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Abstract
This paper is devoted to the study of the sign of the Green’s function related to a
general linear nth-order operator, depending on a real parameter, Tn[M], coupled with
the (k,n – k) boundary value conditions.
If the operator Tn[M̄] is disconjugate for a given M̄, we describe the interval of values

on the real parameterM for which the Green’s function has constant sign.
One of the extremes of the interval is given by the first eigenvalue of the operator

Tn[M̄] satisfying (k,n – k) conditions.
The other extreme is related to the minimum (maximum) of the first eigenvalues of

(k – 1,n – k + 1) and (k + 1,n – k – 1) problems.
Moreover, if n – k is even (odd) the Green’s function cannot be nonpositive

(nonnegative).
To illustrate the applicability of the obtained results, we calculate the parameter

intervals of constant sign Green’s functions for particular operators. Our method
avoids the necessity of calculating the expression of the Green’s function.
We finalize the paper by presenting a particular equation in which it is shown that

the disconjugation hypothesis on operator Tn[M̄] for a given M̄ cannot be eliminated.
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1 Introduction
It is very well known that the validity of the method of lower and upper solutions, cou-
pled with the monotone iterative techniques [, ], is equivalent to the constant sign of
the Green’s function related to the linear part of the studied problem [, ]. Moreover,
by means of the celebrated Krasnosel’skĭı contraction/expansion fixed point theorem [],
nonexistence, existence, and multiplicity results are derived from the construction of suit-
able cones on Banach spaces. Such a construction follows by using adequate properties of
the Green’s function, one of them is its constant sign [–]. Recently, the combination
of the two previous methods has been proved as a useful tool to ensure the existence of
solution [–].
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Having in mind the power of this constant sign property, we will describe the interval of
parameters for which the Green’s function related to the general linear nth-order equation

Tn[M]u(t) ≡ u(n)(t) + a(t)u(n–)(t) + · · · + an–(t)u′(t) +
(
an(t) + M

)
u(t) = , ()

t ∈ I ≡ [a, b], coupled with the so-called (k, n – k) two-point boundary value conditions:

u(a) = u′(a) = · · · = u(k–)(a) = u(b) = u′(b) = · · · = u(n–k–)(b) = , ()

 ≤ k ≤ n – , has constant sign on its square of definition I × I .
The main hypothesis consists on assuming that there is a real parameter M̄ for which

operator Tn[M̄] is disconjugate on I .
An exhaustive study of the general theory and the fundamental properties of the dis-

conjugacy are compiled in the classical book of Coppel []. Different sufficient criteria to
ensure the disconjugacy character of the linear operator Tn[] have been developed in the
literature, we refer to [, ]. Sufficient conditions for particular cases have been obtained
in [–] and, more recently, in []. We mention that operator u(n)(t) + a(t)u(n–)(t) is
always disconjugate in I , see [] for details, in particular the results here presented are
valid for the operator u(n)(t) + Mu(t).

As has been shown in [], the disconjugacy character implies the constant sign of the
Green’s function gM related to problem ()-(). However, as we will see in the paper, the re-
ciprocal property is not true in general: there are real parameters M for which the Green’s
function has constant sign but equation () is not disconjugate. In other words, the dis-
conjugacy character is only a sufficient condition in order to ensure the constant sign of a
Green’s function related to problem ()-().

In fact, from the disconjugacy character of the operator Tn[M̄] in I , it is shown in [] that
the Green’s function gM satisfies a suitable condition, stronger than its constant sign. Such
condition fulfills the one introduced in Section . of []. So, following the results given in
that reference we conclude that the set of parameters M for which gM has constant sign is
an interval HT . Moreover, if n – k is even then the maximum of HT is the opposite to the
biggest negative eigenvalue of problem ()-(), when n – k is odd the minimum of HT is
the opposite to the least positive eigenvalue of such problem.

Thus, the difficulty remains in the characterization of the other extreme of the inter-
val HT . In this case, as it is shown in Section . of [], such extreme is not an eigenvalue
of the considered problem, so to attain its exact value is not immediate. In practical situa-
tions it is necessary to obtain the expression of the Green’s function, which is, in general, a
difficult matter to deal with. We point out that this problem is not restricted to the (k, n–k)
boundary conditions, the difficulty in obtaining the non-eigenvalue extreme remains true
for any kind of linear conditions [, ]. In [], provided operator Tn[M] has constant
coefficients, it has been developed a computer algorithm that calculates the exact expres-
sion of a Green’s function coupled with two-point boundary value conditions. However,
such expression is often too complicated to manage, and to describe the interval HT is
really very difficult in practical situations. In fact there is not a direct method of the con-
struction for non-constant coefficients.

We mention that the disconjugacy theory has been used in [] to obtain the values
for which the Green’s functions related to be third-order operators u′′′ + Mu(i), i = , , ,
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coupled with conditions (, ) and (, ), have constant sign. A similar procedure has been
performed in [] for the fourth-order operator u() + Mu, coupled with conditions (, )
and, more recently, in [] with conditions (, ) and (, ). In all the situations the interval
of disconjugacy is obtained and then, by means of the expression of the Green’s function,
it is proved that such interval is optimal. As we have mentioned above, this coincidence
holds only in particular cases as the ones treated in these papers, in general the intervals
of disconjugacy and constant sign Green’s functions do not coincide for the nth-order
operator Tn[M].

It is for this that we make in this work a general characterization of the regular extreme
of the interval of constant sign HT by means of the spectral theory. We will show that it
is an eigenvalue of the same operator Tn[M] but related to different two-point boundary
value conditions. In fact, if n – k is even, it will be the minimum of the two least positive
eigenvalues related to conditions (k –, n–k +) and (k +, n–k –). It will be the maximum
of the two biggest negative eigenvalues of such problems when n – k is odd. So, we make
a general characterization for the general operator Tn[M] and we avoid the necessity of
calculating the Green’s function and to study its sign dependence on the real parameter M.

We note that if the operator Tn[M] has constant coefficients, to obtain the correspond-
ing eigenvalues we only must to calculate the determinant of the matrix of coefficients of
a linear homogeneous algebraic system. Numerical methods are also valid for the non-
constant case.

It is important to mention that, as a consequence of the obtained results, denoting by
gM the Green’s function related to problem ()-(), we conclude that (–)n–kgM(t, s) cannot
be negative on I × I for all M ∈R.

The paper is organized as follows: in a preliminary Section  we introduce the funda-
mental concepts that are needed in the development of the paper. Next section is devoted
to the proof of the main result in which the regular extreme is obtained via spectral the-
ory. In Section  some particular cases are considered where it is shown the applicability
of the obtained results. In the last section is introduced an example that shows that the
disconjugacy hypothesis on the main result cannot be eliminated.

2 Preliminaries
In this section, for convenience of the reader, we introduce the fundamental tools in the
theory of disconjugacy and Green’s functions that will be used in the development of fur-
ther sections.

Definition . Let ak ∈ Cn–k(I) for k = , . . . , n. The nth-order linear differential equation
() is said to be disconjugate on an interval I if every nontrivial solution has less than n
zeros on I , multiple zeros being counted according to their multiplicity.

