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Abstract
In this paper, we establish a unilateral global bifurcation result from interval for a class
of periodic p-Laplacian problems with non-differentiable nonlinearity. By applying the
above result, we shall prove the existence of the principal half-eigenvalues for the
half-quasilinear periodic p-Laplacian problem

–(ϕp(x
′))′ + q(t)ϕp(x) = λa(t)ϕp(x) + α(t)ϕp(x

+) + β(t)ϕp(x
–), 0 < t < T ,

x(0) = x(T ), x′(0) = x′(T ),

where ϕp(s) = |s|p–2s, λ is a positive parameter and x+ = max{x, 0}, x– = –min{x, 0},
a(t) ∈ C([0, T ], (0,∞)), α(t),β(t) ∈ C[0, T ]. Moreover, we also investigate the existence of
one-sign solutions for a class of half-quasilinear periodic p-Laplacian problem

–(ϕp(x
′))′ + q(t)ϕp(x) = α(t)ϕp(x

+) + β(t)ϕp(x
–) + ra(t)f (x), 0 < t < T ,

x(0) = x(T ), x′(0) = x′(T ),

where f ∈ C(R,R), sf (s) > 0 for s �= 0, and f0 ∈ (0,∞] and f∞ ∈ (0,∞) or f0 ∈ [0,∞] and
f∞ =∞, where f0 = lim|s|→0 f (s)/ϕp(s), f∞ = lim|s|→+∞ f (s)/ϕp(s).

MSC: 34B15; 34C10; 34C23

Keywords: unilateral interval bifurcation; half-quasilinear problems; one-sign
solutions; periodic p-Laplacian problems

1 Introduction
Let E be a real Banach space with the norm ‖ · ‖. Consider the operator equation

u = λBu + H(λ, u), (.)

where B is a compact linear operator and H : R × E → E is compact with H = o(‖u‖) at
u =  uniformly on bounded λ intervals. Krasnoselskii [] has shown that all character-
istic values of B which are of odd multiplicity are bifurcation points. Rabinowitz [] has
extended this result by showing that bifurcation has global consequences. Furthermore, if
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the characteristic value μ of B has multiplicity  and

S =
{

(λ, u) : (λ, u) satisfies (.) and u �≡ 
}R×E

,

Dancer [] has shown that there are two distinct unbounded continua C +
μ and C –

μ , con-
sisting of the bifurcation branch Cμ of S emanating from (μ, ), which satisfy either C +

μ

and C –
μ are both unbounded or C +

μ ∩ C –
μ �= {(μ, )}.

On the other hand, in the past few decades, the periodic solutions of the well-known
Camassa-Holm equation have been studied by some specialists, see [–]. By the fixed
point theory in the cones, some authors [–] have also considered periodic problems.
Recently, Ma et al. [, ] studied the existence of positive solutions for the periodic prob-
lems by applying bifurcation techniques. Especially, in , Dai et al. [] considered the
following periodic boundary value problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = μa(t)ϕp(x) + g(t, x,μ),  < t < T ,

x() = x(T), x′() = x′(T).
(.)

Furthermore, if g : [, T] ×R
 →R is continuous satisfying g(t, x, ) ≡ , and

lim
x→

g(t, x,λ)
|x|p– =  (.)

uniformly on [, T] and μ on bounded sets. From Dancer [], one found that problem
(.) has two distinct unbounded sub-continua C + and C –, consisting of the bifurcation
branch C emanating from (λ, ), which satisfy the following lemma.

Lemma . Either C + and C – are both unbounded and

C ν ⊂ ((
R× Pν

) ∪ {
(λ, )

})
,

where ν ∈ {+, –}.

However, among the above papers, the nonlinearities are linear in the zeros and infinity.
As the problems involving non-differentiable nonlinearities, we mention the papers of

Berestycki [], Schmitt and Smith [], Ma and Dai [], Dai [], Dai and Ma [–]
and references therein. Their main tool is the bifurcation techniques. For the abstract uni-
lateral global bifurcation theory, we refer the reader to [–, , , , , , ] and the
references therein.

First of all, the main purpose of this paper is to establish a result similar to that of Theo-
rem . in [] about the Dancer-type unilateral global bifurcation result from an interval
for the following periodic p-Laplacian problems:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = λa(t)ϕp(x) + F(t, x,λ),  < t < T ,

x() = x(T), x′() = x′(T),
(.)

where  < p < +∞, ϕp(s) = |s|p–s, λ is a positive parameter and a(t) and q(t) satisfy:
(H) a(t) ∈ C([, T], (,∞)).
(H) q ∈ C([, T], [,∞)) with q(t) �≡ .
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Meanwhile, the nonlinear term F has the form F = f + g , where f and g are continuous
functions on [, T] ×R

, satisfying the following conditions:
(H) | f (t,x,λ)

ϕp(x) | ≤ M, ∀t ∈ [, T],  < |x| ≤  and all λ ∈ R, where M is a positive constant.
(H) g(t, x,λ) = o(|x|p–) near x =  uniformly in t ∈ [, T] and λ on bounded sets.
Furthermore, applying the above interval bifurcation result (Theorem .), by an argu-

ment similar to that of [], we can obtain Theorem . and Theorem . for problem (.)
and problem (.).

The rest of this paper is arranged as follows. In Section , we given some preliminar-
ies. In Section , we establish the unilateral global bifurcation result from the interval for
problem (.). In Section , on the basis of the unilateral global interval bifurcation result,
we shall prove the existence of the principal eigenvalues for a class of the half-quasilinear
periodic p-Laplacian eigenvalue problem (see Theorem .). In Section , following the
above eigenvalue theory (see Theorem .), we shall investigate the existence of one-sign
solutions for a class of the half-quasilinear periodic p-Laplacian problems.

2 Preliminaries
Let Y = C[, T] with the norm ‖x‖∞ = maxt∈[,T] |x(t)|. Let E = {x ∈ C[, T]|x() =
x(T), x′() = x′(T)} with the norm ‖x‖ = maxt∈[,T] |x(t)| + maxt∈[,T] |x′(t)|.

We define the linear operator L : D(L) ⊂ E → Y ,

Lx = –
(
ϕp

(
x′))′ + q(t)ϕp(x), x ∈ D(L)

with D(L) = {x,ϕp(x′) ∈ C[, T]|x() = x(T), x′() = x′(T)}. Then L is a closed operator and
L– : Y → E is completely continuous.

Let P+ = {x ∈ E|x(t) > , t ∈ [, T]} and P– = –P+, and P = P+ ∪ P–. They are disjoint and
open in E. Let S denote the closure in R× E of the set of nontrivial solutions of (.),and
S ± to denote the subset of S with x ∈ P± and S ± = S + ∪ S –.

The following result is a generalization of Theorem . and Theorem . of [].

Lemma . Let (H) and (H) hold. The linear eigenvalue problem

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = λa(t)ϕp(x),  < t < T ,

x() = x(T), x′() = x′(T),
(.)

has a sequence of positive eigenvalues

 < λ ≤ λ ≤ λ ≤ · · · .

