.),
(.) in [], and in contrast to [], here f = f (u, ut) is critical with respect to u, and its
partial derivatives f ′

j , f ′′
ij is weaker than assumptions (), () in [].

Obviously, such conditions are satisfied in particular for the nonlinearities f (u, v) = u +
δ sin v (in other words, a small perturbation of u), etc.

As is well known, if g ∈ H–(�), the solution of the elliptic equation (θ > 	)
⎧
⎨

⎩

–�u + f (u, ) + θu = g ∈ H–(�),

u|∂� = ,
(.)

only belongs to H
(�). The regularity of the attractor (if it exists) is not higher than H

in this case. However, by a decomposition as in [], u(t) = û(t) + φ(x) where φ(x) is the
solution of equation (.) for some θ , and û(t) satisfies

⎧
⎨

⎩

ûtt – �ût – �û + f (û + φ, ût) – f (φ, ) = θφ,

û|∂� = .
(.)

Next, we will get the regularity of the solution û(t).



Zhong Boundary Value Problems  (2016) 2016:36 Page 4 of 18

3 Global attractor
We first present the following asymptotic regularity by the Galerkin approximate scheme
(see [, ]).

Theorem . Let f (u, v) ∈ C(R×R,R) with f (, ) =  satisfying the above assumptions
(.)-(.), g ∈ H–, and {S(t)}t≥ be the semigroup generated by the weak solution of (.)
in the space H

(�) × L(�). Then, for each  < σ < 
 , there exist a subset Bσ , a monotone

increasing function Qσ (·), and a positive constant ν (independent of σ ) such that: for any
bounded set B ⊂H,

distH
(
S(t)B,Bσ

) ≤ Qσ

(‖B‖H
)
e–νt , for all t ≥ ,

where Bσ satisfies, for some constant σ > ,

Bσ =
{
ς ∈H :

∥
∥ς –

(
φ(x), 

)∥
∥

H+σ (�)×Hσ (�) ≤ σ < ∞}
,

and φ(x) is the unique solution of the above equation (.) by choosing θ = η large enough,
that is,

⎧
⎨

⎩

–�φ + f (φ, ) + ηφ = g ∈ H–(�), in �,

φ|∂� = .
(.)

Remark . From [], we know that
. for each θ (> 	), equation (.) has a unique solution uθ (x) ∈ H

(�) satisfying

‖∇uθ‖ + (θ – 	)‖uθ‖
 ≤ ‖g‖

H– ;

. ‖∇uθ‖ → , ‖uθ‖Lp →  as θ → ∞ for any fixed p ∈ [, ).

Now, denote hθ (u, ut) = f (u, ut) + θu. From (.)-(.) and the mean value theorem, one
has, for any v ∈ C((,∞),H),



‖∇v‖ +



‖vt‖ + 

〈
hθ (v + φ, vt + φt) – hθ (φ,φt), v

〉
–

〈
h′

θ (φ, )v, v
〉

=


‖∇v‖ +



‖vt‖ + 

〈
hθ (v + φ, vt) – hθ (φ, ), v

〉
–

〈
h′

θ (φ, )v, v
〉

=


‖∇v‖ +



‖vt‖ + 

〈
hθ (v + φ, vt) – hθ (φ, vt) + hθ (φ, vt) – hθ (φ, ), v

〉

–
〈
h′

θ (φ, )v, v
〉

=


‖∇v‖ +



‖vt‖ + 

〈
h′

θ (ϑv + φ, vt)v, v
〉
+ 

〈
h′

θ (φ,ϑvt)vt , v
〉
–

〈
h′

θ (φ, )v, v
〉

≥ 

‖∇v‖ +



‖vt‖ + (θ – 	)‖v‖ – θ‖v‖ – δ

∫

�

|vtv|dx – C
∫

�

(
 + |φ|)|v| dx

≥ 

‖∇v‖ +



‖vt‖ + (θ – 	 – C – δ)‖v‖ – δ‖vt‖ – C‖∇φ‖‖∇v‖, (.)

where the constants C, δ, and 	 come from (.)-(.), respectively, and ϑ,ϑ ∈ (, ), φ

is the solution of (.).
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Hence, by choosing θ large enough in (.) with the assertion  in Remark ., we know
that



‖∇v‖ +



‖vt‖ + 

〈
hθ (v + φ, vt + φt) – hθ (φ,φt), v

〉
–

〈
h′

θ (φ, )v, v
〉 ≥ ,

for all v ∈ C((,∞),H
)
. (.)

3.1 Decomposition of the equations
Let

h(u, ut) = f (u, ut) + ηu,

where the positive constant η is large enough and such that (.) and (.) holds when
θ = η.