Definition . The functions u, . . . , un ∈ Cn(I) are said to form a Markov system on the
interval I if the n Wronskians

W (u, . . . , uk) =

∣
∣∣
∣∣
∣∣∣

u · · · uk
... · · · ...

u(k–)
 · · · u(k–)

k

∣
∣∣
∣∣
∣∣∣

, k = , . . . , n, ()

are positive throughout I .
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The following result about this concept is in Chapter  of [].

Theorem . The linear differential equation () has a Markov fundamental system of
solutions on the compact interval I if, and only if, it is disconjugate on I .

In order to introduce the concept of the Green’s function related to the nth-order scalar
problem ()-(), we consider the following equivalent first-order vectorial problem:

x′(t) = A(t)x(t), t ∈ I, Bx(a) + Cx(b) = , ()

with x(t) ∈R
n, A(t), B, C ∈Mn×n, defined by

x(t) =

⎛

⎜⎜
⎜⎜
⎝

u(t)
u′(t)

...
u(n–)(t)

⎞

⎟⎟
⎟⎟
⎠

, A(t) =

(
 In–

–(an(t) + M) –an–(t) · · · – a(t)

)

,

B =

(
Ik 
 

)

, C =

(
 

In–k 

)

. ()

Here Ij, j = , . . . , n – , is the j × j identity matrix.

Definition . We say that G is a Green’s function for problem () if it satisfies the fol-
lowing properties:

(G) G ≡ (Gi,j)i,j∈{,...,n} : (I × I)\{(t, t), t ∈ I} →Mn×n.
(G) G is a C function on the triangles {(t, s) ∈R

, a ≤ s < t ≤ b}, and
{(t, s) ∈R

, a ≤ t < s ≤ b}.
(G) For all i �= j the scalar functions Gi,j have a continuous extension to I × I .
(G) For all s ∈ (a, b), the following equality holds:

∂

∂t
G(t, s) = A(t)G(t, s) for all t ∈ I\{s}.

(G) For all s ∈ (a, b) and i ∈ {, . . . , n}, the following equalities are fulfilled:

lim
t→s+

Gi,i(t, s) = lim
t→s– Gi,i(s, t) =  + lim

t→s+
Gi,i(s, t) =  + lim

t→s– Gi,i(t, s).

(G) For all s ∈ (a, b), the function t → G(t, s) satisfies the boundary conditions

BG(a, s) + CG(b, s) = .

Remark . On the previous definition item (G) can be modified to obtain the charac-
terization of the lateral limits for s = a and s = b as follows:

lim
t→a+

Gi,i(t, a) =  + lim
t→a+

Gi,i(a, t) and lim
t→b–

Gi,i(b, t) =  + lim
t→b–

Gi,i(t, b).
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It is very well known that the Green’s function related to this problem obeys the following
expression ([], Section .):

G(t, s) =

⎛

⎜
⎜⎜
⎜
⎝

g(t, s) g(t, s) · · · gn–(t, s) gM(t, s)
∂
∂t g(t, s) ∂

∂t g(t, s) · · · ∂
∂t gn–(t, s) ∂

∂t gM(t, s)
...

... · · · ...
...

∂n–

∂tn– g(t, s) ∂n–

∂tn– g(t, s) · · · ∂n–

∂tn– gn–(t, s) ∂n–

∂tn– gM(t, s)

⎞

⎟
⎟⎟
⎟
⎠

, ()

where gM(t, s) is the scalar Green’s function related to problem ()-().
Using Definition . we can deduce the properties fulfilled by gM(t, s). In particular,

gM ∈ Cn–(I × I) and it is a Cn function on the triangles a ≤ s < t ≤ b and a ≤ t < s ≤ b.
Moreover, it satisfies, as a function of t, the two-point boundary value conditions () and
solves equation () whenever t �= s.

We also mention a result which appears in Chapter , Section  of [] and that connects
the disconjugacy and the sign of the Green’s function related to problem ()-().

Lemma . If the linear differential equation () is disconjugate and gM(t, s) is the Green’s
function related to problem ()-(), hence

gM(t, s)p(t) ≥ , (t, s) ∈ I × I,

gM(t, s)
p(t)

> , (t, s) ∈ [a, b] × (a, b),

where p(t) = (t – a)k(t – b)n–k .

Remark . We mention that in previous lemma, by means of the expression

gM(t, s)
p(t)

> , (t, s) ∈ [a, b] × (a, b)

we are denoting

gM(t, s)
p(t)

>  for all (t, s) ∈ (a, b) × (a, b)

and

lim
t→a+

gM(t, s)
p(t)

>  and lim
t→b–

gM(t, s)
p(t)

>  for all s ∈ (a, b).

Moreover, due to the regularity of the function gM , we see that there is a positive constant
K such that the following properties hold for all s ∈ (a, b):

 < �(s) = lim
t→a+

gM(t, s)
p(t)

=
∂k

∂tk gM(t, s)|t=a

k!(a – b)n–k ≤ K

and

 < �(s) = lim
t→b–

gM(t, s)
p(t)

=
∂n–k

∂tk gM(t, s)|t=b

(b – a)k(n – k)!
≤ K .
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We note that such properties imply the following inequalities:

(–)n–kgM(t, s) > , (t, s) ∈ (a, b) × (a, b),

(–)n–k ∂k

∂tk gM(t, s)|t=a > , s ∈ (a, b),

(–)n–k ∂n–k

∂tn–k gM(t, s)|t=b < , s ∈ (a, b).

The adjoint of the operator Tn[M] is given by the following expression, see for details
Section . of [] or Chapter , Section  of []:

T∗
n [M]v(t) ≡ (–)nv(n)(t) +

n–∑

j=

(–)j(an–jv)(j)(t) +
(
an(t) + M

)
v(t), ()

and its domain of definition is

D
(
T∗

n [M]
)

=

{

v ∈ Cn(I)
∣
∣∣
∣

n∑

j=

j–∑

i=

(–)j––i(an–jv)(j––i)(b)u(i)(b)

=
n∑

j=

j–∑

i=

(–)j––i(an–jv)(j––i)(a)u(i)(a) (with a = ),∀u ∈ D
(
Tn[M]

)
}

. ()

In our case, because of the boundary conditions (), we can express the domain of the
operator Tn[M], D(Tn[M]), as

Xk =
{

u ∈ Cn(I) | u(a) = · · · = u(k–)(a) = u(b) = · · · = u(n–k–)(b) = 
}

,

so we can replace equation () with

D
(
T∗

n [M]
)

=

{

v ∈ Cn(I)
∣∣
∣∣

n∑

j=n–k+

j–∑

i=n–k

(–)j––i(an–jv)(j––i)(b)u(i)(b)

=
n∑

j=k+

j–∑

i=k

(–)j––i(an–jv)(j––i)(a)u(i)(a) (with a = ),∀u ∈ Cn(I)

}

.

In order to simplify the previous expression, we choose a function u ∈ Cn(I) satisfying

u(σ )(a) = , σ = , . . . , n – ,

u(μ)(b) = , μ = , . . . , n – ,

u(n–)(b) = .