Moreover, the eigenvalue λ has the following properties.
() If  < λ < λ then problem (.) has no nontrivial solution.
() λ is a simple eigenvalue and the eigenfunctions associated to λ is either positive or

negative on [, T].
() Any eigenfunction x associated to λ �= λ changes sign.

Lemma . (see []) If (λ, x) is a nontrivial solution of (.) under assumptions (H),
(H), (H), and (H) and x has a double zero, then x ≡ .
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Next, we give an important lemma which will be used later.

Lemma . (see [, ]) Let b(t), b(t) ∈ L(I), I an interval and if y and z are functions
such that y, z, ϕp(y′), and ϕp(z′) are differentiable on I and z(t) �=  for t ∈ I . Then we have
the following identity.

d
dt

{
y

ϕp(z)
[
ϕp(z)ϕp

(
y′) – ϕp(y)ϕp

(
z′)]

}

= (b – b)|y|p +
y

ϕp(z)
[
ϕp(z)lp[y] – ϕp(y)Lp[z]

]

+
[∣∣y′∣∣p + (p – )

∣∣∣∣
yz′

z

∣∣∣∣

p

– pϕp(y)y′ϕp

(
z′

z

)]
, (.)

where  < p < +∞, ϕp(s) = |s|p–s, lp[y] = (ϕp(y′))′ + b(t)ϕp(y), Lp[z] = (ϕp(z′))′ + b(t)ϕp(z).

Remark . (see []) By Young’s inequality, we get

∣∣y′∣∣p + (p – )
∣∣∣∣
yz′

z

∣∣∣∣

p

– pϕp(y)y′ϕp

(
z′

z

)
≥ 

and the equality holds if and only if sgn y = sgn z and | y′
y |p = | z′

z |p.

In order to treat the problems with non-asymptotic nonlinearity at  and ∞, we shall
need the following definition and lemma.

Definition . (see []) Let X be a Banach space and let {Cn|n = , , . . .} be a certain
infinite collection of subsets of X. Then the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn =
{

x ∈ X|∃{ni} ⊂N and xni ∈ Cni , such that xni → x
}

. (.)

Lemma . (see []) Each connected subset of metric space X is contained in a compo-
nent, and each component of X is closed.

Lemma . (see []) Let X be a Banach space and let {Cn|n = , , . . .} be a family of closed
connected subsets of X. Assume that

(i) there exist zn ∈ Cn, n = , , . . . , and z∗ ∈ X , such that zn → z∗;
(ii) rn = sup{‖x‖|x ∈ Cn} = ∞;

(iii) for every R > , (
⋃∞

n= Cn) ∩ BR is a relatively compact set of X , where

BR =
{

x ∈ X|‖x‖ ≤ R
}

.

Then there exists an unbounded component C in D and z∗ ∈ C.

3 Unilateral global bifurcation
We consider the following auxiliary problem (see [], pp.-):

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = h(t), a.e. t ∈ (, T),

x() = x(T), x′() = x′(T)
(.)
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for a given h ∈ L(, T). From [], pp.-, we see that problem (.) can be equiv-
alently written as x = Gp(h)(t). Gp : L(, T) → E is continuous and maps equi-integrable
sets of L(, T) into relatively compacts of E.

Define the Nemitskii operator H : R× E → L(, T) by

H(λ, x)(t) := λa(t)ϕp(x) + F
(
t, x(t),λ

)
.

Then it is clear that H is continuous operator and problem (.) can be equivalently
written as

x = Gp ◦ H(λ, x) := Fλ(x).

Since Gp : L(, T) → E is compact, Fλ : R× E → E is completely continuous. Obviously,
Fλ() = , ∀λ ∈R.

By an argument similar to Theorem . of [], we can obtain the following theorem.

Theorem . Let (H), (H), (H), and (H) hold. Let d = M/a, where a =
mint∈[,T] a(t), and let I = [λ – d,λ + d]. The component Dν of S ν ∪ (I × {}), con-
taining I × {} is unbounded and lies in (R× Pν) ∪ (I × {}), for ν = + and ν = –. Here λ

is the principal eigenvalue of (.).

Remark . If F(t, x,λ) ≡ , I = {λ} in Theorem .. Thus, a nontrivial solution of prob-
lem (.) does not change its sign corresponding to λ. In the present form, Theorem .
is valid.

In order to prove Theorem ., we need the following results.

Lemma . If Dν is bounded, we can find a neighborhood O of Dν such that ∂O∩S ν = ∅,
where Dν(ν = +, –) is given by Theorem ..

Proof We only prove the case of D+
k since the case of D–

k is similar.
Let U be a uniform neighborhood of D+ in R× E.
We discuss two cases.
Case . If ∂U ∩ S + �= ∅.
Since the solutions of problem (.) are bounded in R×E, then D+ is compact in R×P+.

It follows that U ∩ S + is compact metric space. Obviously, D+ and ∂U ∩ S + are two
disjoint closed subsets of U ∩ S +. Because of the maximal connectedness of D+, there
does not exist a component D∗ of U ∩ S + such that D∗ ∩ D+ �= ∅, D∗ ∩ (∂U ∩ S +) �= ∅.
By [] or [], Lemma ., there exist two disjoint compact subsets K, K of U ∩ S +,
such that U ∩ S + = K ∪ K, D+ ⊂ K, ∂U ∩ S + ⊂ K. Evidently, d(K, K) > . Let r =
min{d(K, K), d(K, ∂U )}, and let V be the r

 -neighborhood of K. Set

O = U ∩ V ,

then

D+ ⊂O, ∂O ∩ S + = ∅.

Case . If ∂U ∩ S + = ∅.
In this case, we take O = U . It is obvious that the result holds. �
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To prove Theorem ., we introduce the following auxiliary approximate problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = λa(t)ϕp(x) + f

(
t, x|x|ε ,λ

)
+ g(t, x,λ),  < t < T ,

x() = x(T), x′() = x′(T).
(.)

Let

L̂x = –Lx =
(
ϕp

(
x′))′ – q(t)ϕp(x), x ∈ D(L).

To prove Theorem ., the next lemma will play a key role.

Lemma . Let εn,  < εn < , be a sequence converging to . If there exists a sequence
(λn, xν

n) ∈ R × Pν such that (λn, xν
n) is a nontrivial solution of problem (.) corresponding

to ε = εn, and (λn, xν
n) converges to (λ, ) in R× E, then λ ∈ I .

Proof By ‖xν
n‖p– for the two sides of (.), let yν

n = xν
n/‖xν

n‖, then yν
n satisfies the problem

–
(
ϕp

((
yν

n
)′))′ + q(t)ϕp

(
yν

n
)

= λa(t)ϕp
(
yν

n
)

+ fn(t) + gn(t),  < t < T ,

yν
n() = yν

n(T),
(
yν

n
)′() =

(
yν

n
)′(T),

(.)

where

fn(t) =
f (t, xν

n|xν
n|εn ,λn)

‖xν
n‖p– , gn(t) =

g(t, xν
n,λn)

‖xν
n‖p– .

