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Abstract
The aim of this paper is to simulate the blow-up solutions to generalized
Korteweg-de Vries (KdV) equations. The KdV equations are discretized with the use of
a quintic Hermite collocation method based on the moving meshes generated by
solving moving mesh partial differential equations (MMPDEs). Theoretical analyses
are, respectively, conducted to determine the critical parameters in MMPDEs such
that the generated meshes can catch up with the blow-up profiles and to show the
effectiveness of the generated moving meshes. Lastly, a variety of examples are
implemented to confirm our analysis and show the efficiency of the method.
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1 Introduction
The focus of this paper is on numerical simulations of blow-up solutions to the generalized
Korteweg-de Vries (GKdV) equation

ut + upux + εuxxx = , x ∈ (a, b), ()

with periodic boundary conditions, where ε is a positive number and p a positive integer.
The special case p =  is the standard KdV equation (e.g., []), and p =  corresponds to

the modified KdV equation (e.g., []). The theoretical analysis by Bona et al. [] shows that
the solitary-wave solutions are stable if and only if p < . Bona et al. [] also show that the
solutions for p ≥  exhibit finite blow-up phenomena with a similarity form

u(x, t) = (T – t)–/(p)ψ

(
x∗ – x – c(T – t)/

(T – t)/

)
+ bounded term, ()

where x∗, T , c are real parameters and the similarity profile ψ is a smooth function which
tends to zero at ±∞. The point at which the peak value occurs depends on time in the
form x(t) = x∗ + c(T – t)/, and, obviously, x → x∗ as t → T .
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To compute such a type of singularities sufficiently and effectively, and hence to mimic
the asymptotic behavior of the solution as t → T , the numerical method employed is re-
quired to adapt the spatial meshes to the evolving singularities. In order to achieve this,
Bona et al. employ the h-adaptation technique [, ]: a spatial translation is used to keep
the blow-up peak appearing near the fixed point x = . and local mesh refinement is con-
ducted recursively right around this point. The demerit of this local refinement technique
is that the computational cost becomes larger and larger as the blow-up solution evolves.
Moreover, the use of interpolations in the time integration does not keep the truncation
errors under control. In this paper, based on the moving mesh method, we provide a more
reliable simulation method along with an in-depth analysis.

Let a coordinate be

μ =
[
x – x∗ – c(T – t)/](T – t)–/. ()

Then the blow-up profile can be represented by this coordinate. The mesh movement is
based on the time-dependent mapping

x(·, t) : Ic → I = [xL, xR],

where xL, xR are the left and right boundary points for the physical equation, and Ic is a
computational space in which uniform grids will be taken. When Ic is taken as [, ] for
example, the moving mesh can be generated by xj(j/N , t), j = , , . . . , N . The function u(x, t)
in physical variables can be transformed into the function in computational variables

u(x, t) = u
(
x(ξ , t), t

)
,

and the blow-up profile is expressed in the computational variable ξ . Equation () suggests
that in order to keep up with the blow-up profiles, the mesh trajectory speed has to satisfy

[ẋ] =
[x]
[t]

≥ [t]–/, ()

whereafter we use [u], [t], and [x] to denote the dimensions of the variables u, t, and x, re-
spectively. For the underlying physical PDEs () the time scale should be taken as [t] = T –t.
Dimensional analysis, more often used by physicians, is a tool to find or check relations
among physical quantities. In our paper, we use this technique to approximately determine
the relations among some dominant quantities in the equation with blow-up solutions,
and this method was first used by Budd et al. in [].