Realizing that a = , we conclude that every function v ∈ D(T∗
n [M]) must satisfy

v(b) = .
Moreover, if we now choose a function in Cn(I) that satisfies

u(σ )(a) = , σ = , . . . , n – ,
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u(μ)(b) = , μ = , . . . , n – ,μ �= n – ,

u(n–)(b) = ,

we conclude that any function v ∈ D(T∗
n [M]) has to satisfy

–v′(b) + a(b)v(b) = .

Since a ∈ Cn–(I) and v(b) = , we conclude that v′(b) = .
Repeating this process we conclude that the domain of the adjoint operator is given by

D
(
T∗

n [M]
)

= Xn–k . ()

The next result appears in Chapter , Theorem  of [].

Theorem . Equation () is disconjugate on an interval I if, and only if, the adjoint equa-
tion, T∗

n [M]y(t) =  is disconjugate on I .

We denote by g∗
M(t, s) the Green function of the adjoint operator, T∗

n [M].
In Section . of [] the following relationship is proved:

g∗
M(t, s) = gM(s, t). ()

Defining now the following operator:

T̂n
[
(–)nM

]
:= (–)nT∗

n [M], ()

we deduce, from the previous expression, that

ĝ(–)nM(t, s) = (–)ng∗
M(t, s) = (–)ngM(s, t). ()

Obviously, Theorem . remains true for the operator T̂n[(–)nM].

Definition . The operator Tn[M] is said to be inverse positive (inverse negative) on Xk

if every function u ∈ Xk such that Tn[M]u ≥  in I , must verify u ≥  (u ≤ ) on I .

The next results are proved in Section . and Section . of [].

Theorem . The operator Tn[M] is inverse positive (inverse negative) on Xk if, and only
if, the Green’s function related to problem ()-() is nonnegative (nonpositive) on its square
of definition.

Theorem . Let M, M ∈ R, and suppose that operators Tn[Mj], j = , , are invertible
in Xk . Let gj, j = , , be Green’s functions related to operators Tn[Mj], and suppose that both
functions have the same constant sign on I × I . Then, if M < M, g ≤ g on I × I .

In the sequel, we introduce two conditions on gM(t, s), which will be used in the paper.
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(Pg ) Suppose that there is a continuous function φ(t) >  for all t ∈ (a, b) and k, k ∈L(I),
such that  < k(s) < k(s) for a.e. s ∈ I , satisfying

φ(t)k(s) ≤ gM(t, s) ≤ φ(t)k(s) for a.e. (t, s) ∈ I × I.

(Ng ) Suppose that there is a continuous function φ(t) >  for all t ∈ (a, b) and k, k ∈L(I),
such that k(s) < k(s) <  for a.e. s ∈ I , satisfying

φ(t)k(s) ≤ gM(t, s) ≤ φ(t)k(s) for a.e. (t, s) ∈ I × I.

Finally, we introduce the following sets, which are going to particularize HT :

PT =
{

M ∈R | gM(t, s) ≥ ,∀(t, s) ∈ I × I
}

,

NT =
{

M ∈R | gM(t, s) ≤ ,∀(t, s) ∈ I × I
}

.

Realize that using Theorem . we can affirm that the two previous sets are real inter-
vals.

The next results describe one of the extremes of the two previous intervals (see Theo-
rems .. and .. of []).

Theorem . Let M̄ ∈R be fixed. If the operator Tn[M̄] is invertible in Xk and its related
Green’s function satisfies condition (Pg ), then the following statements hold:

• There exists λ > , the least eigenvalue in absolute value of the operator Tn[M̄] in Xk .
Moreover, there exists a nontrivial constant sign eigenfunction corresponding to the
eigenvalue λ.

• The Green’s function related to the operator Tn[M] is nonnegative on I × I for all
M ∈ (M̄ – λ, M̄].

• The Green’s function related to the operator Tn[M] cannot be nonnegative on I × I for
all M < M̄ – λ.

• If there is M ∈R for which the Green’s function related to the operator Tn[M] is
nonpositive on I × I , then M < M̄ – λ.

Theorem . Let M̄ ∈R be fixed. If the operator Tn[M̄] is invertible in Xk and its related
Green’s function satisfies condition (Ng ), then the following statements hold:

• There exists λ < , the least eigenvalue in absolute value of the operator Tn[M̄] in Xk .
Moreover, there exists a nontrivial constant sign eigenfunction corresponding to the
eigenvalue λ.

• The Green’s function related to the operator Tn[M] is nonpositive on I × I for all
M ∈ [M̄, M̄ – λ).

• The Green’s function related to the operator Tn[M] cannot be nonpositive on I × I for
all M > M̄ – λ.

• If there is M ∈R for which the Green’s function related to the operator Tn[M] is
nonnegative on I × I , then M > M̄ – λ.

3 Main result
This section is devoted to the proof of the eigenvalue characterization of the sets PT

and NT . Such a result is enunciated in the following theorem.
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Theorem . Let M̄ ∈ R be such that the equation Tn[M̄]u(t) =  is disconjugate on I .
Then the following properties are fulfilled:

If n – k is even and  ≤ k ≤ n – , then the operator Tn[M] is inverse positive on Xk if, and
only if, M ∈ (M̄ – λ, M̄ – λ], where:

• λ >  is the least positive eigenvalue of the operator Tn[M̄] in Xk .
• λ <  is the maximum of:

– λ′
 < , the biggest negative eigenvalue of the operator Tn[M̄] in Xk–.

– λ′′
 < , the biggest negative eigenvalue of the operator Tn[M̄] in Xk+.

If k =  and n is odd, then the operator Tn[M] is inverse positive on X if, and only if,
M ∈ (M̄ – λ, M̄ – λ], where:

• λ >  is the least positive eigenvalue of the operator Tn[M̄] in X.
• λ <  is the biggest negative eigenvalue of the operator Tn[M̄] in X.
If n – k is odd and  ≤ k ≤ n – , then the operator Tn[M] is inverse negative on Xk if, and

only if, M ∈ [M̄ – λ, M̄ – λ), where:
• λ <  is the biggest negative eigenvalue of the operator Tn[M̄] in Xk .
• λ >  is the minimum of:

– λ′
 > , the least positive eigenvalue of the operator Tn[M̄] in Xk–.

– λ′′
 > , the least positive eigenvalue of the operator Tn[M̄] in Xk+.

If k =  and n >  is even, then the operator Tn[M] is inverse negative on X if, and only if,
M ∈ [M̄ – λ, M̄ – λ), where:

• λ <  is the biggest negative eigenvalue of the operator Tn[M̄] in X.
• λ >  is the least positive eigenvalue of the operator Tn[M̄] in X.
If k = n –  and n > , then the operator Tn[M] is inverse negative on Xn– if, and only if,

M ∈ [M̄ – λ, M̄ – λ), where:
• λ <  is the biggest negative eigenvalue of the operator Tn[M̄] in Xn–.
• λ >  is the least positive eigenvalue of the operator Tn[M̄] in Xn–.
If n = , then the operator T[M] is inverse negative on X if, and only if, M ∈ (–∞, M̄–λ),

where:
• λ <  is the biggest negative eigenvalue of the operator T[M̄] in X.

In order to prove this result, we separate the proof in several subsections.