Let

g(t, x,λ) = max
≤|s|≤x

∣∣g(t, s,λ)
∣∣ for all t ∈ [, T] and λ on bounded sets,

then g is nondecreasing with respect to x and

lim
x→+

g(t, x,λ)
xp– =  (.)

uniformly for t ∈ [, T] and λ on bounded sets. Further it follows from (.) that
∣∣∣∣
|g(t, x,λ)|
‖x‖p–

∣∣∣∣ ≤ g(t, |x|,λ)
‖x‖p– ≤ g(t,‖x‖∞,λ)

‖x‖p– ≤ g(t,‖x‖,λ)
‖x‖p– →  as ‖x‖ → 

uniformly for t ∈ [, T] and λ on bounded sets. It follows that

lim
n→∞ gn(t) = . (.)

Clearly, (H) implies that

∣∣fn(t)
∣∣ =

∣∣∣∣
|f (t, xν

n|xν
n|εn ,λn)|

‖xν
n‖p–ϕp(yν

n)
· ϕp

(
yν

n
)
∣∣∣∣ =

∣∣∣∣
|f (t, xν

n|xν
n|εn ,λn)|

ϕp(xν
n|xν

n|εn )
· ϕp

(∣∣xν
n
∣∣εn)

ϕp
(
yν

n
)
∣∣∣∣

≤ ∣
∣M · ∣∣xν

n
∣∣(p–)εn · ϕp

(
yν

n
)∣∣ ≤ M · ∣∣yν

n
∣∣(p–) (.)

for all t ∈ [, T].
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It is obvious that (.), (.), and (.) imply that yν
n is bounded in C. By the Arzelà-

Ascoli theorem, we may assume that yν
n → yν in E with ‖yν‖ = . Clearly, we have yν ∈ Pν .

We claim that yν ∈ Pν . On the contrary, suppose that yν ∈ ∂Pν , by Lemma ., yν ≡ ,
which is a contradiction with ‖yν‖ = .

Now, we deduce the boundedness of λ. Let ψν ∈ Pν be an eigenfunction of problem (.)
corresponding to λ.

To obtain the bound on λ, we shall compare yν
n and ψν via Lemma .. We know that yν

n

satisfies

(
ϕp

((
yν

n
)′))′ – q(t)ϕp

(
yν

n
)

= –λna(t)ϕp
(
yν

n
)

– fn(t) – gn(t)

and ψν satisfies

(
ϕp

(
ψ ′

ν

))′ – q(t)ϕp(ψν) = –λa(t)ϕp(ψν).

We can assume without loss of generality that ν = +. By Lemma ., we have

∫ T



{
y+

n
ϕp(ψ+)

[
ϕp(ψ+)ϕp

((
y+

n
)′) – ϕp

(
y+

n
)
ϕp

(
ψ ′

+
)]}′

dt = A + B, (.)

where

A =
∫ T



y+
n

ϕp(ψ+)
[
ϕp(ψ+)̂L

[
y+

n
]

– ϕp
(
y+

n
)
L̂[ψ+]

]
dt

and

B =
∫ T



[∣∣(y+
n
)′∣∣p + (p – )

∣∣∣∣
y+

nψ ′
+

ψ+

∣∣∣∣

p

– pϕp
(
y+

n
)(

y+
n
)′
ϕp

(
ψ ′

+
ψ+

)]
dt.

We shall prove that ψ+() �=  and ψ+(T) �= . If ψ+() =  or ψ+(T) = , then ψ+(T) =
ψ+() = . Together with ψ+(t) ≥ , t ∈ [, T], it follows that ψ ′

+() ≥ , ψ ′
+(T) ≤ .

Moreover, ψ ′
+() = ψ ′

+(T) implies that ψ ′
+() = ψ ′

+(T) = . Lemma . implies ψ+(t) ≡ ,
∀t ∈ [, T], which is a contradiction.

Furthermore, the left-hand side of (.) equals zero. Clearly, we have B ≥ . It follows
that

 ≥ A =
∫ T



y+
n

ϕp(ψ+)
[
ϕp(ψ+)̂L

[
y+

n
]

– ϕp
(
y+

n
)
L̂[ψ+]

]
dt

=
∫ T


(λ – λn)a(t)

∣∣y+
n
∣∣p dt –

∫ T


y+

n
[
fn(t) + gn(t)

]
dt. (.)

Similarly, we can prove that y+
n() �=  and y+

n(T) �= . Furthermore, we can also show

 ≥ A =
∫ T



ψ+

ϕp(y+
n)

[
ϕp

(
y+

n
) · L̂[ψ+] – ϕp(ψ+) · L̂

[
y+

n
]]

dt

=
∫ T


(λn – λ)a(t)|ψ+|p dt +

∫ T



|ψ+|p
ϕp(y+

n)
[
fn(t) + gn(t)

]
dt. (.)
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If λ ≤ λ, by (.), (.), and (.), we obtain

∫ T


(λ – λ)a(t)

∣∣y+∣∣p dt ≤ lim
n→∞

∫ T


y+

n
[
fn(t) + gn(t)

]
dt

≤ M

∫ T



(
y+)p dt. (.)

Hence, we get

∫ T


(λ – λ)a(t)

(
y+)p dt ≤ M

∫ T



(
y+)p dt,

which implies λ ≥ λ – d.
If λ ≥ λ, by (.), (.), and (.), we obtain

∫ T


(λ – λ)a(t)|ψ+|p dt ≤ – lim

n→∞

∫ T



|ψ+|p
ϕp(y+

n)
fn(t) dt

≤ M

∫ T


ψp

+ dt. (.)

Hence, we get

∫ T


(λ – λ)a(t)ψp

+ dt ≤ M

∫ T


ψp

+ dt,

which implies λ ≤ λ + d. Therefore, we have λ ∈ I . �

Remark . In [], all eigenvalues of the linear eigenvalue problem are simple. However,
eigenvalues of the linear periodic eigenvalue problem (.) are different (see [], p.,
L.-, that is, these eigenvalues may be double, and at most two distinct eigenvalues can
arise from them via a linear perturbation). Thus, the method of the proof of Lemma .
playing a key role in this paper is different from the method of the proof of Lemma .
in [].

Lemma . For ν ∈ {+, –}, the component Dν of S ν ∪ (I × {}) satisfies Dν ⊂ (R× Pν) ∪
(I × {}), where Dν(ν = +, –) be given by Theorem ..