The moving mesh function x(ξ , t) satisfies certain parabolic equations which are called
moving mesh partial differential equations (MMPDEs). Two MMPDEs (MMPDE, MM-
PDE) in [] are considered in this paper, namely,

ẋ =

τ

∂

∂ξ

(
M

∂x
∂ξ

)
, ()

–
∂ẋ
∂ξ  =


τ

∂

∂ξ

(
M

∂x
∂ξ

)
, ()
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with

x(, t) = a, x(, t) = b. ()

Here M = M(x, t) is the monitor function which depends on the physical solution and is
used for controlling mesh concentration, while τ = τ (t) >  is a parameter used for adjust-
ing the response time of mesh movement to changes in M. The two MMPDEs are obtained
based on attraction and repulsion pseudoforces between nodes. They are also related to
the equidistribution equation,

 =
∂

∂ξ

(
M

∂x
∂ξ

)
. ()

It can be observed that, for both MMPDE and MMPDE, the mesh trajectory speeds
depend on M and τ . Moreover, for any choice of M and τ , the two MMPDEs can generate
smooth meshes as long as the time scale is taken to be sufficiently small. Therefore, the
key issues we need to deal with in the simulation of blow-up are: . how to choose M and τ

so that the mesh trajectory speed is as fast as that in (); . how small the time scale should
be in order that the MMPDEs can generate smooth meshes and resolve the dramatically
increase in the blow-up solution.

The dimensional equation for both MMPDE and MMPDE is

[ẋ] =
[M][x]

[τ ]
.

In view of (), to capture the blow-up profiles, it is required that

[M][x]
[τ ]

≥ [t]–/. ()

Based on the moving mesh x(ξ , t), a conservative moving collocation method with quin-
tic Hermite spline basis is employed to discretize the GKdV equation (). The conserva-
tive moving collocation method with cubic Hermite spline basis was proposed by Huang
and Russell in [] to solve second-order time-dependent PDEs. Later moving collocation
methods were developed to solve fourth-order PDEs [] and fractional-order PDEs [].
The convergence analysis of the moving collocation methods was given by Ma et al. [].

Among the earlier literature which uses MMPDE and MMPDE to generate moving
meshes in the simulation of blow-up solutions, Huang et al. [] chose the monitor pa-
rameters M and τ according to what is called ‘the dominance of equidistribution’, and
introduced dimensional analysis. Different from [], our paper uses the criterion that
the mesh trajectory speed satisfies () for determining the parameters M and τ , as stated
above, and presents a theoretical analysis to show the efficiency of the generated meshes.

We organize the paper as follows: in Section , the conservative moving collocation
method of the fifth order is proposed to discretize (); in Section , through dimensional
analysis, we discuss the choices of the monitor function M and the parameter τ in the
MMPDEs; in Section , the efficiency of the moving mesh collocation is analyzed; in Sec-
tion , numerical examples are carried out to confirm our analysis and to simulate the
blow-up.
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2 The conservative moving collocation method
The conservative moving collocation method, which is introduced by Huang and Russell
[], will be used to discretize the main equation. To this end, we reformulate the GKdV
equation () into the following form:

F(ut) =
[
G(u, uxx)

]
x, ()

where F(ut) = ut and G(u, uxx) = – 
p+ up+ – uxx. Define a time mesh

 = t < t < · · · < tL.

Denote the time-dependent spatial mesh at time tn (n = , , . . .) by

a = xn
 < xn

 < · · · < xn
N = b.

Denote the size of the jth interval by hn
j = xn

j – xn
j–, j = , , . . . , N . Divide each interval

equally into three parts by inserting two points xn
j+ k


= xn

j + k
 hn

j+, k = , . Integrating ()
over In

j,k = [xn
j+ k


, xn

j+ k+


], k = , , , gives

∫
In
j,k

F(ut)dx = G(u, uxx)|x=xn
j+ k+


– G(u, uxx)|x=xn

j+ k


. ()

On intervals [xn
j , xn

j+] (j = , , . . . , N – ), u(x, tn) is approximated by a fifth-order Hermite
polynomial

vn(x) = vn
j φ(s) + vn

x,jh
n
j+φ(s) + vn

xx,j
(
hn

j+
)

φ(s)

+ vn
j+φ(s) + vn

x,j+hn
j+φ(s) + vn

xx,j+
(
hn

j+
)

φ(s),

where vn
j , vn

x,j, vn
xx,j denote the approximations to u(xn

j , tn), ux(xn
j , tn), uxx(xn

j , tn), respectively.
The local coordinate s is defined by

s =
x – xn

j

hn
j+

,

and the Hermite basis functions are given by

φ(s) =
(
–s – s – 

)
(s – ), φ(s) = –s(s + )(s – ), φ(s) = –/s(s – ),

φ(s) =
(
s – s + 

)
s, φ(s) = –(s – )(s – )s, φ(s) = /(s – )s.