3.1 Decomposition of the operator Tn[M̄]
We are interested in setting the operator Tn[M̄] as a composition of suitable operators of
order h ≤ n. Such an expression allows us to control the values of such operators at the
extremes of the interval a and b.

We recall the following result proved in Chapter  of [].

Theorem . The linear differential equation () has a Markov system of solutions if, and
only if, the operator Tn[M] has a representation

Tn[M]y ≡ vv · · · vn
d
dt

(

vn

d
dt

(
· · · d

dt

(

v

d
dt

(

v

y
))))

, ()

where vk >  on I and vk ∈ Cn–k+(I) for k = , . . . , n.
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It is obvious that for any real parameter M, denoting λ = M – M̄, we can rewrite the
operator Tn[M] as follows:

Tn[M]u(t) ≡ Tn[M̄]u(t) + λu(t).

If we assume that the equation Tn[M̄]u(t) =  is disconjugate on I , because of Theo-
rems . and ., we can express Tn[M̄] as

Tn[M̄]u(t) ≡ v(t) · · · vn(t)Tnu(t),

where Tk are constructed as

Tu(t) = u(t), Tku(t) =
d
dt

(


vk(t)
Tk–u(t)

)
, k = , . . . , n – , t ∈ I, ()

with vk >  on I , vk ∈ Cn–k+(I), for k = , . . . , n.
Let us see now that Thu(t) is given as a linear combination of u(t), u′(t), . . . , u(h)(t) with

the form

Thu(t) =


v(t) · · · vh(t)
u(h)(t) + ph (t)u(h–)(t) + · · · + phh (t)u(t), ()

where phi ∈ Cn–h(I).
Indeed, we are going to prove this equality by induction.
For h = ,

Tu(t) =
d
dt

(


v(t)
u(t)

)
=


v(t)

u′(t) –
v′

(t)
v

 (t)
u(t).

Assume, by induction hypothesis, that equation () is satisfied for some h ∈ {, . . . , n–},
therefore

Th+u(t) =
d
dt

(


vh+(t)

(


v(t) · · · vh(t)
u(h)(t) + ph (t)u(h–)(t) + · · · + phh (t)u(t)

))

=
d
dt

(


v(t) · · · vh+(t)
u(h)(t)

)

+
d
dt

(


vh+(t)
(
ph (t)u(h–)(t) + · · · + phh (t)u(t)

))
,

which clearly has the form of equation ().
Finally, taking into account boundary conditions () and the regularity of the functions

phi , we conclude that

Tu(a) = , . . . , Tk–u(a) = , Tu(b) = , . . . , Tn–k–(b) = .

Moreover,

Tku(a) =


v(a) · · · vk(a)
u(k)(a), ()
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Tn–ku(b) =


v(b) · · · vn–k(b)
u(n–k)(b). ()

So, from the positiveness of vh on I , h ∈ {, . . . , n}, we see that Tku(a) and u(k)(a) have
the same sign. The same property holds for Tn–ku(b) and u(n–k)(b).

3.2 Expression of the matrix Green’s function
This subsection is devoted to expressing, as functions of gM(t, s), the functions g(t, s), . . . ,
gn–(t, s), defined on (), as the first row components of the Green’s function of the vectorial
system ().

By studying the adjoint operator as in Section . of [], we know that the related Green’s
function of the adjoint operator G∗ satisfies G∗(t, s) = GT (s, t). Moreover, the following
equality holds:

∂

∂t
(
–G∗(t, s)

)
= –AT (t)

(
–G∗(t, s)

)
, t ∈ I\{s}.

So, we can transform the previous equality in

(
–

∂

∂t
G(s, t)

)T

= –
∂

∂t
GT (s, t) = –AT (t)

(
–GT (s, t)

)
= AT (t)GT (s, t) =

(
G(s, t)A(t)

)T .

Hence

∂

∂t
G(s, t) = –G(s, t)A(t),

or, which is the same,

∂

∂s
G(t, s) = –G(t, s)A(s). ()

Using this equality, we are going to prove by induction the following:

gn–j(t, s) = (–)j ∂ j

∂sj gM(t, s) +
j–∑

k=

α
j
k(s)

∂k

∂sk gM(t, s), j = , . . . , n – . ()

Here α
j
i(s) are functions of a(s), . . . , aj(s) and of its derivatives until the order (j – ) and

follow the recurrence formula

α
(s) = , ()

α
j+
k (s) = , k ≥ j +  ≥ , ()

α
j+
 (s) = aj+(s) –

(
α

j

)′(s), j ≥ , ()

α
j+
k (s) = –

(
α

j
k–(s) +

(
α

j
k
)′(s)

)
,  ≤ k ≤ j. ()

Using equality (), we deduce that the Green’s matrix’ terms which are on position (, i),
i = , . . . , n, satisfy the following equality:

gi–(t, s) = –
∂

∂s
gi(t, s) + an–i+(s)gM(t, s), i = , . . . , n, ()

where gM(t, s) ≡ gn(t, s).
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If we take i = n in equation () we deduce

gn–(t, s) = –
∂

∂s
gM(t, s) + a(s)gM(t, s),

which gives us equation () for j = .
Assume now that equalities ()-() are fulfilled for some j ∈ {, . . . , n – } given. Let us

see that they hold again for j + . We have

gn–j–(t, s) = –
∂

∂s

(

(–)j ∂ j

∂sj gM(t, s) +
j–∑

k=

α
j
k(s)

∂k

∂sk gM(t, s)

)

+ aj+(s)gM(t, s)

= aj+(s)gM(t, s) + (–)j+ ∂ j+

∂sj+ gM(t, s)

–
j–∑

k=

(
α

j
k
)′(s)

∂k

∂sk gM(t, s) –
j–∑

k=

α
j
k(s)

∂k+

∂sk+ gM(t, s)

= (–)j+ ∂ j+

∂sj+ gM(t, s) + aj+(s)gM(t, s)

–
j–∑

k=

(
α

j
k
)′(s)

∂k

∂sk gM(t, s) –
j∑

k=

α
j
k–(s)

∂k

∂sk gM(t, s)

= (–)j+ ∂ j+

∂sj+ gM(t, s) +
j∑

k=

α
j+
k (s)

∂k

∂sk gM(t, s).

Now, we can express the Green’s matrix related to problem (), G(t, s), as
⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

(–)n– ∂n–

∂sn– gM(t, s) +
∑n–

k= αn–
k (s) ∂k

∂sk gM(t, s) · · · gM(t, s)

(–)n– ∂n

∂t ∂sn– gM(t, s) +
∑n–

k= αn–
k (s) ∂k+

∂t ∂sk gM(t, s) · · · ∂
∂t gM(t, s)

· · ·
...

...
· · ·

(–)n ∂n–

∂tn– ∂sn– gM(t, s) +
∑n–

k= αn–
k (s) ∂n–+k

∂tn– ∂sk gM(t, s) · · · ∂n–

∂tn– gM(t, s)

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

. ()

If coefficients a(s), . . . , an–(s), an(s) are constants, a, . . . , an–, an, we can solve explicitly
the recurrence form ()-() and deduce that

α
j
k(s) = (–)kaj–k .