Now, we first decompose the solution S(t)(u, v) = (u(t), ut(t)) into the sum

(
u(t), ut(t)

)
= S(t)ξu() = K(t)ξu() + D(t)ξu() =

(
w(t), wt(t)

)
+

(
z(t), zt(t)

)
,

where K(t)ξu() = (w(t), wt(t)) and D(t)ξu() = (z(t), zt(t)) solve the following equations,
respectively:

⎧
⎪⎪⎨

⎪⎪⎩

wtt – �wt – �w + f (u, ut) – f (z, zt) = ηz in � ×R
+,

w|∂� = ,

(w(x, ), wt(x, )) = (, ),

(.)

and
⎧
⎪⎪⎨

⎪⎪⎩

ztt – �zt – �z + h(z, zt) = g(x) in � ×R
+,

z|∂� = ,

(z(x, ), zt(x, )) = ξu().

(.)

Then we decompose further the solution z(x, t) of (.) as z(x, t) = v(x, t) + φ(x), where
φ(x) is the unique solution of (.) and v(x, t) solves the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

vtt – �vt – �v + h(z, zt) – h(φ, ) =  in � ×R
+,

v|∂� = ,

(v(x, ), vt(x, )) = ξu() – (φ(x), ).

(.)

Hence,

(
u(t), ut(t)

)
=

(
w(t), wt(t)

)
+

(
z(t), zt(t)

)

=
(
w(t), wt(t)

)
+

(
v(t) + φ, vt(t) + φt

)

=
(
w(t), wt(t)

)
+

(
v(t) + φ, vt(t)

)
, due to φt = . (.)

Hereafter, we always assume the assumptions in Theorem . hold and denote the
unique solution of (.) by φ(x).
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3.2 The prior estimates in spaces H,Hσ (σ ∈ [0, 1
2 ))

Now, we will give the prior estimates in space H or regular space Hσ for the above de-
compositions of the solutions z, v, w, u, respectively.

First of all, we have the following estimate (e.g., see [, ]) for the solution z of (.).

Lemma . There exists an increasing function Q(·) such that, for any bounded set B ⊂H,
one gets, for any t ≥ ,

∥
∥∇z(t)

∥
∥ +

∫ t



∥
∥∇zt(s)

∥
∥ dx ≤ Q

(‖B‖H + ‖g‖H–
)
, ∀ξu() ∈ B. (.)

Proof Indeed, we consider the functional (by choosing φ̂(y) = f (y, ) + ηy in [])

F (t) = F
(
z(t)

)
= 

∫

�

∫ z(x,t)



(
f (s, ) + ηs

)
ds dx. (.)

We set ξ (t) = zt + εz with ε ∈ (, ε), for some ε ≤  to be determined later. Multiplying
equation (.) by ξ yields




d
dt

E + ε( – ε)‖∇z‖ + ‖∇ξ‖

= ε‖ξ‖ – ε〈z, ξ 〉 + ε〈g, z〉 – ε
〈
f (z, ) + ηz, z

〉
+

〈
f (z, ) – f (z, zt), zt + εz

〉
, (.)

where the energy functional E is defined as

E(t) = E
(
z(t)

)
= ( – ε)‖∇z‖ +

∥
∥ξ (t)

∥
∥ + F (t) – 〈g, z〉. (.)

Obviously, from (.), we know that here the function φ̂(y) = f (y, ) + ηy satisfies the
assumptions (), (), (), () in [], and due to the mean value theorem, we have

〈
f (z, zt) – f (z, ), zt + εz

〉
=

〈
f ′
(z,ϑzt)zt , zt + εz

〉

≤ δ‖zt‖ + δε

∫

�

|ztz|dx, (.)

where ϑ ∈ (, ).
As to the assumption (.), if δ is small enough, the term in (.) can be controlled by

the left-hand side of (.). Therefore, with the application of the same argument as in [],
it is easy to get the inequality (.). It finishes the proof of Lemma .. �

Then, for the solution v of (.), we have the following.

Lemma . There exist an increasing function Q(·) and some constant k > , such that,
for any bounded set B ⊂H,

∥
∥
(
v(x, t), vt(x, t)

)∥
∥
H ≤ Q

(‖B‖H
)
e–kt , ∀t ≥ , ξv() ∈ B,

that is,

∥
∥
(
z(x, t), zt(x, t)

)
–

(
φ(x), 

)∥
∥
H ≤ Q

(‖B‖H
)
e–kt , ∀t ≥ , ξv() ∈ B.
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Proof As in [, ], for ε ∈ (, ) to be determined later, we define the functional

(t) =
∥
∥∇v(t)

∥
∥ +

∥
∥vt(t)

∥
∥ + ε

∥
∥∇v(t)

∥
∥ + 

〈
h(z, ) – h(φ, ), v

〉
+ ε〈vt , v〉 –

〈
h′

(φ, )v, v
〉
.