In order to obtain an algorithm which is second order in time, we consider the approxi-
mation to u(x, tn–/), where tn–/ ≡ tn–+tn

 , defined by

vn–/(x) =
ṽn–

j + vn
j


φ(s) +

ṽn–
x,j + vn

x,j


hn

j+φ(s) +
ṽn–

xx,j + vn
xx,j


(
hn

j+
)

φ(s)

+
ṽn–

j+ + vn
j+


φ(s) +

ṽn–
x,j+ + vn

x,j+


hn

j+φ(s) +
ṽn–

xx,j+ + vn
xx,j+


(
hn

j+
)

φ(s),
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for x ∈ [xn
j , xn

j+], j = , , . . . , N – , u(x, tn–/), where

ṽn–
j = vn–(xn

j
)
, ṽn–

x,j = vn–
x

(
xn

j
)
, ṽn–

xx,j = vn–
xx

(
xn

j
)
.

Similarly, we define the approximations to ux(x, tn–/) and uxx(x, tn–/), respectively, by

vn–/
x (x) =


hn

j+

[ ṽn–
j + vn

j


φ(s) +

ṽn–
x,j + vn

x,j


hn

j+φ(s) +
ṽn–

xx,j + vn
xx,j


(
hn

j+
)

φ(s)

+
ṽn–

j+ + vn
j+


φ(s) +

ṽn–
x,j+ + vn

x,j+


hn

j+φ(s) +
ṽn–

xx,j+ + vn
xx,j+


(
hn

j+
)

φ(s)
]

and

vn–/
xx (x) =


(hn

j+)

[ ṽn–
j + vn

j


φ(s) +

ṽn–
x,j + vn

x,j


hn

j+φ(s) +
ṽn–

xx,j + vn
xx,j


(
hn

j+
)

φ(s)

+
ṽn–

j+ + vn
j+


φ(s) +

ṽn–
x,j+ + vn

x,j+


hn

j+φ(s) +
ṽn–

xx,j+ + vn
xx,j+


(
hn

j+
)

φ(s)
]

.

Lastly, we define the approximation to ut(x, tn–/) as

vn–/
t (x) =

vn
j – ṽn–

j

�tn
φ(s) +

vn
x,j – ṽn–

x,j

�tn
hn

j+φ(s) +
vn

xx,j – ṽn–
xx,j

�tn

(
hn

j+
)

φ(s)

+
vn

j – ṽn–
j

�tn
φ(s) +

vn
x,j – ṽn–

x,j

�tn
hn

j+φ(s) +
vn

xx,j+ – ṽn–
xx,j+

�tn

(
hn

j+
)

φ(s),

where �tn = tn – tn–.
Substituting the above defined approximations into () gives, for k = , , ; j = , . . . ,

N – ,

∫
In
j,k

F
(
vn–/

t (x)
)
dx = G

(
vn–/, vn–/

xx
)∣∣

x=xn
j+ k+



– G
(
vn–/, vn–/

xx
)∣∣

x=xn
j+ k



, ()

subject to periodic boundary conditions

vn
 = vn

N , vn
x, = vn

x,N , vn
xx, = vn

xx,N . ()

{(), ()} is the discretization of the original problem (). The integral on the left-hand
side of () is computed by the two-point Gauss quadrature formula.