Proof We only prove the case of D+
k since the case of D–

k is similar.
For any (λ, x) ∈ D+, there are two possibilities: (i) x ∈ P+ or (ii) x ∈ ∂P+. It is obvious

that (λ, x) ∈ R × P+ in the case of (i). The case (ii) implies that x ∈ ∂P+ has at least one
double zero in [,T]. From Lemma . it follows that x ≡ . Hence, there exists a sequence
(λn, xn) ∈ R × P+ such that (λn, xn) is a solution of problem (.) corresponding to ε = ,
and (λn, xn) converges to (λ, ) in R× P+. By Lemma ., we have λ ∈ I , i.e., (λ, x) ∈ I ×{}
in the case of (ii). Hence, D+ ⊂ (R× P+) ∪ (I × {}). �

Proof of Theorem . We only prove the case of D+ since the case of D– is similar. Let D+

be the component of S + ∪ (I × {}), containing I × {}.
By Lemma ., we have D+ ⊂ (R× P+) ∪ (I × {}).
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Suppose on the contrary that D+ is bounded. By Lemma ., we can find a neighborhood
O of D+ such that ∂O ∩ S + = ∅.

In order to complete the proof of this theorem, we consider problem (.). For ε > , it
is easy to show that the nonlinear term f (t, x|x|ε ,λ) + g(t, x,λ) satisfies the condition (.).
Let

Sε =
{

(λ, x) : (λ, x) satisfies (.) and x �≡ 
}R×E

.

By Lemma ., there are two unbounded continua, D+
ε of S +

ε and D–
ε of S –

ε , bifurcat-
ing from (λ, ), consisting of the bifurcation branch Dε , where D+

ε and D–
ε are both un-

bounded and

Dν
ε ⊂ (

R× Pν
) ∪ {

(λ, )
}

.

So there exists (λε , xε) ∈ D+
ε ∩ ∂O for all ε > . Since O is bounded in R× P+, equation

(.) shows that (λε , xε) is bounded in R× C independently of ε. By the compactness of
L–, one can find a sequence εn →  such that (λε , xε) converges to a solution (λ, x) of (.).
So x ∈ P+. If x ∈ ∂P+, then from Lemma . it follows that x ≡ . Note that (λ, x) ∈ D+

ε ∩∂O
since D+

ε ∩ ∂O is a closed subset of R × P+. By Lemma ., λ ∈ I , which contradicts the
definition of O. On the other hand, if x ∈ P+, then (λ, x) ∈ S + ∩ ∂O, which contradicts
S + ∩ ∂O = ∅. �

From Theorem . and its proof, we can easily get the following two corollaries.

Corollary . There exist two unbounded sub-continua D+ and D– of solutions of (.) in
R× E, bifurcating from I × {}, and Dν ⊂ (R× Pν) ∪ (I × {}) for ν = + and ν = –.

We relax the assumption of a as follows:
(A) a(t) ∈ C[, T] is a sign-changing weight.

Corollary . Let (A) hold and f ≡ . Then there exist two unbounded sub-continua C +

and C – of solutions of (.) in R×E, bifurcating from (λ, ), and C ν ⊂ (R×Pν)∪ (I ×{})
for ν = + and ν = –.

4 Spectrum of half-quasilinear eigenvalue problems
In this section, we consider the half-quasilinear eigenvalue problem

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = λa(t)ϕp(x) + α(t)ϕp

(
x+)

+ β(t)ϕp
(
x–)

,  < t < T ,

x() = x(T), x′() = x′(T),
(.)

where x+ = max{x, }, x– = – min{x, }, α(t),β(t) ∈ C[, T].
Problem (.) is called half-quasilinear because it is positive p –  homogeneous in the

cones u >  and u < . Similar to [], we say that λ is a half-eigenvalue of problem (.),
if there exists a nontrivial solution (λ, xλ). λ is also said to be simple if y = cxλ, c >  for all
solutions (λ, y) of problem (.). A half-eigenvalue is called the principal half-eigenvalue
if the corresponding eigenfunction is positive or negative.

By an argument similar to that of [], we can obtain the following theorem.
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Theorem . There exist two simple half-eigenvalues λ+ and λ– for problem (.). The
corresponding half-linear solutions are in {λ+} × P+ and {λ–} × P–. Furthermore, aside
from λ+ and λ–, there is no other half-eigenvalue with positive or negative eigenfunction.

Proof By Theorem ., we know that there exists at least one solution of problem (.),
(λν , xν) ∈ R × Pν , for every ν = + and ν = –. The positive homogeneous of problem (.)
implies that {(λν , cxν), c > } are half-linear solutions in {λν} × Pν . Lemma . implies that
any nontrivial solution x of problem (.) lies in some Pν . We claim that for any solution
(λ, x) of problem (.) with x ∈ Pν , we have λ = λν and x = cxν for some positive constant c.

Next, we only prove the case of ν = + since the case of ν = – is similar.
Applying Lemma . to x and x+ on [, T], we have

∫ T



[
x+ϕp

((
x+)′) –

|x+|pϕp(x′)
ϕp(x)

]′
dt

=
∫ T



[
x+L̂

[
x+]

–
x+ϕp(x+)

ϕp(x)
L̂[x]

]
dt

+
∫ T



[∣∣(x+)′∣∣p + (p – )
∣∣∣∣
x+x′

x

∣∣∣∣

p

– pϕp
(
x+)(

x+)′
ϕp

(
x′

x

)]
dt. (.)

Using a proof similar to that of Lemma ., we can obtain λ+ ≤ λ. Similarly, we have
λ+ ≥ λ. It follows that λ+ = λ.

Next, we shall show that x = cλν for some positive constant c.
Since λ = λ+, we have

∫ T



[
x+L̂

[
x+]

–
x+ϕp(x+)

ϕp(x)
L̂[x]

]
dt = .

Furthermore, by (.), we obtain

∫ T



[∣∣(x+)′∣∣p + (p – )
∣∣∣∣
x+x′

x

∣∣∣∣

p

– pϕp
(
x+)(

x+)′
ϕp

(
x′

x

)]
dt = .

By Remark ., we have sgn x+ = sgn x and | (x+)′
x+ |p = | x′

x |p. It follows that there exists a con-
stant c �=  such that x = cx+ for some positive constant c.

Naturally, we can consider the bifurcation structure of the perturbation of problem (.)
of the form

–
(
ϕp

(
x′))′ + q(t)ϕp(x)

= λa(t)ϕp(x) + α(t)ϕp
(
x+)

+ β(t)ϕp
(
x–)

+ g(t, x,λ),  < t < T , (.)

x() = x(T), x′() = x′(T),

where g satisfies (.). �

Remark . By some simple computation, we can show that if β ≡  then λ– = λ, α ≡ 
implies λ+ = λ and α = β ≡  implies λ+ = λ– = λ.

Remark . Note that min{λ+,λ–} is the least half-eigenvalue for (.).
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Using a similar method to prove ([], Theorem .) with obvious changes, we may
obtain the following result.

Theorem . For ν = +, –, (λν , ) is a bifurcation point for problem (.). Moreover, there
exists an unbounded continuum Dν of solutions of problem (.), such that Dν ⊂ ((R ×
Pν) ∪ {(λν , )}).

Proof Let α := maxt∈[,T] |α(t)| and β := maxt∈[,T] |β(t)|. We have

I =
[
λ –

α + β

a
,λ +

α + β

a

]
.