Then, from (.) and by taking ε small enough, we have

(t) ≥ 


∥
∥ξv(t)

∥
∥
H for all t ≥ , ξ ∈ B.

Multiplying (.) by vt + εv(t) we have (note that zt = vt and φt = )

d
dt

(t) + ε(t) + � +
ε


∥
∥∇v(t)

∥
∥

= 
〈(

h′
(z, ) – h′

(φ, )
)
zt , v

〉
+ 

〈(
h(z, ) – h(z, zt)

)
, vt + εv

〉
, (.)

where

� = 
∥
∥∇vt(t)

∥
∥ +

ε


∥
∥∇v(t)

∥
∥ – ε‖vt‖ – ε〈vt , v〉 – ε‖∇v‖ + ε

〈
h′

(φ, ), v〉.

It is easy to see that � ≥  as ε small enough, and from (.), we have


〈(

h′
(z, ) – h′

(φ, )
)
zt , v

〉
= 

〈
h′′


(
rz + ( – r)φ, 

)
zt , v〉

≤ C
∫

�

(
 + |z| + |φ|)|zt||v| dx

≤ c‖∇zt‖‖∇v‖ ≤ ε


‖∇v‖ +

c

ε
‖∇zt‖,

where r ∈ (, ) and the constant c depends only on ‖B‖H + ‖∇φ‖.
By the mean value theorem, for the last term in the right-hand side of (.), we get


〈(

h(z, ) – h(z, zt)
)
, vt + εv

〉
= 

〈
f (z, zt) – f (z, ), zt + εz

〉

=
〈
f ′
(z,ϑzt)zt , zt + εv

〉

≤ δ‖zt‖ + δε

∫

�

|ztv|dx.

Since δ is small enough, from Lemma . and by noticing () ≤ Q(‖B‖H + ‖∇φ‖) and by
applying Lemma . [], we can finish the proof of Lemma .. �

Second, for the solution w(t) in (.), we have the following result.

Lemma . For each bounded subset B ⊂H and any σ ∈ [, 
 ), there exists an increasing

function Qσ (·) such that

∥
∥K(t)ξu()

∥
∥
Hσ =

∥
∥
(
w(t), wt(t)

)∥
∥
Hσ ≤ Qσ

(‖B‖H
)
eνσ t ∀t ≥ , ξu() ∈ B, (.)

where the positive constant νσ depends only on ‖B‖H and σ .
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Proof Rewriting equation (.) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �ut – �u + f (u, ) = g + f (u, ) – f (u, ut) t > , x ∈ �,

u(x, t) =  t > , x ∈ ∂�,

u(x, ) = u(x), ut(x, ) = u(x) t = , x ∈ �,

and applying the same argument as in the proof procedure of Lemma . with the assump-
tions (.)-(.), and combining with (.), it is easy to show that

∥
∥∇u(t)

∥
∥ +

∥
∥∇z(t)

∥
∥ ≤ c

(‖B‖H
)
, ∀t ≥ .

Now, rewrite equation (.) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wtt – �wt – �w + f (u, ) + ηu – (f (z, ) + ηz),

= ηu + f (u, ) – f (u, ut) – (f (z, ) – f (z, zt)) in � ×R
+,

w|∂� = ,

(w(x, ), wt(x, )) = (, ).

(.)

Denoting φ̂(u) = f (u, ) + ηu, φ̂(z) = f (z, ) + ηz like the one in [], and testing equation
(.) with Aσ wt , we are led to the identity (denote γ (t) = (w(t), wt(t)))




d
dt

∥
∥γ (t)

∥
∥

σ
+

∥
∥A(+σ )/wt

∥
∥

= –
〈
φ̂(u) – φ̂(z), Aσ wt

〉
+

〈
g, Aσ wt

〉

+
〈
f (u, ) – f (u, ut) –

(
f (z, ) – f (z, zt)

)
, Aσ wt

〉
. (.)

Due to (.), we get

–
〈
φ̂(u) – φ̂(z), Aσ wt

〉 ≤ c
(
 + ‖u‖

L + ‖z‖
L

)‖w‖L/(–σ )
∥
∥Aσ wt

∥
∥

L/(+σ )

≤ c
(
 +

∥
∥A/u

∥
∥ +

∥
∥A/v

∥
∥)∥∥A(+σ )/w

∥
∥
∥
∥A(+σ )/wt

∥
∥

≤ c
∥
∥γ (t)

∥
∥

σ
+



∥
∥A(+σ )/wt

∥
∥. (.)