3 Choice of monitor functions
We will consider three types of monitor functions in the MMPDEs for generating the
moving mesh, namely

M = |u|γ , ()

M =
∣∣∣∣∂u
∂x

∣∣∣∣
γ

, ()
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M = α|u|γ + ( – α)
∣∣∣∣∂u
∂x

∣∣∣∣
γ

with  < α < . ()

Our numerical results show that the first type (polynomial type) of monitor function is
capable of simulating the blow-up phenomena, but it fails to capture the solitary waves.
Therefore, the second monitor function based on gradient will be used on the purpose
of capturing the blow-up and solitary waves later on. The third monitor function is the
average of the first two, in which the parameter  < α <  is used to control the percentage
of the mesh points being distributed to the solitary wave region and the blow-up region.
In the following, we determine the parameters γ, γ, and τ using dimensional analysis
introduced in [] such that mesh trajectory speeds satisfy ().

We begin with the physical equation (). The dimensions of the terms ut , upux, and uxxx

are

[ut] =
[u]
[t]

,
[
upux

]
=

[u]p+

[x]
, [uxxx] =

[u]
[x] .

The dimensional balance for the physical PDE implies

[u]
[t]

=
[u]p+

[x]
=

[u]
[x] .

This yields the dimension relations

[x] = [t]/, [u] = [t]–/(p). ()

So if the dimension of t is changed by a factor of λ > , the dimensions of x and u must
vary by factors of λ/ and λ–/(p), respectively, to keep the physical equation dimensionally
balanced. This suggests a scaling transform

t → λt, x → λ/x, u → λ–/(p)u, ()

which can easily be proved to make the physical equation invariant. In fact, Bona et al. []
used the same scaling transformation to obtain the similarity form of the blow-up solution
().

Monitor function M = |u|γ : The dimension analysis for MMPDE or MMPDE gives

[ẋ] =
[x]
[t]

=
[u]γ [x]

[τ ]
=


[τ ][t]γ/(p)–/ . ()

In the following, we discuss the case with a constant τ and that with a varying τ separately.
Constant τ : For the situation of constant τ , i.e., τ is dimensionless, to make the mesh

trajectory speed reach

[ẋ] ≥ [t]–/, ()

it requires

γ

p
–




≥ 


or γ ≥ p


. ()
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For the critical case with

γ =
p


, ()

the constant τ should be sufficiently small to ensure a fast enough mesh trajectory speed.
It should also be noted that the smaller the value of τ is taken, the faster is the mesh speed.
Therefore, our goal is to choose a suitable value of τ such that the mesh moves fast enough
to keep up with the moving blow-up profile while not too fast in order to guarantee the
generation of smooth meshes.

Moreover, notice that blow-up only occurs in the solution to GKdV equations with p > .
Even if we can obtain a satisfactory mesh trajectory speed by choosing a monitor func-
tion as |u|γ with γ ≥ p

 , such a large power of the solution will generally result in over-
concentration of the mesh points within the blow-up region and cause the simulation to
break down. The same problem also occurs when the monitor function is chosen to be ()
or (). In view of this, we shall only consider the case that γ and γ have small values.
In particular, we fix γ = γ =  while we vary the value of τ to obtain a satisfactory mesh
speed in the rest of the paper.

Varying τ : That () holds requires the dimension relation

[τ ] ≤ [t]–γ/(p) = [u]γ–p/.

This suggests us to choose τ as

τ (t) = κ
[
max

x

∣∣u(x, t)
∣∣]γ–p/–ε

, ()

where ε is some positive constant, and κ >  is a dimensionless constant which should
be taken sufficient small for (). With this choice of τ , the mesh trajectory speed will be
fast enough so that the moving meshes generated by MMPDE or MMPDE can timely
capture the blow-up profiles.

Monitor function M = | ∂u
∂x |γ :

For this monitor function, the dimensional equation for both MMPDE and MMPDE
is

[ẋ] =
[u]γ

[τ ][x]γ– =


[τ ][t]γ/(p)+γ/–/ . ()

For () to be satisfied, we require

[τ ] ≤ [t]–γ/(p)–γ/ = [u](+p/)γ–p/.