Corollary . shows that there exist two unbounded sub-continua D+ and D– of solutions
of (.) in R × E, bifurcating from I × {}, and Dν ⊂ (R × Pν) ∪ (I × {}) for ν = +
and ν = –. Let us show that Dν ∩ (R × {}) = (λν , ), i.e., (λν , ) is a bifurcation point for
problem (.). Indeed, assume there exists (λn, xn), a sequence of solutions of problem
(.) converging to (λ, ). By ‖xn‖p– for the two sides of (.), let yn = xn

‖xn‖ , then yn should
be a solution of the problem

yn = Gp

[
λa(t)ϕp(yn) + α(t)ϕp

(
y+

n
)

+ β(t)ϕp
(
y–

n
)

+
g(t, xn,λ)
‖xn‖p–

]
.

By (.) and the compactness of Gp, we obtain for some convenient subsequence yn → y

as n → +∞. Now y verifies the equation

Ly = λa(t)ϕp(y) + α(t)ϕp
(
y+


)

+ β(t)ϕp
(
y–


)

and ‖y‖∞ = . This implies that λ = λν for ν ∈ {+, –}. �

Remark . Theorem . indicates that the bifurcation interval I = {λ+,λ–}, i.e., problem
(.), the bifurcation interval I is a finite point set. What conditions can ensure that the
component indeed bifurcates from an interval is still an open problem for the second-
order periodic boundary value problems.

5 One-sign solutions for half-linear eigenvalue problems
Following the above eigenvalue theory (see Theorem .), we shall investigate the existence
of one-sign solutions for the following periodic problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = α(t)ϕp

(
x+)

+ β(t)ϕp
(
x–)

+ ra(t)f (x),  < t < T ,

x() = x(T), x′() = x′(T),
(.)

where a(t) and q(t) satisfy the conditions (H) and (H), respectively. We assume that f
satisfies the following assumptions:

(H) sf (s) >  for s �= .
(H) f, f∞ ∈ (,∞).
(H) f = ∞ and f∞ ∈ (,∞).
(H) f ∈ (,∞) and f∞ = ∞.



Shen and He Boundary Value Problems  (2016) 2016:41 Page 12 of 22

(H) f = ∞ and f∞ = ∞.
(H) f =  and f∞ = ∞.
Here

f = lim|s|→

f (s)
ϕp(s)

, f∞ = lim|s|→+∞
f (s)
ϕp(s)

.

Let 
ν denote the closure of set of those solutions of (.) which belong to Pν .
In the case of α = β =  and p = , Ma et al. [] considered problem (.) on determining

the interval of r by the bifurcation theory of Rabinowitz [] and Kielhöfer [], in which
there exist positive solutions for problem (.) with indefinite weight under the assump-
tions (H). In the case of α = β = , Dai et al. [] have established the existence of positive
solutions for the p-Laplacian problem (.) with crossing nonlinearity, which extends the
results of [].

Remark . For p =  and a(t) = , t ∈ [, T], by using the Prüfer methods, Binding and
Rynne [] studied the spectral theory and degree theoretic properties of (.). In the fol-
lowing, they considered the existence and non-existence of solutions of the corresponding
half-linear problems.

Remark . The nonlinear term of (.) is not necessarily homogeneous linearizable at
the origin and infinity because of the influence of the term α(t)x+ + β(t)x–. Clearly, the
bifurcation results of [–, , , , , ] cannot be applied directly to obtain our
results.

Remark . Using the unilateral global bifurcation result from the interval, we can obtain
some results as regards the existence of one-sign solutions which extend the correspond-
ing results of [] to some extent.

To state the main result of this section, we study the following eigenvalue problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = α(t)ϕp

(
x+)

+ β(t)ϕp
(
x–)

+ λra(t)f (x),  < t < T ,

x() = x(T), x′() = x′(T),
(.)

where λ >  is a parameter. Let ζ ∈ C(R,R) be such that

f (x) = fϕp(x) + ζ (x)

with lim|x|→
ζ (x)

‖x‖p– = . Let us consider

–
(
ϕp

(
x′))′ + q(t)ϕp(x)

= λra(t)fϕp(x) + α(t)ϕp
(
x+)

+ β(t)ϕp
(
x–)

+ λra(t)ζ (x), t ∈ (, T), (.)

x() = x(T), x′() = x′(T)

as a bifurcation problem from the trivial solution x ≡ .
Applying Theorem . to problem (.), we have the following result.
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Lemma . For ν = +, –, ( λν

rf
, ) is a bifurcation point for problem (.). Moreover, there

exists an unbounded continuum Dν of solutions of problem (.), such that Dν ⊂ ((R ×
Pν) ∪ {( λν

rf
, )}).

By an argument similar to that of [], we can obtain the following theorem.

Theorem . Let (H), (H), (H), and (H) hold. For ν = +, –, either λν

f∞ < r < λν

f
or λν

f
<

r < λν

f∞ . Then problem (.) possesses two solutions x+, x–, such that νxν > .

Remark . From (H) and (H), we can see that there exists a positive constant Q, such
that f (s)

ϕp(s) ≥ Q for all s �= .

Remark . Note that if α(t) = β(t) ≡  the result of Theorem . is equivalent to those
of Theorem . of [], Theorem . extends the corresponding results of [].

In order to prove Theorem ., we need the following Sturm-type comparison result.

Lemma . Let b(t) ≥ max{b(t), b(t) + α + β , b(t) – α – β} for t ∈ (, T) and bi(t) ∈
C(, T), i = , . Also let u, u be solutions of the following differential equations:

(
ϕp

(
u′))′ – q(t)ϕp(u) + bi(t)ϕp(u) + α(t)ϕp

(
u+)

+ β(t)ϕp
(
u–)

= , i = , , t ∈ (, T),

u() = u(T), u′() = u′(T),

respectively. If (c, d) ⊆ (, T), and u(c) = u(d) = , u(t) �=  in (c, d), then either there exists
τ ∈ (c, d) such that u(τ ) =  or b = b or b = b +α +β or b = b –α –β and u(t) = μu(t)
for some constant μ �= .

Proof We discuss four cases.
Case . u(t) > , u(t) >  in (c, d). By Lemma ., we have

∫ d

c

{
u

ϕp(u)
[
ϕp(u)ϕp

(
u′


)

– ϕp(u)ϕp
(
u′


)]}′

dt

=
∫ d

c

u

ϕp(u)
[
ϕp(u)̂L[u] – ϕp(u)̂L[u]

]
dt

+
∫ d

c

[∣∣u′

∣∣p + (p – )

∣∣∣∣
uu′


u

∣∣∣∣

p

– pϕp(u)u′
ϕp

(
u′


u

)]
dt.

It follows that

∫ d

c

[
uϕp(u)′ –

up
 ϕp(u′

)
ϕp(u)

]′
dt

=
∫ d

c

{
(b – b)|u|p +

[∣∣u′

∣∣p + (p – )

∣∣∣∣
uu′


u

∣∣∣∣

p

– pϕp(u)u′
ϕp

(
u′


u

)]}
dt. (.)