By virtue of (.), we have

〈
f (u, ) – f (u, ut) –

(
f (z, ) – f (z, zt)

)
, Aσ wt

〉

=
〈
–f ′

(u,ϑut)ut + f ′
(z,ϑzt)zt , Aσ wt

〉

≤ δ
(‖ut‖L/(–σ ) + ‖zt‖L/–σ

)∥
∥Aσ wt

∥
∥

L/(+σ )

≤ δ
(‖ut‖L/(–σ ) + ‖zt‖L/–σ

)∥
∥A(+σ )/wt

∥
∥

≤ c +


∥
∥A(+σ )/wt

∥
∥, (.)

where ϑ ∈ (, ).
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Additionally,

〈
g, Aσ wt

〉 ≤ ∥
∥A–/g

∥
∥
∥
∥A(+σ )/wt

∥
∥ ≤ c +



∥
∥A(+σ )/wt

∥
∥. (.)

Plugging (.)-(.) into (.), we obtain

d
dt

∥
∥γ (t)

∥
∥

σ
≤ c

∥
∥γ (t)

∥
∥

σ
+ c, (.)

and the Gronwall lemma entails

∥
∥γ (t)

∥
∥

σ
≤ ekt – ,

which concludes the proof. �

Now, based on Lemmas (.) and (.), one can also decompose the solution u(t) as
follows.

Lemma . For any ε > ,

u(t) = v(t) + w(t), for all t ≥ , (.)

where v(t) and w(t) satisfy the following:

∫ t

s

∥
∥∇v(τ )

∥
∥ dτ ≤ ε(t – s) + Cε for all t ≥ s ≥ , (.)

and

∥
∥A

+σ
 w(t)

∥
∥ ≤ Kε for all t ≥ , (.)

with the constants Cε and Kε depending on ε, the initial value ‖ξu()‖H and ‖g‖H– .

Due to (.) and Lemma . in [], one can easily deduce Lemma ..
Next, we will show further that the estimate w in (.) can be chosen independent of

the time t.

Lemma . For every σ ∈ [, 
 ), there exists a constant JB,σ which depends only on the

H-bound of B (⊂H) and σ , such that

∥
∥K(t)ξu()

∥
∥
Hσ =

∥
∥
(
w(t), wt(t)

)∥
∥
Hσ ≤ JB,σ for all t ≥  and ξu() ∈ B.

Proof The idea comes from [, , ] but with different details.
Multiplying (.) by Aσ (wt(t) + εw(t)), we obtain




d
dt

∫

�

∣
∣A

σ
 (wt + εw)

∣
∣ –

〈
εwt , Aσ (wt + εw)

〉

–
〈
Awt , Aσ (wt + εw)

〉
–

〈
Aw, Aσ (wt + εw)

〉



Zhong Boundary Value Problems  (2016) 2016:36 Page 10 of 18

= –
〈
f (u, ) – f (z, ), Aσ (wt + εw)

〉
+

〈
ηz, Aσ (wt + εw)

〉

+
〈
f (u, ) – f (u, ut) –

(
f (z, ) – f (z, zt)

)
, Aσ wt

〉
,

where ε (> ) is small enough to be determined later.
We only need to deal with the right-hand side term, and the others can be estimated

easily as those Lemma . in [].
From (.), we first deal with the first dual product,

∣
∣
〈
f (u, ) – f (z, ), Aσ (wt + εw)

〉∣
∣ ≤ C

∫

�

(
 + |u| + |z|)|w|∣∣Aσ (wt + εw)

∣
∣dx.

Applying Lemma ., we have

∫

�

|u||w|∣∣Aσ w
∣
∣dx ≤ C

∫

�

(|v| + |w|
)∣
∣w(t)

∣
∣
∣
∣Aσ w(t)

∣
∣dx (.)

and

∣
∣
〈
f (u, ) – f (z, ), Aσ w)

〉∣
∣ ≤ cQ

(‖B‖H
)∥
∥∇v(t)

∥
∥∥∥A

+σ
 w(t)

∥
∥

+ cσ

(
Kε + ‖φ‖H

)
Q

(‖B‖H
)

+ C +



∥
∥A

+σ
 w(t)

∥
∥.