This suggests us to choose τ as

τ (t) = κ
[
max

x

∣∣u(x, t)
∣∣](+p/)γ–p/–ε

, ()

where ε and κ are positive constants as above.
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Monitor function M = α|u|γ + ( – α)| ∂u
∂x |γ with  < α < : it is not hard to derive that,

for () to be satisfied, τ should be chosen as

τ = κ min
([

max
x

∣∣u(x, t)
∣∣]γ–p/–ε

,
[
max

x

∣∣u(x, t)
∣∣](+p/)γ–p/–ε)

()

with ε and κ positive constants as above.
In the last of this section, we shall consider the choice of time-step sizes in the simulation

of blow-up solutions. We take the time steps of the form

�tn =
ν

[maxx u(x, tn–)]γ
, ()

where ν is a small positive constant. From () we know that maxx u(x, tn) is proportional
to (T – tn)–/(p), i.e.,

max
x

u(x, tn) ∼ (T – tn)–/(p).

Now we estimate that

max
x

u(x, tn) – max
x

u(x, tn–)

∼ (T – tn– – �tn)–/(p) – (T – tn–)–/(p)

= (T – tn–)–/(p)[( – (T – tn)γ /(p)–ν
)–/(p) – 

]

≈ (T – tn–)–/(p)
[


p

(T – tn)γ /(p)–ν

]

=


p
(T – tn)γ /(p)–/(p)–ν. ()

To resolve the dramatic increase in the blow-up solution, we choose

γ =  + p/( + ε), ()

where ε is a small positive parameter. The increase in the blow-up solution is then

max
x

u(x, tn) – max
x

u(x, tn–) = O
(
(T – tn)εν

)
.

4 An analysis
In this section, we carry out a careful analysis to verify the validity of MMPDE in sim-
ulating blow-up solutions when the monitor function M, τ are chosen as in {(), ()},
respectively. Similar analysis can be performed for MMPDE with the choice of M, τ as
in {(), ()} or as in {(), ()}. The analysis can also be conducted for MMPDE with
the choices of M, τ above mentioned.

Now we consider () in the blow-up region, that is, time t is close to the blow-up time T .
Write

x(ξ , t) = x∗ + c(T – t)/ + z(ξ )(T – t)/, ()
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where z(ξ ) is a smooth function. For simplification, by differentiating (), we obtain

ẋ =
c


(T – t)–/ +



(T – t)–/z, ()

xξ = (T – t)/zξ , ()

xξξ = (T – t)/zξξ . ()

The exact form () gives

u = (T – t)–/(p)ψ(z) + bounded term. ()

Hereafter we only consider the blow-up solution u while omitting the bounded term. Thus
we have

∂u
∂x

= (T – t)–(+p)/(p)ψ ′(z). ()

Inserting the above expressions into the monitor function () leads to

M = α(T – t)–γ/(p)∣∣ψ(z)
∣∣γ + ( – α)(T – t)–(+p)γ/(p)∣∣ψ ′(z)

∣∣γ ,

Mξ = α(T – t)–γ/(p) d(|ψ(z)|γ )
dz

zξ + ( – α)(T – t)–(+p)γ/(p) d(|ψ ′(z)|γ )
dz

zξ .

Putting the above results into

τ ẋ = M
∂x
∂ξ  +

∂M
∂ξ

∂x
∂ξ

, ()

which is an equivalent form of MMPDE (), gives

τ

[
c


(T – t)–/ +



(T – t)–/z
]

=
[
α(T – t)–γ/(p)+/∣∣ψ(z)

∣∣γ + ( – α)(T – t)–(+p)γ/(p)+/∣∣ψ ′(z)
∣∣γ]zξξ

+
[
α(T – t)–γ/(p)+/ d(|ψ(z)|γ )

dz

+ ( – α)(T – t)–(+p)γ/(p)+/ d(|ψ ′(z)|γ )
dz

]
z
ξ . ()

Consider the case that

γ >
 + p


γ.