The left-hand side of (.) equals

lim
t→c+

up
 ϕp(u′

)
ϕp(u)

– lim
t→d–

up
ϕp(u′

)
ϕp(u)

= Hc – Hd.
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We prove that Hc = . If u(c) �= , then Hc = . If u(c) = , noting the conclusion of
Lemma ., then u′

(c) > . By the L’Hospital rule, we have

Hc = lim
t→c+

up
ϕp(u′

)
ϕp(u)

= lim
t→c+

pup–
 u′

ϕp(u′
) + up

 (ϕp(u′
))′

(p – )up–
 u′



= lim
t→c+

pup–
 u′

ϕp(u′
) – up

 · [q(t)ϕp(u) – b(t)ϕp(u) – αϕp(u+
 ) – βϕp(u–

 )]
(p – )up–

 u′


= lim
t→c+

pup–
 u′

ϕp(u′
)

(p – )up–
 u′


– lim

t→c+

up
 · [q(t)up–

 – b(t)up–
 – αup–

 ]
(p – )up–

 u′


= lim
t→c+

pup–
 u′

ϕp(u′
)

(p – )up–
 u′


=

pu′
(c)|u′

(c)|p–

p – 
· lim

t→c+

up–


up–


.

If p ≤ , then Hc = . If  < p ≤ , applying the L’Hospital rule again, we obtain

lim
t→c+

up–


up–


=
(p – )u′

(c)
(p – )u′

(c)
lim

t→c+

up–


up–


.

This implies that Hc = . If k < p ≤ k + , then we continue with this process k times to
obtain Hc = .

Similarly, we can obtain Hd = . Therefore, the left-hand side of (.) equals zero. Hence,
the right-hand side of (.) also equals zero.

By Remark ., we have sgn u = sgn u and | u′


u
|p = | u′


u

|p. It follows that there exists a
constant μ �=  such that u = μu and b = b.

Case . u(t) > , u(t) < . Similar to (.), we can get

∫ d

c

[
uϕp

(
u′


)

–
up

ϕp(u′
)

ϕp(u)

]′
dt

=
∫ d

c

{
(b – b – α – β)|u|p +

[∣∣u′

∣∣p + (p – )

∣∣∣∣
uu′


u

∣∣∣∣

p

– pu′
ϕp(u)ϕp

(
u′


u

)]}
dt.

The above argument is still valid for this case.
Case . u(t) < , u(t) < . Similar to Case , we can get the result.
Case . u(t) < , u(t) > . Similar to (.), we can get

∫ d

c

[
uϕp

(
u′


)

–
up

ϕp(u′
)

ϕp(u)

]′
dt

=
∫ d

c

{
(b – b + α + β)|u|p +

[∣∣u′

∣∣p + (p – )

∣∣∣∣
uu′


u

∣∣∣∣

p

– pu′
ϕp(u)ϕp

(
u′


u

)]}
dt.

Similar to the proof of Case , we can obtain the result. �

By Lemma ., we obtain the following result, which will be used later.

Lemma . Assume (H) and (H) hold. Let gn(t) ∈ C([, T], (, +∞)) such that

lim
n→+∞ gn(t) = +∞ uniformly on (, T).
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Let yn be a solution of the equation

{
(ϕp(y′

n))′ – q(t)ϕp(yn) + gn(t)ϕp(yn) + α(t)ϕp(y+
n) + β(t)ϕp(y–

n) = ,  < t < T ,
yn() = yn(T), y′

n() = y′
n(T) = .

Then yn must change sign on (, T) as n → +∞.

Proof Set α := maxt∈[,T] |α(t)| and β := maxt∈[,T] |β(t)|. By simple computation, we can
show that

gn(t) + α(t)ϕp

(
y+

n
yn

)
+ β(t)ϕp

(
y–

n
yn

)
≥ gn(t) – α – β for all t ∈ [, T].

After taking a subsequence if necessary, we may assume that

gnj (t) – α – β ≥ j for all t ∈ [, T]

as j → +∞. By Lemma ., we see that any nontrivial solution x of the equation

(
ϕp

(
x′(t)

))′ – q(t)ϕp
(
x(t)

)
+ jϕp

(
x(t)

)
= , t ∈ (, T),

x() = x(T), x′() = x′(T),
(.)

must change sign on (, T) as j → +∞. Note that the conclusion of Lemma . also is
valid if α = β = . Using these facts and Lemma ., we can see that yn must change sign
on (, T) as n → +∞. �

Proof of Theorem . It is clear that any solution of (.) of the form (, x) yields solutions
x of (.). We will show that Dν crosses the hyperplane {} × E. To do this, it is enough to
show that Dν joins ( λν

rf
, ) to ( λν

rf∞ ,∞). Let (μn, xn) ∈ Dν\{( λν

rf
, )} satisfy

μn + ‖xn‖ → ∞.

Case . λν

f∞ < r < λν

f
.

In this case, we show that

(
λν

rf∞
,
λν

rf

)
⊆ {

λ ∈ R|(λ, x) ∈ Dν
}

.

We divide the proof into two steps.
Step . We show that if there exists a constant number M >  such that

μn ∈ (, M],

then Dν joins ( λν

rf
, ) to ( λν

rf∞ ,∞).
In this case, it follows that

‖xn‖ → +∞.
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Let ξ ∈ C(R,R),

f (x) = f∞ϕp(x) + ξ (x).

Let ξ (x) = max{|ξ (s)| :  ≤ |s| ≤ x}, then ξ is nondecreasing and

lim
x→+∞

ξ (x)
ϕp(x)

= . (.)

We divide the equation

–
(
ϕp

(
x′

n
))′ + q(t)ϕp(xn)

= μnra(t)f∞ϕp(xn) + α(t)ϕp
(
x+

n
)

+ β(t)ϕp
(
x–

n
)

+ μnra(t)ξ (xn), t ∈ (, T),

x() = x(T), x′() = x′(T),

by ‖xn‖p– and set yn = xn
‖xn‖ . Since yn is bounded in C[, ], choosing a subsequence and

relabeling if necessary, we have yn → y for some y ∈ E. Moreover, from (.) and the fact
that ξ is nondecreasing, we have

lim
n→∞

|ξ (xn(t))|
‖xn‖p– = , ∀t ∈ [, T],

since

|ξ (xn(t))|
‖xn‖p– ≤ ξ (|xn(t)|)

‖xn‖p– ≤ ξ (‖xn(t)‖∞)
‖xn‖p– ≤ ξ (‖xn(t)‖)

‖xn‖p– → , n → ∞,∀t ∈ [, T].

By the compactness of L–, we obtain

–
(
ϕp

(
y′))′ + q(t)ϕp(y) = μra(t)f∞ϕp(y) + α(t)ϕp

(
y+)

+ β(t)ϕp
(
y–)

, t ∈ (, T),

y() = y(T), y′() = y′(T),

where μ := limn→∞ μn, again choosing a subsequence and relabeling if necessary. Thus it is
clear that ‖y‖ =  and y ∈ D

ν ⊆ Dν since Dν is closed in R×E. Moreover, by Theorem .,
μrf∞ = λν , so that

μ =
λν

rf∞
.