Similarly,

∣
∣
〈
f (u, ) – f (z, ), Aσ wt

〉∣
∣ ≤ cQ

(‖B‖H
)∥
∥∇v(t)

∥
∥∥∥A

+σ
 w(t)

∥
∥

+ cσ

(
Kε + ‖φ‖H

)
Q

(‖B‖H
)

+ C +



∥
∥A

+σ
 wt(t)

∥
∥.

By the mean value theorem, similar to (.), we have

〈
f (u, ) – f (u, ut) –

(
f (z, ) – f (z, zt)

)
, Aσ wt

〉

=
〈
–f ′

(u,ϑut)ut + f ′
(z,ϑzt)zt , Aσ wt

〉

≤ δ
(‖ut‖L/(–σ ) + ‖zt‖L/–σ

)∥
∥Aσ wt

∥
∥

L/(+σ )

≤ δ
(‖ut‖L/(–σ ) + ‖zt‖L/–σ

)∥
∥A(+σ )/wt

∥
∥

≤ c +


∥
∥A(+σ )/wt

∥
∥

and

〈
f (u, ) – f (u, ut) –

(
f (z, ) – f (z, zt)

)
, Aσ w

〉

=
〈
–f ′

(u,ϑut)ut + f ′
(z,ϑzt)zt , Aσ w

〉

≤ δ
(‖ut‖L/(–σ ) + ‖zt‖L/–σ

)∥
∥Aσ w

∥
∥

L/(+σ )

≤ δ
(‖ut‖L/(–σ ) + ‖zt‖L/–σ

)∥
∥A(+σ )/w

∥
∥

≤ c +


∥
∥A(+σ )/w

∥
∥.
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Therefore, we can finish the proof by using the Gronwall-type inequality as was done in
[], Lemma .. �

Finally, for u(t), the following decomposition is valid, which will be used later to con-
struct an exponential attractor.

Lemma . For each σ ∈ [, 
 ) and for any bounded (in Hσ ) subset B ⊂Hσ , if the initial

data ξu() ∈ φ(x) + B, then

∥
∥S(t)ξu() –

(
φ(x), 

)∥
∥
Hσ =

∥
∥
(
u(t), ut(t)

)
–

(
φ(x), 

)∥
∥
Hσ ≤ KB,σ

∀t ≥ , ξu() ∈ φ(x) + B,

where the constant KB,σ depends only on the Hσ -bound of B and σ .

Proof By taking the following decomposition: u(t) = û(t) + φ(x), where φ(x) is the unique
solution of (.) and û(t) solves the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

ûtt – �ût – �û + f (u, ) – f (φ, ) = ηφ + f (u, ) – f (u, ut) in � ×R
+,

û|∂� = ,

(û(x, ), ût(x, )) = ξu() – (φ, ),

by applying Lemma ., we get similar estimates to those in Lemma .. Noting that the
initial value data (û(x, ), ût(x, )) = ξu() – (φ, ) ∈ Hσ , the conclusion can be obtained.

�

Hence, the proof of Theorem . follows from the above lemmas as in [].

4 Exponential attractor
In this section, based on the asymptotic regularity obtained above, we will construct an
exponential attractor by the abstract method devised in []. Here it is different from []
to prove the asymptotic smooth property (as it was called by EMS  in []) under the
additional assumptions (.), (.) in that paper.

By our abstract method devised in [], one defines here S as the map induced by
Poincaré sections of a Lipschitz continuous semigroup {S(t)}t≥ at the time t = T∗ for
some T∗ > ; that is, S := S(T∗) and S : Bε (A) → Bε (A) is a C map. L(X) = {L|L : X →
X bounded linear maps}, Lλ(X) = {L|L ∈ L(X) and L = K + C with K compact,‖C‖ < λ}.
For the discrete semigroup {Sn}∞n= generated by S, we have the following lemmas.

Lemma . (see Theorem . []) If there exists λ ∈ (, ) such that DxS(x) ∈ Lλ(X) for
all x ∈ Bε (A) then {Sn}∞n= possesses an exponential attractor Md .

Lemma . (see Theorem . []) Suppose that there is T∗ >  such that S = S(T∗) satis-
fies the condition of above lemma . and the map F(x, t) = S(t)x is Lipschitz from [, T]×X
into X for any T > . Then the flow {S(t)}t≥ admits an exponential attractor Mc.
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As regards the Fréchet differential of semigroup, we have the following crucial lemma.

Lemma . Consider the linearized equation of (.),

⎧
⎪⎪⎨

⎪⎪⎩

Utt – �Ut – �U + f ′
 (u, ut)U + f ′

(u, ut)Ut = ,

U(x, t)|∂� = ,

(U(x, ), Ut(x, ))T = (ξ ,η)T .

(.)