So, we see that

gn–j(t, s) =
j∑

k=

(–)kaj–k
∂k

∂sk gM(t, s), with a = ,

and we can rewrite G(t, s) as
⎛

⎜⎜
⎜
⎜
⎜
⎝

∑n–
k=(–)kan––k

∂k

∂sk gM(t, s) · · · ∑
k=(–)ka–k

∂k

∂sk gM(t, s) gM(t, s)
∑n–

k=(–)kan––k
∂k+

∂t ∂sk gM(t, s) · · · ∑
k=(–)ka–k

∂k+

∂t ∂sk gM(t, s) ∂
∂t gM(t, s)

...
...

∑n–
i= (–)kan––k

∂n–+k

∂tn– ∂sk gM(t, s) · · · ∑
k=(–)ka–k

∂n–+k

∂tn– ∂sk gM(t, s) ∂n–

∂tn– gM(t, s)

⎞

⎟⎟
⎟
⎟
⎟
⎠

.



Cabada and Saavedra Boundary Value Problems  (2016) 2016:44 Page 13 of 35

In particular, if Tn[M]u(t) ≡ u(n)(t) + Mu(t) we conclude that

gn–j(t, s) = (–)j ∂ j

∂sj gM(t, s),

so the Green’s matrix, G(t, s), is given by the expression

⎛

⎜
⎜⎜⎜
⎝

(–)n– ∂n–

∂sn– gM(t, s) · · · – ∂
∂s gM(t, s) gM(t, s)

(–)n– ∂n

∂t ∂sn– gM(t, s) · · · – ∂

∂t ∂s gM(t, s) ∂
∂t gM(t, s)

...
...

(–)n– ∂n–

∂tn– ∂sn– gM(t, s) · · · – ∂n

∂tn– ∂s gM(t, s) ∂n–

∂tn– gM(t, s)

⎞

⎟
⎟⎟⎟
⎠

.

Remark . We note that in the general case it is possible to obtain some of the compo-
nents of system ()-(). We have

α
j
(s) =

j–∑

i=

(–)ia(i)
j–i(s),

α
j
(s) =

j–∑

i=

(–)iia(i–)
j–i (s),

α
j+
j (s) = (–)ja(s).

3.3 Proof of the main results
Now we will proceed with the proof of the main result, Theorem .. To this end, we will
divide the proof in several steps.

First, we are going to show a lemma.

Lemma . Let M̄ ∈ R, such that Tn[M̄]u(t) =  is disconjugate on I . Then the following
properties are fulfilled:

• If n – k is even, then Tn[M̄] is a inverse positive operator on Xk and its related Green’s
function, gM̄(t, s), satisfies (Pg ).

• If n – k is odd, then Tn[M̄] is a inverse negative operator on Xk and its related Green’s
function satisfies (Ng ).

Proof By Lemma . and Remark . we see that for all s ∈ (a, b) the function gM̄(t,s)
p(t) can

be extended to a strictly positive and continuous function in I , thus

 < k(s) = min
t∈I

gM̄(t, s)
p(t)

< max
t∈I

gM̄(t, s)
p(t)

= k(s), s ∈ (a, b). ()

Since gM̄ is a continuous function in I × I , we see that k and k are continuous functions
too.

If n – k is even, we take φ(t) = p(t) and condition (Pg ) is trivially fulfilled.
If n – k is odd, we take φ(t) = –p(t) and multiplying equation () by –, condition (Ng )

holds immediately. �

First, notice that, as a direct corollary of the previous lemma, the assertion for λ in
Theorem . follows directly from Theorems . and ..
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Now, we are going to prove the assertion in Theorem . concerning λ.
The proof will be done in several steps. In a first moment we will show that, if n – k is

even, the Green’s function changes sign for all M > M̄ – λ and for all M < M̄ – λ when
n – k is odd.

After that we will prove that such estimation is optimal in both situations.
In order to make the paper more readable, along the proofs of this subsection it will be

assumed that n – k is even. The arguments with n – k odd will be pointed out at the end
of the subsection.

Step . Behavior of the Green’s function on a neighborhood of s = a and s = b.

First, we construct two functions that will characterize the values of M ∈ R for which
the Green’s function oscillates, or not, on a neighborhood of s = a and s = b.

In order to do that, we denote the Green’s function related to problem ()-() as follows:

gM(t, s) =

{
g

M(t, s), a ≤ t < s ≤ b,
g

M(t, s), a ≤ s ≤ t ≤ b.

Since gM(t, s) is a Green’s function,

Tn[M]gM(t, s) = , t ∈ [a, b], t �= s,

where gM(t, s) is acting as a function of t.
Therefore, differentiating the previous expression, we deduce that

Tn[M]
(

∂hgM(t, s)
∂sh

)
=

∂h

∂sh

(
Tn[M]gM(t, s)

)
= , h = , . . . , n – , t �= s. ()

In particular, we can define the functions

u(t) =
∂k

∂sk g
M(t, s)|s=b ≡ g

Msk (t, b), t ∈ I, ()

v(t) =
∂n–k

∂sn–k g
M(t, s)|s=a ≡ g

Msn–k (t, a), t ∈ I. ()

Because of the relation between gM(t, s) and g∗
M(t, s), shown in (), and taking into ac-

count the boundary conditions of the adjoint operator, it is not difficult to deduce that

g
Msh (t, a) = g∗

M th (a, s) = ,  ≤ h ≤ n – k – ,

g
Ms� (t, b) = g∗

M t� (b, s) = ,  ≤ � ≤ k – .

So, we are interested in knowing the values of M for which functions u(t) and v(t) oscil-
late on I . Such a property guarantees that Green’s function oscillates on a neighborhood
of s = a or s = b for such values. Moreover, it provides a higher bound for the set of param-
eters where the Green’s function does not oscillate.

Step .. Boundary conditions of v(t).
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Because of equality () we know that Tn[M]v(t) =  on (a, b]. In this step we are going
to see which boundary conditions satisfies function v.

We see that G(t, s) as it appears on () is the Green’s matrix related to the vectorial
problem (). Using the expressions of matrices B and C given by (), if we consider the
first row of resultant matrix, we obtain for s ∈ (a, b) the following expression:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g
M(a, s) = ,

–g
Ms(a, s) + α

(s)g
M(a, s) = ,

. . . ,
(–)n–kg

Msn–k (a, s) +
∑n–k–

i= αn–k
i (s)g

Msi (a, s) = .

Thus, while k > , none of the previous elements belongs to the diagonal of the matrix
Green’s function. Since it has discontinuities only at its diagonal entries, see Definition .,
by considering the limit of s to a, we deduce that the previous equalities hold for g

M(a, a),
i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g
M(a, a) = ,

–g
Ms(a, a) + α

(a)g
M(a, a) = ,

. . . ,
(–)n–kg

Msn–k (a, a) +
∑n–k–

i= αn–k
i (a)g

Msi (a, a) = ,

so, we conclude that

g
M(a, a) = g

Ms(a, a) = · · · = g
Msn–k (a, a) = ,

hence v(a) = .
Analogously, since we do not reach any diagonal element, we deduce that v′(a) = · · · =

v(k–)(a) = .
Let us see what happens for v(k–)(a) with k > . We arrive at the following system written

as a function of g
M(t, s):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g
Mtk– (a, s) = ,

–g
Mtk–s(a, s) + α

(s)g
Mtk– (a, s) = ,

. . . ,
(–)n–kg

Mtk–sn–k (a, s) +
∑n–k–

i= αn–k
i (s)g

Mtk–si (a, s) = .