Thus Dν joins ( λν

rf
, ) to ( λν

rf∞ ,∞).
Step . We show that there exists a constant number M >  such that μn ∈ (, M], for

all n.
On the contrary, we suppose that limn+→∞ |μn| = +∞. Since (μn, xn) ∈ Dν , it follows

from the compactness of L– that

–
(
ϕp

(
x′

n
))′ + q(t)ϕp(xn) = μnra(t)f̃n(t)ϕp(xn) + α(t)ϕp

(
x+

n
)

+ β(t)ϕp
(
x–

n
)
, t ∈ (, T),

xn() = xn(T), x′
n() = x′

n(T),
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where f̃n : [, ] × [,∞) → R by

f̃n(t) =

{ f (xn)
ϕp(xn) , xn �= , t ∈ [, T],
f, xn = , t ∈ [, T].

By Remark ., we have

lim
n→+∞μnrf̃n(t) = ±∞.

Let ψν be an eigenfunction corresponding to λν . But if limn→+∞ μnrf̃n(t) = –∞, applying
Lemma . to yn and ψν , we see that ψν must change sign for n large enough, which is
impossible. So limn→+∞ μnrf̃n(t) = +∞. By Lemma ., we see that yn must change sign for
n large enough, and this contradicts the fact that yn ∈ Pν .

Case . λν

f
< r < λν

f∞ .
In this case, if (μn, xn) ∈ Dν is such that

lim
n→+∞

(|μn| + ‖xn‖
)

= ∞

and

lim
n→+∞|μn| = ∞,

then
(

λν

rf
,

λν

rf∞

)
⊆ {

λ ∈ (,∞)|(λ, x) ∈ Dν
}

and, moreover, ({} × E) ∩ Dν �= ∅.
Assume that there exists M >  such that for all n ∈N,

|μn| ∈ (, M].

Applying a similar argument to that used in Step  of Case , after taking a subsequence
and relabeling if necessary, it follows that

(μn, xn) →
(

λν

rf∞
,∞

)
, n → ∞.

Again Dν joins ( λν

rf
, ) to ( λν

rf∞ ,∞) and the result follows. �

Theorem . Let (H), (H), (H), and (H) hold. For ν ∈ {+, –}, assume that one of the
following conditions holds:

(i) r ∈ (, λν

f∞ ) for λν > .
(ii) r ∈ (, λ+

f∞ ) ∪ ( λ–

f∞ , ) for νλν > .
(iii) r ∈ (, λ–

f∞ ) ∪ ( λ+

f∞ , ) for νλν < .
(iv) r ∈ ( λν

f∞ , ) for λν < .
Then problem (.) possesses two solutions x+, x–, such that νxν > .
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Proof We shall only prove the case of (i) since the proofs of the cases for (ii), (iii), and (iv)
are completely analogous.

Inspired by the idea of [] or see [], we define the cut-off function of f as follows:

f [n](s) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nϕp(s), s ∈ [– 
n , 

n ],
[f ( 

n ) – 
np– ](ns – ) + f ( 

n ), s ∈ ( 
n , 

n ),
–[f (– 

n ) + 
np– ](ns + ) + f (– 

n ), s ∈ (– 
n , 

n ),
f (s), s ∈ (–∞, – 

n ] ∪ [ 
n , +∞).

We consider the following problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = α(t)ϕp

(
x+)

+ β(t)ϕp
(
x–)

+ λra(t)f [n](x), t ∈ (, T),

x() = x(T), x′() = x′(T).
(.)

Clearly, we can see that limn→+∞ f [n](s) = f (s), (f [n]) = n and (f [n])∞ = f∞.
Similar to the proof of Theorem ., there exists an unbounded continuum Dν[n] of so-

lutions of problem (.) emanating from ( λν

rn , ), such that Dν[n] ⊂ ((R × Pν) ∪ {( λν

rn , )}),
and Dν[n] joins ( λν

rn , ) to ( λν

rf∞ ,∞).
Taking zn = ( λν

rn , ) and z∗ = (, ), we have zn → z∗.
So condition (i) in Lemma . is satisfied with z∗ = (, ).
Obviously

rn = sup
{
λ + ‖x‖|(λ, x) ∈ Dν[n]} = ∞,

and accordingly, (ii) in Lemma . holds. (iii) in Lemma . can be deduced directly from
the Arzelà-Ascoli theorem and the definition of f [n].

Therefore, by Lemma ., lim supn→∞ Dν[n] contains an unbounded component Dν with
(, ) ∈ Dν .

From limn→+∞ f [n](s) = f (s), (.) can be converted to the equivalent equation (.). Since
Dν[n] ⊂ (R× Pν), we conclude Dν ⊂ (R× Pν). Moreover, Dν ⊂ 
ν by (.).

Similar to the method of the proof of Case  of Theorem ., we can obtain ( λν

rf∞ ,∞) ∈
Dν . �

Theorem . Let (H), (H), (H), and (H) hold. For ν ∈ {+, –}, assume that one of the
following conditions holds:

(i) r ∈ (, λν

f
) for λν > .

(ii) r ∈ (, λ+

f
) ∪ ( λ–

f
, ) for νλν > .

(iii) r ∈ (, λ–

f
) ∪ ( λ+

f
, ) for νλν < .

(iv) r ∈ ( λν

f
, ) for λν < .

Then problem (.) possesses two solutions x+, x–, such that νxν > .

Proof We only prove the case of (i) since the proof of (ii)-(iv) can be given similarly.
Inspired by the idea of [] or see [], we define the cut-off function of f as follows:

f [n](s) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nϕp(s), s ∈ (–∞, –n] ∪ [n, +∞),
nϕp(n)+f (–n)

n (s + n) + f (–n), s ∈ (–n, –n),
nϕp(n)–f (n)

n (s – n) + f (n), s ∈ (n, n),
f (s), s ∈ [–n, n].
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We consider the following problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = α(t)ϕp

(
x+)

+ β(t)ϕp
(
x–)

+ λra(t)f [n](x), t ∈ (, T),

x() = x(T), x′() = x′(T).
(.)

Clearly, we can see that limn→+∞ f [n](s) = f (s), (f [n]) = f, and (f [n])∞ = n.
Similar to the proof of Theorem ., there exists an unbounded continuum Dν[n] of so-

lutions of problem (.) emanating from ( λν

rf
, ), such that Dν[n] ⊂ ((R × Pν) ∪ {( λν

rf
, )})

and Dν[n] joins ( λν

rf
, ) to ( λν

rn ,∞).
Taking zn = ( λν

rn ,∞) and z∗ = (,∞), we have zn → z∗.
So condition (i) in Lemma . is satisfied with z∗ = (,∞).
Obviously

rn = sup
{
λ + ‖x‖|(λ, x) ∈ Dν[n]} = ∞,

and accordingly, (ii) in Lemma . holds. (iii) in Lemma . can be deduced directly from
the Arzelà-Ascoli theorem and the definition of f [n].