If the function f (u, v) satisfies conditions (.)-(.), then (.) is a well-posed problem in E,
the mapping S(t) defined in (.) is Fréchet differentiable on E for any t > , its differential
at ϕ = (u, u)T is the linear operator on E : (ξ ,η)T �→ (U(t), V (t))T , where U is the solution
of (.) and V = Ut .

Proof According to assumptions (.)-(.), (.) is a well-posed problem in H.
In the sequel, we first consider the Lipschitz property of the semigroup S(t) on the

bounded sets B (⊂H). Letting ϕ = (u, u)T ∈ D(L), ϕ̃ = ϕ + (ξ ,η)T = (u + ξ , u + η)T ∈
D(L), it follows from the above estimate that the solutions S(t)ϕ = ϕ(t) = (u(t), ut(t))T ∈
D(L), S(t)ϕ̃ = ϕ̃(t) = (ũ(t), ũt(t))T ∈ D(L).

Obviously, the difference ψ = ũ – u satisfies

ψtt – �ψt – �ψ = –
[
f (ũ, ũt) – f (u, ut)

]
. (.)

Taking the scalar product of (.) with ψt = ũt – ut in L(�) and by the mean value theo-
rem, we have




d
dt

(‖ψt‖ + ‖∇ψ‖) + ‖∇ψt‖

=
〈
–
[
f (ũ, ũt) – f (u, ũt)

]
–

[
f (u, ũt) – f (u, ut)

]
,ψt

〉

=
〈
–f ′


(
u + ϑ(ũ – u), ut

)
ψ – f ′


(
u, ut + ϑ(ũt – ut)

)
ψt ,ψt

〉

(
by (.), (.) and the Poincaré inequality

)

≤
∫

�

C
(
 + |u| + |ũ|)|ψ ||ψt|dx + δ‖ψt‖

L(�)

≤ C
(
 + ‖u‖

L + ‖ũ‖
L

)‖ψ‖L‖ψt‖L + δ‖ψt‖
L(�)

(due to Lemma . and the Poincaré inequality)

≤ C(δ)‖∇ψ‖
L(�) + δ‖∇ψt‖

L(�). (.)

Since δ is small enough, applying the Gronwall inequality to (.), it is easy to show the
semigroup {S(t)}t≥ is Lipschitz, i.e.,

∥
∥ψ̃(t) – ψ(t)

∥
∥

H
×L =

∥
∥ũ(t) – u(t)

∥
∥ +

∥
∥∇ũ(t) – ∇u(t)

∥
∥

≤ ect(‖η‖ + ‖∇ξ‖), ∀t ≥ . (.)
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Integrating (.) in dτ on [, t], this, on account of (.), yields

∫ t


‖∇ψ‖ dτ ≤ ect(‖η‖ + ‖∇ξ‖), ∀t ≥ . (.)

Furthermore, applying the same argument as in [] with the assumptions (.)-(.), we
can obtain the same estimates for ‖ψt(t)‖ and ‖∇ψt(t)‖, that is,

∥
∥ψ̃t(t) – ψt(t)

∥
∥

H
×L =

∥
∥ũt(t) – ut(t)

∥
∥ +

∥
∥∇ũt(t) – ∇ut(t)

∥
∥

≤ ect(‖η‖ + ‖∇ξ‖), ∀t ≥ . (.)

Next, consider the difference θ = ũ–u–U , with U the solution of the linearized equation
(.). Obviously,

θ () = θ () = , θt() = θt() = ; (.)

and

θtt – �θt – �θ = –
[
f (ũ, ũt) – f (u, ut) – f ′

 (u, ut)U – f ′
(u, ut)Ut

]
= h, (.)

where h = –[f (ũ, ũt) – f (u, ut) – f ′
 (u, ut)U – f ′

(u, ut)Ut].
By the mean value theorem, we have

h = –
[
f ′

(
u + ϑ(ũ – u), ũt

)
– f ′

 (u, ũt) + f ′
 (u, ũt) – f ′

 (u, ut)
]
(ũ – u)

–
[
f ′

(
u, ut + ϑ(ũt – ut)

)
– f ′

(u, ut)
]
(ũt – ut)

+ f ′
 (u, ut)θ + f ′

(u, ut)θt , (.)

where ϑi ∈ (, ), i = , .
Taking the scalar product of each side of (.) with θt in L(�) and by (.), we find




d
dt

(‖θt‖ + ‖∇θ‖) + ‖∇θt‖

= (h, θt)
(
by assumptions (.), (.)