This system remains true for s = a, and because of the continuity of the Green’s matrix
at t = s on the non-diagonal elements and the break which is produced on its diagonal, we
arrive at the following system for g

M(a, a):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g
Mtk– (a, a) = ,

–g
Mtk–s(a, a) + α

(a)g
Mtk– (a, a) = ,

. . . ,
(–)n–kg

Mtk–sn–k (a, a) +
∑n–k–

i= αn–k
i (a)g

Mtk–si (a, a) = ,

hence

g
Mtk– (a, a) = · · · = g

Mtk–sn–k– (a, a) = 
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and

v(k–)(a) = g
Mtk–sn–k (a, a) = (–)n–k .

Obviously, taking k = , the same argument will tell us that v(a) = (–)n–.
To see the boundary conditions at t = b, we have the following system for s ∈ (a, b),

written as a function of g
M(t, s):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g
M(b, s) = ,

–g
Ms(b, s) + α

(s)g
M(b, s) = ,

. . . ,
(–)n–kg

Msn–k (b, s) +
∑n–k–

i= αn–k
i (s)g

Msi (b, s) = ,

hence

g
M(b, s) = · · · = g

Msn–k (b, s) = .

By continuity, this is satisfied at s = a, so

v(b) = g
Msn–k (b, a) = .

Using () and (), since there is no jump in this case, it is immediate to verify that
v′(b) = · · · = v(n–k–)(b) = .

As a consequence v is the unique solution of the following problem, which we denote as
(Pv):

Tn[M]v(t) = , t ∈ I,

v(a) = · · · = v(k–)(a) = , if k > , ()

v(b) = · · · = v(n–k–)(b) = , ()

v(k–)(a) = (–)n–k . ()

Remark . We note that, to attain the previous expression, we have not used any dis-
conjugacy hypotheses on operator Tn[M]. Moreover, the proof is valid for n – k even or
odd. In other words, the function v solves problem (Pv) for any linear operator defined in
() and any k ∈ {, . . . , n – }.

We know, because gM̄(t, s) is of constant sign on I × I (see Lemma .), that if M = M̄
the function v must be of constant sign in I .

Step .. If v is of constant sign in I then it cannot have any zero in (a, b).

We are now going to see that while v(t) is of constant sign in I it cannot have any zero
in (a, b). So the sign change comes in at t = a or t = b.

In order to do that, we are going to consider the decomposition of the operator Tn[M]
made in Section ..

Since n – k is even, using Lemma ., we know that the operator Tn[M̄ + λ] is, for λ = ,
inverse positive on Xk . So, the characterization of λ <  follows from Theorem ..
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For λ > , v ∈ Cn(I) is a solution of a linear differential equation, hence it is only allowed
to have a finite number of zeros on I . Therefore, if v(t) ≥ , we have v(t) >  for all t ∈
I\{t, . . . , t�}. In particular v(t) >  for a.e. t ∈ I . Thus

Tn[M̄]v(t) = –λv(t) <  for a.e. t ∈ I. ()

As we have shown in Section ., we know that

Tn[M̄]v(t) = v(t) · · · vn(t)
d
dt

(


vn(t)
Tn–v(t)

)
.

Since for every k = , . . . , n, vk ∈ Cn–k+(I) and vk(t) >  on I , we conclude that 
vn(t) Tn–v(t)

must be decreasing on I .
Therefore, since vn(t) >  on I we see that Tn–v(t) can vanish at most once in I .
Arguing by recurrence, we see that Tv(t) = v(t) can have at most n zeros on I (multiple

zeros being counted according to their multiplicity) while v(t) ≥ .
On the other hand, because of the boundary conditions ()-(), we know that v van-

ishes n –  times on a and b, hence it cannot have a double zero on (a, b). This implies that
the sign change cannot come from (a, b).

Step . Change sign of v at t = a and t = b.

We are now going to see that the sign change cannot come from a neighborhood of t = a.
Since n–k is even, as we have proved before, v(k–)(a) =  >  for all M ∈R, which implies,

since v(a) = · · · = v(k–)(a) = , that v(t) = g
Msn–k (t, a) is always positive on a neighborhood

of t = a. So, the following property is verified:

∃ε >  such that ∀t ∈ (a, ε),∃η(t) > , gM(t, s) = g
M(t, s) >  for s ∈ (

a, a + η(t)
)
. ()

Using Step ., we see that v will keep constant sign on I while v(n–k)(b) =  is not satisfied,
i.e., while an eigenvalue of Tn[M̄] on Xk– is not attained.

Or equivalently, if M ∈ [M̄, M̄ – λ′
] then gM(t, s) satisfies the following property:

∀t ∈ (a, b),∃η(t) >  such that gM(t, s) = g
M(t, s) is of constant sign

for s ∈ (
a, a + η(t)

)
. ()

Moreover, by Theorem ., we deduce that gM(t, s) oscillates in I × I for all M > M̄ – λ′
.

If k = , in particular we see that v(a) =  > . Since we have seen in Step . that, while
v is of constant sign in I, it cannot have any zero in (a, b), the sign change would come if
v(n–)(b) = , which implies that v has a zero of multiplicity n at t = b, and this fact is not
possible for a nontrivial solution of a linear differential equation. Then, gM(t, s) satisfies
() for every M ≥ M̄.

Step .. Study of the function u.

In order to analyze the behavior of the Green’s function on a left neighborhood of s = b,
we work now with the function u defined in ().
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Using the same arguments as for v, we conclude that u is the unique solution of the
following problem, which we denote as (Pu):

Tn[M]u(t) = , t ∈ I,

u(a) = · · · = u(k–)(a) = , ()

u(b) = · · · = u(n–k–)(b) = , if k < n – , ()

u(n–k–)(b) = (–)k–. ()

As in Remark ., we see that this property does not depend either on the disconjugacy
of the operator Tn[M] nor if n – k is even or odd.

Using analogous arguments to the ones done with v, we can prove that sign change
cannot come on the open interval (a, b)

Moreover, from condition u(n–k–)(b) = (–)k–, sign change of u cannot appear on b.
So u is of constant sign in I until u(k)(a) =  is verified, i.e., while an eigenvalue of Tn[M̄]

on Xk+ is not attained. Or, equivalently, while M ∈ [M̄, M̄ – λ′′
].

Thus we see that if M is on that interval, the Green’s function satisfies the following
property:

∀t ∈ (a, b),∃η(t) >  such that gM(t, s) = g
M(t, s) is of constant sign

for s ∈ (
b – η(t), b

)
. ()

But once M > M̄ – λ′′
 the Green’s function oscillates in I × I .

As a consequence of Step , we deduce that interval (M̄ –λ, M̄ –λ] cannot be enlarged.
Moreover, we have also proved that the Green’s function satisfies the properties () and
() for all M in such an interval.

Step . Behavior of the Green’s function on a neighborhood of t = a and t = b.