Therefore, by Lemma ., lim supn→∞ Dν[n] contains an unbounded component Dν em-
anating from ( λν

rf
, ) and joining to (,∞).

From limn→+∞ f [n](s) = f (s), (.) can be converted to the equivalent equation (.). Since
Dν[n] ⊂ (R× Pν), we conclude Dν ⊂ (R× Pν). Moreover, Dν ⊂ 
ν by (.).

Thus, there is an unbounded component Dν of problem (.) emanating from ( λν

rf
, )

and joining to (,∞). �

Theorem . Let (H), (H), (H), and (H) hold. For ν ∈ {+, –}, assume that one of the
following conditions holds:

(i) There exists a λν
ν >  for λν > , such that r ∈ (λν

ν , +∞).
(ii) There exists a νλν

ν >  for νλν > , such that r ∈ (–∞,λ–
–) ∪ (λ+

+, +∞).
(iii) There exists a νλν

ν <  for νλν < , such that r ∈ (–∞,λ+
+) ∪ (λ–

–, +∞).
(iv) There exists a λν

ν <  for λν < , such that r ∈ (–∞,λν
ν).

Then problem (.) possesses two solutions x+, x–, such that νxν > .

Proof We shall only prove the case of (i) since the proofs of the cases for (ii), (iii), and (iv)
are completely analogous.

Define

f [n](s) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nϕp(s), s ∈ (–∞, –n] ∪ [n, +∞),
nϕp(n)+f (–n)

n (s + n) + f (–n), s ∈ (–n, –n),
nϕp(n)–f (n)

n (s – n) + f (n), s ∈ (n, n),
f (s), s ∈ [–n, – 

n ] ∪ [ 
n , n],

–[f (– 
n ) + 

np– ](ns + ) + f (– 
n ), s ∈ (– 

n , – 
n ),

[f ( 
n ) – 

np– ](ns – ) + f ( 
n ), s ∈ ( 

n , 
n ),

nϕp(s), s ∈ [– 
n , 

n ].

We consider the following problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = α(t)ϕp

(
x+)

+ β(t)ϕp
(
x–)

+ λra(t)f [n](x), t ∈ (, T),

x() = x(T), x′() = x′(T).
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Clearly, we can see that limn→+∞ f [n](s) = f (s), (f [n]) = n, and (f [n])∞ = n.
Applying a similar method to the proof of Theorem ., we obtain an unbounded com-

ponent Dν ⊂ 
ν with (, ) ∈ Dν .
Similar to the proof of Theorem ., we can show that (,∞) ∈ Dν . �

Theorem . Let (H), (H), (H), and (H) hold. For ν ∈ {+, –}, assume that one of the
following conditions holds:

(i) r ∈ (, +∞) for λν > .
(ii) r ∈ (, +∞) ∪ (–∞, ) for νλν >  or νλν < .

(iii) r ∈ (–∞, ) for λν < .
Then problem (.) possesses two solutions x+, x–, such that νxν > .

Proof We shall only prove the case of (i) since the proofs of the cases for (ii), (iii), and (iv)
are completely analogous.

Define

f [n](s) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nϕp(s), s ∈ (–∞, –n] ∪ [n, +∞),
nϕp(n)+f (–n)

n (s + n) + f (–n), s ∈ (–n, –n),
nϕp(n)–f (n)

n (s – n) + f (n), s ∈ (n, n),
f (s), s ∈ [–n, – 

n ] ∪ [ 
n , n],

–[f (– 
n ) + 

np ](ns + ) + f (– 
n ), s ∈ (– 

n , – 
n ),

[f ( 
n ) – 

np ](ns – ) + f ( 
n ), s ∈ ( 

n , 
n ),


nϕp(s), s ∈ [– 

n , 
n ].

We consider the following problem:

–
(
ϕp

(
x′))′ + q(t)ϕp(x) = α(t)ϕp

(
x+)

+ β(t)ϕp
(
x–)

+ λra(t)f [n](x), t ∈ (, T),

x() = x(T), x′() = x′(T).
(.)

Clearly, we can see that limn→+∞ f [n](s) = f (s), (f [n]) = 
n , and (f [n])∞ = n.

Similar to the proof of Theorem ., there exists an unbounded continuum Dν[n] of so-
lutions of problem (.) emanating from ( nλν

r , ), such that Dν[n] ⊂ ((R× Pν) ∪ {( nλν

r , )}),
and Dν[n] joins ( nλν

r , ) to ( λν

rn ,∞).
Taking zn = ( nλν

r , ) and z∗ = (∞, ), we have zn → z∗.
So condition (i) in Lemma . is satisfied with z∗ = (∞, ).
Obviously

rn = sup
{
λ + ‖x‖|(λ, x) ∈ Dν[n]} = ∞,

and accordingly, (ii) in Lemma . holds. (iii) in Lemma . can be deduced directly from
the Arzelà-Ascoli theorem and the definition of f [n].

Therefore, by Lemma ., lim supn→∞ Dν[n] contains an unbounded component Dν with
(∞, ) ∈ Dν .

From limn→+∞ f [n](s) = f (s), (.) can be converted to the equivalent equation (.). Since
Dν[n] ⊂ (R× Pν), we conclude Dν ⊂ (R× Pν). Moreover, Dν ⊂ 
ν by (.).

Similar to the proof of Theorem ., we can show that (,∞) ∈ Dν . �
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Remark . (see [], p., L.-) The bifurcation argument uses the implicit func-
tion theorem and relies on the linearization. This condition may fail in this paper. So, the
proofs of Theorems ., ., . are more complicated than the proofs of Theorems ., .,
. in [].

Remark . In () of [], the assumption f ∈ (, +∞) implies that f is Fréchet differ-
entiable at the origin, i.e., f is linearizable at the origin. However, in the paper F is not
necessarily differentiable at the origin because of the influence of the term f . So the bifur-
cation theory of [] cannot be applied directly to obtain our results.

Remark . In [], the nonlinearities are Fréchet differentiable or p –  homogeneous
linearizable at the origin or infinity. However, the nonlinear term of problem (.) is not
necessarily p –  homogeneous linearizable at the origin and infinity because of the influ-
ence of the term αϕp(x+) + βϕp(x–). So the bifurcation theory of [] cannot be applied
directly to obtain our results. Luckily, using Theorems . and ., we can obtain some re-
sults of the existence of one-sign solutions, which extend the corresponding ones of []
in some sense.

Remark . When α = β =  and f, f∞ /∈ (,∞), Dai et al. [] studied bifurcation and
nodal solutions for one-dimensional p-Laplacian problems with non-asymptotic non-
linearity at  or ∞. Thus, Theorems .-. extend the corresponding results of Theo-
rems ., ., ., ., . of [].
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