)

≤
∫

�

|θt|
(
C

(
 + |ũ| + |u|)ϑ|ũ – u| + C

(
 + |u|)(ũt – ut)(ũ – u)

+ C
(
 + |u|)ϑ|ũt – ut| + C

(
 + |u|)|θ | + δ|θt|

)
dx, (.)

where ϑ,ϑ ∈ (, ).
We will deal with every term in the right-hand side of inequality (.); we have

∫

�

|θt|C
(
 + |ũ| + |u|)ϑ|ũ – u| dx

≤ C
(∫

�

(
 + |ũ| + |u|) dx

)/(∫

�

(|ũ – u||θt|
) dx

)/
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≤ C
(∫

�

|ũ – u||θt| dx
)/

≤ C
(∫

�

[|ũ – u|]/ dx
)/(∫

�

(|θt|
) dx

)/

≤ 


‖∇θt‖ + C‖∇ũ – ∇u‖; (.)
∫

�

(
C

(
 + |u|)(ũt – ut)(ũ – u)|θt|

)
dx

≤ C
(∫

�

(
 + |u|) dx

)/(∫

�

(|ũt – ut||ũ – u||θt|
) dx

)/

≤ C
(∫

�

(|θt|
) dx

)/(∫

�

(|ũt – ut||ũ – u|)/ dx
)/

≤ C‖θt‖
L + ‖ũt – ut‖

L‖ũ – u‖
L

≤ 


‖∇θt‖ + C‖∇ũt – ∇ut‖‖∇ũ – ∇u‖; (.)
∫

�

(
 + |u|)ϑ|ũt – ut||θt|dx

≤ C
(∫

�

(
 + |u|) dx

)/(∫

�

(|ũt – ut||θt|
) dx

)/

≤ C
(∫

�

|ũt – ut||θt| dx
)/

≤ C
(∫

�

(|ũt – ut|
)/ dx

)/(∫

�

(|θt|
) dx

)/

≤ C‖ũt – ut‖
L +

∥
∥θN

t
∥
∥

L

≤ C‖∇ũt – ∇ut‖ +



‖∇θt‖; (.)
∫

�

C
(
 + |u|)|θ ||θt|dx

≤ C

(∫

�

(
 + |u|)/ dx

)/(∫

�

|θ ||θt| dx
)/

≤ C
(∫

�

|θ | dx
)/(∫

�

|θt| dx
)/

≤ C



‖∇θ‖
 +




‖∇θt‖
. (.)

Plugging (.)-(.) into (.), we have

d
dt

(‖θt‖ + ‖∇θ‖)

≤ C
(‖θt‖ + ‖∇θ‖)

+ C
(‖∇ũ – ∇u‖ + ‖∇ũt – ∇ut‖‖∇ũ – ∇u‖ + ‖∇ũt – ∇ut‖),
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where C > , C > . By the Gronwall inequality and the estimates (.), (.), (.), we
obtain

‖θt‖ + ‖∇θ‖ ≤ C

C
expCt

∫ t



(∥
∥∇ũ(s) – ∇u(s)

∥
∥

+
∥
∥ũt(s) – ut(s)

∥
∥∥∥∇ũ(s) – ∇u(s)

∥
∥ +

∥
∥∇ũt(s) – ∇ut(s)

∥
∥)ds

≤ C
(|η| + ‖ξ‖) · expCt , ∀t ≥ ,

where C > , C > , that is,

∥
∥ψ̃(t) – ψ(t) – U(t)

∥
∥

H
×L ≤ C

(∥
∥(ξ ,η)T∥

∥
H

×L
) · expCt ∀t ≥ .

Therefore,

‖ψ̃(t) – ψ(t) – U(t)‖
H

×L

‖(ξ ,η)T‖
H

×L

≤ C
∥
∥(ξ ,η)T∥

∥
H

×L · expCt

→  as (ξ ,η)T →  in D(L). (.)

Since H = H
(�) × L(�) is dense in D(L), (.) is true for solutions ψ̃(t), ψ(t), U(t) ∈H.

Next, to prove the decomposition (.), one has the following.

Lemma . L · ((ξ ,η)T ) = (U , Ut) = (U, Ut) + (U, Ut) = C · ((ξ ,η)T ) + K · ((ξ ,η)T ) (where
the operator C is contractive and K is compact as in Lemma .), separately, satisfying the
following equations:

⎧
⎪⎪⎨

⎪⎪⎩

Utt – �Ut – �U = ,

U(x, t)|∂� = ,

(U(x, ), Ut(x, ))T = (ξ ,η)T ;

(.)

⎧
⎪⎪⎨

⎪⎪⎩

Utt – �Ut – �U + f ′
 (u, ut)U + f ′

(u, ut)Ut = ,

U(x, t)|∂� = ,

(U(x, ), Ut(x, ))T = (, )T .