Let δ = γ/(p) – ( + p)γ/(p). Multiplying equation () with (T – t)γ/(p)–/ gives

τ

[
c


(T – t)γ/(p)– +



(T – t)γ/(p)–z
]

= α

[
zξξ

∣∣ψ(z)
∣∣γ + z

ξ

d(|ψ(z)|γ )
dz

]

+ ( – α)(T – t)δ
[

zξξ

∣∣ψ ′(z)
∣∣γ + z

ξ

d(|ψ ′(z)|γ )
dz

]
. ()
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Note that in the blow-up region, z, d(|ψ(z)|γ )
dz , d(|ψ ′(z)|γ )

dz are bounded. Combining with ()
and (), it is not hard to see the term in the left-hand side of () is equal to κO((T – t)ε).
By omitting the term on the left-hand side and the second term on the right-hand side in
(), we obtain an ODE such that the function z approximately satisfies

dz
dξ  = –


|ψ(z)|γ

d(|ψ(z)|γ )
dz

(
dz
dξ

)

. ()

Similarly, in the case that

γ <
 + p


γ,

the function z approximately satisfies

dz
dξ  = –


|ψ ′(z)|γ

d(|ψ ′(z)|γ )
dz

(
dz
dξ

)

. ()

For the critical case

γ =
 + p


γ,

the function z approximately satisfies

[
α
∣∣ψ(z)

∣∣γ + ( – α)
∣∣ψ ′(z)

∣∣γ] dz
dξ 

= –
[
α

d(|ψ(z)|γ )
dz

+ ( – α)
d(|ψ ′(z)|γ )

dz

](
dz
dξ

)

. ()

Now we determine the boundary conditions for (), (), (). Since the boundary points
are kept to be fixed in the mesh movement (), we know from () that

z() =
[
xL – x∗ – c(T – t)/](T – t)–/; ()

z() =
[
xR – x∗ – c(T – t)/](T – t)–/. ()

To solve the boundary value problems {(), (), ()}, we rewrite the ODE () into the
form

d( dz
dξ

)
dz
dξ

= –
d(|ψ(z)|γ )
|ψ(z)|γ

.

Integrating this equation gives

dz
dξ

= C
∣∣ψ(z)

∣∣–γ ,

or

dξ

dz
= C–∣∣ψ(z)

∣∣γ ,

regarding z as the independent variable.
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Using the boundary condition () and (), we obtain the solution to {(), (), ()}

ξ =

∫ z
z() |ψ(s)|γ ds∫ z()
z() |ψ(s)|γ ds

. ()

Analogously, the solutions to {(), (), ()}, and {(), (), ()} are given by, respec-
tively,

ξ =

∫ z
z() |ψ ′(s)|γ ds∫ z()
z() |ψ ′(s)|γ ds

()

and

ξ =

∫ z
z()[α|ψ(s)|γ + ( – α)|ψ ′(s)|γ ]ds∫ z()
z() [α|ψ(s)|γ + ( – α)|ψ ′(s)|γ ]ds

. ()

Equations (), (), and () indicate that the meshes generated by MMPDE in physical
space can equidistribute the correspondent monitor functions M if the uniform grids are
taken in ξ space. A similar analysis can be done for other choices of parameters in MM-
PDE and MMPDE. This shows the feasibility of determining the parameters in MM-
PDE and MMPDE by criterion ().

5 Numerical examples
In this section, we demonstrate the efficiency and accuracy of the proposed moving collo-
cation method for solving GKdV equations. Example . is chosen to illustrate the rate of
convergence while Examples . and . show the capability of our method to accurately
capture the two important features of the GKdV equations - solitary waves and blow-up.