Now, let us see what happens on a neighborhood of t = a and t = b. In order to do that, we
are going to use the operator T̂n[(–)nM̄] defined in () and the relation between gM(t, s)
and ĝ(–)nM(t, s) given in ().

Arguing as in Step , we will obtain the values of the real parameter M for which
ĝ(–)nM(t, s) is of constant sign on a neighborhood of s = a and s = b for every fixed t ∈ (a, b).
Once we have done it, we will be able to apply such a property to the behavior of gM(t, s)
on a neighborhood of t = a or t = b.

The analogous problem for the operator T̂n[(–)nM] related to problem ()-() is given
by

⎧
⎪⎨

⎪⎩

T̂n[(–)nM]v(t) = , t ∈ I,
v(a) = · · · = v(n–k–)(a) = ,
v(b) = · · · = v(k–)(b) = .

Theorem . implies that the equation T∗
n [M̄]u(t) =  is disconjugate on I . So, the same

holds with T̂n[(–)nM̄]u(t) = . Reasoning as in Step , we are able to prove that ĝ(–)nM(t, s)
satisfies (), while an eigenvalue of T̂n[(–)nM̄] on Xn–k–, let it be denoted as λ̂′′

, is not
attained.
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This fact is equivalent to the existence of an eigenvalue of T∗
n [M̄] on Xn–k–, which

will be (–)nλ̂′′
. Now, using the fact that the real eigenvalues of an operator coincide

with those of the adjoint operator, we conclude that λ′′
 = (–)nλ̂′′

 is the biggest negative
eigenvalue of Tn[M̄] on Xn–(n–k–) = Xk+ and ĝ(–)nM(t, s) satisfies the property () while
M ∈ [M̄, M̄ – λ′′

]. So for all s ∈ (a, b), the Green’s function of problem ()-(), gM(t, s), sat-
isfies the following statement:

∀s ∈ (a, b),∃η(s) >  such that gM(t, s) = g
M(t, s) is of constant sign

for t ∈ (
a, a + η(s)

)
. ()

Analogously, arguing as before, we know that if k > , then ĝ(–)nM(t, s) satisfies the prop-
erty () while an eigenvalue of T̂n[M] on Xn–k+ is not attained, which is equivalent to
the existence of an eigenvalue of Tn[M] on Xk–. Moreover, if k = , then ĝ(–)nM(t, s) sat-
isfies () for every M ≥ M̄. Therefore, if M ∈ [M̄, M̄ – λ′

] we can affirm that the Green’s
function of the operator T̂n[(–)nM], ĝ(–)nM(t, s), satisfies (), as a consequence Green’s
function of problem ()-(), gM(t, s), will verify the following:

∀s ∈ (a, b),∃η(s) >  such that gM(t, s) = g
M(t, s) is of constant sign

for t ∈ (
b – η(s), b

)
. ()

As a consequence of the two previous steps, we have already proved that if M ∈ [M̄, M̄ –λ]
then the Green’s function satisfies the statements (), (), () and () and that if M >
M̄ – λ Green’s function oscillates on I × I .

Step . The Green’s function does not come to change sign on (a, b) × (a, b).

In this step we will prove that the oscillation of the Green’s function related to problem
()-() must begin on the boundary of I × I . Using Theorem . we see that, provided it
has a nonnegative sign on I × I , gM decreases in M.

As a consequence, once we prove that gM cannot have a double zero on (a, b) × (a, b),
the change of sign must start on the boundary of I × I .

Let us see that if gM(t, s) ≥  in I × I then gM(t, s) >  in (a, b) × (a, b).
Denote, for a fixed s ∈ (a, b), ws(t) = gM(t, s). By definition, denoting, as in Step , λ =

M – M̄, we see that

Tn[M̄]ws(t) + λws(t) = , t ∈ I, t �= s.

Since gM̄ ≥  on I × I , the behavior for M < M̄ has been characterized in Lemma . and
Theorem ..

So we must pay attention to the situation M > M̄, i.e. λ > . In such a case, since, as in
Step ., we see that ws(t) ≥  has a finite number of zeros in I , we know that

Tn[M̄]ws(t) = –λws(t) <  for a.e. t ∈ I.

Using () and (), we see that

Tn[M̄]ws(t) = v(t) · · · vn(t)Tnws(t),

with vk >  on I for k = , . . . , n. In particular, Tnws(t) <  a.e. in I .
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Figure 1 1
vn(t) Tn–1ws(t), maximal oscillation with

I = [0, 1].

Figure 2 1
vn–1(t) Tn–2ws(t), maximal oscillation

with I = [0, 1].

Notice that, for all s ∈ (a, b), ws ∈ Cn–(I) and w(n–)
s (s+) – w(n–)

s (s–) = . Therefore, due
to the definition of Tn[M̄] and expression (), we see that 

vn(t) Tn–ws(t) is a continuous
function on [a, s) ∪ (s, b].

Since Tnws(t) = d
dt ( 

vn(t) Tn–ws(t)) <  for t �= s, we can affirm that 
vn(t) Tn–ws(t) is a de-

creasing function on I with a positive jump at t = s. So, it can have, at most, two zeros in I
(see Figure ).

Even if we cannot guarantee that Tn–ws(t) is decreasing, since vn >  on I , we conclude
that it has the same sign as 

vn(t) Tn–ws(t), i.e., it can have at most two zeros on I .
On the other hand, using equation () again, we conclude that 

vn–(t) Tn–ws(t) is a con-
tinuous function on I . Now, () tells us that 

vn–(t) Tn–ws(t) can reach at most four zeros
on I (see Figure ).

As before, we do not know intervals where Tn–ws(t) is increasing or decreasing, but
since vn–(t) >  we conclude that it has the same sign as 

vn–(t) Tn–ws(t), so it can reach at
most four zeros.

Following this argument, since vk >  on I for k = , . . . , n, we know that Tn––hws(t)
cannot have more than  + h zeros on I (multiple zeros being counted according to their
multiplicity). In particular, ws(t) = Tws(t) can have n +  zeros at most, having n in the
boundary.
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This fact allows ws to have a double zero on (a, b). So, to show that such a double root
cannot exist, we need to prove that maximal oscillation is not possible. To this end, we
point out that if for any h it is verified that the sign of Tn––hws(a) is equal to the sign of
Tn––h+ws(a) we lose a possible oscillation.

Therefore, for maximal oscillation we must have
{

Tn–hws(a) > , if h odd,
Tn–hws(a) < , if h even.

However, since ws(t) ≥  on I and ws(a) = w′
s(a) = · · · = w(k–)

s (a) = , we deduce that
w(k)

s (a) ≥ .
We can assume that w(k)

s (a) >  because, on the contrary, if w(k)
s (a) =  we would have

n +  zeros at most, having n +  in the boundary. So, only a simple zero is allowed in the
interior, which is not possible without oscillation.

Therefore w(k)
s (a) = w(n–(n–k))

s (a) > . Since n – k is even, using now (), we also know
that Tkws(a) > , which inhibits maximal oscillation.

So we conclude that if gM(t, s) ≥  on I × I then gM(t, s) >  on (a, b)× (a, b), as we wanted
to prove.

As a consequence of the three previous steps, we have described the set of the real pa-
rameters M for which the Green’s function is nonnegative on I × I when n – k is even.