(.)

Proof For (U, Ut), we set

ζ (t) = Ut(t) + εU(t).

Here ε ∈ (, ε), for some ε ≤  to be determined later. Testing equation (.) with ζ

yields




d
dt

E + ε( – ε)
∥
∥A/U

∥
∥ +

∥
∥A/ζ

∥
∥ = ε‖ζ‖ – ε〈U, ζ 〉, (.)

where the energy functional E is given as

E = ( – ε)
∥
∥A/U(t)

∥
∥ +

∥
∥ζ (t)

∥
∥.
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We have the inequality

–ε〈U, ζ 〉 ≤ ε


∥
∥A/U

∥
∥ + ε‖ζ‖.

Inserting it into (.), one gets

d
dt

E + ε

(

 – ε –
ε



)
∥
∥A/U

∥
∥ + (λ – ε)‖ζ‖ ≤ , (.)

so, for ε small enough,

d
dt

E + ε
∥
∥A/U

∥
∥ + (λ – ε)‖ζ‖ ≤ , (.)

which implies that (U, Ut) = C · ((ξ ,η)T ) is contractive.
Furthermore, multiplying (.) by Aσ Ut + εAσ U as in Lemma ., we have

∥
∥C · ((ξ ,η)T)∥

∥
Hσ =

∥
∥(U, Ut)

∥
∥
Hσ ≤ JB,σ for all t ≥  and ξu() ∈ B.

Similarly, multiplying (.) by Aσ Ut + εAσ U , we have

∥
∥L · (ξ ,η)T∥

∥
Hσ =

∥
∥(U , Ut)

∥
∥
Hσ ≤ JB,σ for all t ≥  and ξu() ∈ B.

Thus,

∥
∥K · (ξ ,η)T∥

∥
Hσ =

∥
∥(U, Ut)

∥
∥
Hσ =

∥
∥(U , Ut) – (U, Ut)

∥
∥
Hσ ≤ JB,σ

for all t ≥  and ξu() ∈ B,

which implies that K · (ξ ,η)T = (U, Ut) is compact and the proof of Lemma . is fin-
ished. �

We also need the following Lipschitz continuity of {S(t)}.

Lemma . The mapping (t, ξu()) �→ ξu(t) is Lipschitz continuous on [, t∗] × Bσ , where
the absorbing set Bσ is given in Theorem ..

Proof For any ξui () ∈ Bσ , ti ∈ [, t∗], i = , , we have

∥
∥S(t)ξu () – S(t)ξu ()

∥
∥
H

≤ ∥
∥S(t)ξu () – S(t)ξu ()

∥
∥
H +

∥
∥S(t)ξu () – S(t)ξu ()

∥
∥
H.

The first term has been estimated in (.); for the second term, we have

∥
∥S(t)ξu () – S(t)ξu ()

∥
∥
H ≤

∣
∣
∣
∣

∫ t

t

∥
∥
∥
∥

d
dt

(
S(t)ξu ()

)
∥
∥
∥
∥
H

∣
∣
∣
∣

≤
∥
∥
∥
∥

d
dt

(
S(t)ξu ()

)
∥
∥
∥
∥

L∞(,t∗ ;H)
· |t – t|
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and we note that ‖ d
dt (S(t)ξu ())‖L∞(,t∗ ;H) can be estimated as in [] with the assumptions

(.)-(.). �

Therefore, applying the abstract results devised in [] to Lemmas ., ., we obtain
the exponential attractor for the original semigroup {S(t)}t≥ in the space H.

Also applying the same argument as in [] with the assumptions (.)-(.), we can ob-
tain the same estimates about ‖∇ut(t)‖ and utt(t). Thus, similar to Theorem . in [],
we indeed have the following results (with a stronger attraction for the second component
ut(t) of (u(t), ut(t))).

Theorem . Let the assumptions of Theorem . hold, then there exists a set E , such that
(i) E is compact in H

(�) × H
(�) and positively invariant, i.e., S(t)E ⊂ E for all t ≥ ;

(ii) dimF (E , H
(�) × H

(�)) < ∞;
(iii) there exist a constant α >  and an increasing function Q : R+ →R

+ such that, for
any subset B ⊂H with ‖B‖H ≤ R,

distH
(�)×H

(�)
(
S(t)B,E

) ≤ Q(R)
√
t

e–αt for all t ≥ ;

(iv) E = (φ(x), ) + Eσ , with Eσ bounded in H
(�) ∩ H+σ (�) × H

(�) (σ < 
 ), where

φ(x) is the unique solution of (.).
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