The moving collocation method is carried out by solving the coupled system consist-
ing of an MMPDE and {(), ()}. We here use MMPDE in the coupled system for our
numerical experiments and denote U(x, tn) the approximate solution obtained at tn. The
coupled system at tn is solved in an alternating way. To be specific, we choose the monitor
function and the temporal smoothing parameter as follows:

M = g(u, x, t), τ = g(u, t).

We shall first solve MMPDE to generate the spatial mesh at tn with

M(x, tn) = g
(
U(x, tn–), x, t

)
, τ (tn) = g

(
U(x, tn–), t

)

and then solve {(), ()} on this mesh to obtain U(x, tn).
We mention here that the numerical solution of MMPDE is approximated by using

central difference method for the spatial derivatives and backward Euler method for the
time derivative.

One key issue in using moving mesh methods is to choose the monitor function. In
order to ensure the generation of a smooth, hence more reliable, moving mesh, we add
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correction terms in the choice of monitor functions. For instance, when simulating the
blow-up profiles in Examples . and ., we choose the monitor function as

M = .|u| + .|ux| +
(
(x – ) + .

)–/ +
(
(x – ) + .

)–/ + C, ()

where the constant C is used to ensure that enough mesh points are distributed away from
the blow-up region. We take C =  in our test. The third and the fourth terms are added to
guarantee that enough mesh points are distributed around the end points while the first
two terms capture the moving blow-up profiles. Based on the choice of monitor functions,
we take τ as in ()

τ =
κ

(maxx u(x, t))p/+ε–γ
,

with γ = , ε being taken as . in our test. The time-step size is taken as in ()

�tn =
ν

(maxx u(x, tn–))γ

with γ = p
 + .

5.1 Convergence rates
We calculate the following example to show the convergence rates of the conservative
collocation methods based on fixed and moving meshes.

Example . Consider the GKdV equation () on the space interval [, ] and on the time
interval [, ] with the following initial condition:

u(x, ) = A sech/p[K
(
x – x)], ()

where

K = p
[
Ap/ε(p + )(p + )

]/.

Then the GKdV equation () has the exact solution

u(x, t) = A sech/p[K
(
x – x) – ωt

]
, ()

where

ω = KAp/(p + )(p + ).

In this experiment, the time stepsize is taken to be �t = . × –. We shall vary the
number of mesh subintervals N to test the order of convergence of our moving collocation
method. Both cases, with a uniform mesh and with a moving mesh, are tested. The monitor
function is taken as

M = .|u| + .|ux| + ,
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Table 1 Results for the uniform mesh in Example 5.1

N 40 70 100 130 160

Error 1.18e–3 1.44e–4 3.56e–5 1.24e–5 5.19e–6
Rate - 3.75 3.92 4.03 4.19

Table 2 Results for the moving mesh in Example 5.1

N 40 70 100 130 160

Error 1.02e–4 1.34e–5 3.30e–6 1.04e–6 4.06e–7
Rate - 3.63 3.94 4.37 4.57

where applicable. For p = , A = , ε =  × –, x = ., the results are shown in Tables 
and . In the tables, the rate of convergence is given by

Rate =
log( ‖EN ‖∞

‖EN ‖∞ )

log( /N
/N

)
.

From Tables  and , we may see that the convergence rates for the conservative col-
location methods are . The convergence order of the moving collocation method with
fifth-order Hermite polynomial basis is expected to be ; however, this is only true for
some special types of PDE. For the KdV equations which are nonlinear, it is indeed not
guaranteed that the moving collocation scheme can attain the sixth-order convergence.
The numerical tests show that the conservative collocation methods are of high-order
schemes for both fixed (uniform) meshes and moving meshes. Moreover, the error for the
moving mesh is smaller than that for fixed (uniform) mesh. In fact, in the literature only
one paper by Ma et al. [] analyzes the convergence order of moving collocation method
for linear second-order PDEs - a very simple PDE; however, it is not possible to prove the
convergence rates for nonlinear KdV equations.

5.2 Capture of solitary waves and blow-up
In this section we use two examples to show the capability of our method to accurately
capture the two important features of the GKdV equations - solitary waves and blow-up.

Example . For p = , , we consider the GKdV equation () on the space interval [, ]
with a small perturbation to the initial condition ():

u = λA sech/p[K
(
x – x)], ()

where λ is the perturbation parameter. In our tests, we take λ = ., A = , ε =  × –,
and x = ..

In these tests, the number of mesh subintervals is N = , κ = .(maxx u(x))
p
 +.–,

and ν = . for p = , ν = . for p =  separately. The numerical results for
p =  are shown in Figures  and . The six graphs of u on the physical space in Figure 
correspond to the six curves in the right part of Figure . The numerical results for p =  are
shown in Figures  and . The six graphs of u on the physical space in Figure  correspond
to the six curves in the right part of Figure .
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Figure 1 For p = 5 in Example 5.2. The left is the moving mesh x(ξ , t) and the right is the blow-up profiles in
the computational variable ξ .

Figure 2 The blow-up profiles for p = 5 in Example 5.2. (a) t = 0, umax = 2.02;
(b) t = 2.249070196709× 10–2, umax = 6.249; (c) t = 2.249391515276× 10–2, umax = 10.58;
(d) t = 2.249397460425× 10–2, umax = 14.83; (e) t = 2.249397897417× 10–2, umax = 19.13;
(f) t = 2.249397956808× 10–2, umax = 23.40.

Example . When p = , we investigate the GKdV equation () on the space interval
[, ] with the initial profile

u = e–(x–.)
– . ()

In the test we take ε = . × –. The numerical results are shown in Figures , , in
which the parameters N , κ are chosen as in Example . and ν = .. The six graphs
of u on the physical space in Figure  correspond to the six curves in the right part of
Figure .

From the above tests, we can observe that the solitary waves move from one side to the
other with the peak value increasingly and eventually ends up with a blow-up. Also we
observe that there are oscillations in the non-blow-up regions. That means that there are
also waves of small amplitude in the non-blow-up regions.
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Figure 3 For p = 6 in Example 5.2. The left is the moving mesh x(ξ , t), the right u(ξ , t).

Figure 4 The blow-up profiles for p = 6 in Example 5.2. (a) t = 0, umax = 2.02;
(b) t = 5.077843981799× 10–3, umax = 6.31; (c) t = 5.077977135290× 10–3, umax = 10.43;
(d) t = 5.077978558534× 10–3, umax = 14.43; (e) t = 5.077978631256× 10–3, umax = 18.40;
(f) t = 5.077978638853× 10–3, umax = 22.33.

6 Conclusions
Applied to second- and fourth-order PDEs [, ], moving collocation methods show a
high order of convergence and capabilities of capturing blow-up phenomena. In this pa-
per, we develop the moving collocation method for third-order PDEs - the KdV equations.
The method can be easily generalized to third-order PDEs of other types. The fully dis-
crete moving collocation method proposed is shown to be fourth-order convergent in
space and it is then employed to simulate the blow-up solutions to the generalized KdV
equations. In the simulation of the blow-up solutions, we use MMPDEs to generate the
moving meshes: we first assess how fast the mesh trajectory speed is required to be ac-
cording to the structure of the blow-up solutions, and then determine the parameters in
the MMPDEs through dimensional analysis. The theoretical analysis and the numerical
experiments show that the method can accurately capture the two important features of
the GKdV equation - solitary waves and blow-up.
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Figure 5 For p = 4. The left is moving mesh x(ξ , t), the right u(ξ , t).

Figure 6 The blow-up profiles for p = 4 in Example 5.3. (a) t = 0, umax = 2; (b) t = 7.245823777296× 10–3,
umax = 6.989; (c) t = 7.273839836925× 10–3, umax = 9.756; (d) t = 7.277618404530× 10–3, umax = 12.12;
(e) t = 7.278608365592× 10–3, umax = 14.22; (f) t = 7.278965443315× 10–3, umax = 16.12.
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