If n – k is odd, we can do similar arguments to achieve the proof. In the sequel, we
enumerate the main ideas to be developed.

Step .

Step .. It has no modifications.
Step .. In equality () we have λ <  and v(t) <  a.e. in I , so it remains true and

we can proceed analogously.
Step .. In this case, we see that v(k–)(a) < . Our attainment in this Step is that

gM(t, s) verifies the property () while M ∈ [M̄ – λ′
, M̄] and oscillates for

all M < M̄ – λ′
.

If k =  the achievement is that gM(t, s) verifies the property () for every
M ≤ M̄. In particular, for n = .

Step .. The arguments are not modified, but the final achievement is that gM(t, s)
satisfies the property () for M ∈ [M̄ – λ′′

, M̄] an oscillates for all M <
M̄ – λ′′

 .
In this case, if k = n – , we can conclude similarly than in Step . that u
is of constant sign for every M ≤ M̄. Then the Green’s function satisfies
the property (). In particular for n = .

Step . Using the same arguments we conclude that the interval where gM(t, s) verifies (),
(), () and () is [M̄ – λ, M̄].

Step . In this case we see that w(k)
s (a) = w(n–(n–k))

s (a) < , with n – k odd contradicting max-
imal oscillation too.

Thus, our result is proved.
As a direct consequence of the arguments used in Step ., without assuming the ex-

istence of M̄ ∈ R for which equation Tn[M̄]u(t) =  is disconjugate on I , we arrive at the
following result.
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Corollary . Let Tn[M] be defined as in (). Then the two following properties hold:
If n – k is even, then there does not exist M ∈ R such that the operator Tn[M] is inverse

negative in Xk .
If n – k is odd, then there does not exist M ∈ R such that the operator Tn[M] is inverse

positive in Xk .

Proof It is enough to take into account that v, defined in (), is the unique solution of
problem (Pv). Since v(k–)(a) = (–)n–k we conclude that, if n – k is even, the Green’s func-
tion has positive values in any neighborhood of (a, a) and negative values when n – k is
odd.

So, the result holds from Theorem .. �

4 Particular cases
In order to obtain the eigenvalues of particular problems we calculate a fundamental sys-
tem of solutions y[M](t), . . . , yn[M](t) of equation () where every yk[M](t) satisfies the
initial conditions

y(n–k)
k [M](a) = , y(n–j)

k [M](a) = , j = , . . . , n, j �= k.

Then we denote the n –  Wronskians as

W n
k [M](t) =

∣∣∣
∣∣
∣∣
∣∣
∣

y[M](t) · · · yk[M](t)
y′

[M](t) · · · y′
k[M](t)

...
y(k–)

 [M](t) · · · y(k–)
k [M](t)

∣∣∣
∣∣
∣∣
∣∣
∣

, k = , . . . , n – .

As a consequence of the characterization done in Chapter , Lemma  of [], we
deduce that the eigenvalues of problem () in Xk are given as the λ ∈ R for which
W n

n–k[–λ](b) = . So, in the sequel, we will use this method to find the eigenvalues of the
different considered problems.

4.1 The operator Tn[M]u(t) ≡ u(n)(t) + Mu(t)
First of all, we are going to consider problems where Tn[M]u(t) ≡ u(n)(t) + Mu(t), with
[a, b] = [, ].

In this kind of problems, for M = , u(n)(t) =  is always disconjugate; see Chapter  of
[]. So, the hypotheses of Theorem . are satisfied.

Remark . Note that adjoint equation to problem Tn[M]u = , u ∈ Xk is given by

T∗
n [M]u(t) = (–)nu(n)(t) + Mu(t) = , u ∈ Xn–k .

So, if λi is an eigenvalue of u(n) in Xk , it is also an eigenvalue of (–)nu(n) in Xn–k . Thus,
(–)nλi is an eigenvalue of u(n) in Xn–k .

As consequence, we only need to obtain first � n
 � Wronskians, where �·� means the floor

function.

– Order 
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The eigenvalues of the operator u′′(t) in X must satisfy W 
 [λ]() = , which can be

replaced by the following equation:

sin(
√

–λ) = , ()

so it closest to zero negative eigenvalue is λ
 = –π.

And so, we can affirm that Green’s function related to the operator u′′(t) + Mu(t) is neg-
ative if, and only if, M ∈ (–∞,π).

This result has been already obtained in different references (see [] and references
therein), but here it is not necessary to have the expression of the Green’s function.

– Order 
λ

 � . is the least positive solution of W 
 [λ]() = , which is equivalent to the

equation

cos

(


√

λ

)
–

√
 sin

(


√

λ

)
= e

–λ
 .

Then, the least positive eigenvalue of the operator u()(t) in X is (λ
) and the biggest

negative eigenvalue of the operator u()(t) in X is –(λ
).

So, we can affirm that the Green’s function of the operator u()(t) + Mu(t):
• in X is positive if, and only if, M ∈ (–(λ

), (λ
)],

• in X is positive if, and only if, M ∈ [–(λ
), (λ

)).
This result has been obtained by means of the explicit form of the Green’s function in

[].
– Order 
λ

 � . is the least positive solution of W 
 [λ]() = , simplifying that expression we

have

tan

(
λ√


)
= tanh

(
λ√


)
.

λ
 � . is the least positive solution of W 

 [–λ]() = , which can be expressed
as

cos(λ) cosh(λ) = .

The biggest negative eigenvalue of the operator u()(t) in X and X is given by –(λ
).

The least positive eigenvalue of the operator u()(t) in X is (λ
).

Therefore, we can affirm without calculating it explicitly, that the Green’s function re-
lated to the operator u()(t) + Mu(t):

• in X and X is negative if, and only if, M ∈ [–(λ
), (λ

)),
• in X is positive if, and only if, M ∈ (–(λ

), (λ
)].

These results have been obtained using the explicit form of the Green’s function in []
and [].

– Order 
We can obtain λ

 � . and λ
 � . as the least positive solution of

W 
 [λ]() =  and W 

 [–λ]() = , respectively. But the equations obtained are too com-
plicated to show here and they have not so much interest.
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The least positive eigenvalue of the operator u()(t) in X is (λ
).

The biggest negative eigenvalue of the operator u()(t) in X is –(λ
).

The least positive eigenvalue of the operator u()(t) in X is (λ
).

The biggest negative eigenvalue of the operator u()(t) in X is –(λ
).

Therefore, we conclude, without calculating it explicitly, that the Green’s function re-
lated to the operator u()(t) + Mu(t):

• in X is positive if, and only if, M ∈ (–(λ
), (λ

)],
• in X is negative if, and only if, M ∈ [–(λ

), (λ
)),

• in X is positive if, and only if, M ∈ (–(λ
), (λ

)],
• in X is negative if, and only if, M ∈ [–(λ

), (λ
)).

– Order 
λ

 � . is the least positive solution of W 
 [λ]() = , which is equivalent to

sin(λ) –
√

 cos

(
λ



)
sinh

(√
λ



)
+ sin

(
λ



)
cosh

(√
λ



)
= .

λ
 � . is the least positive solution of W 

 [–λ]() = , which we can express as

–eλ/(eλ + 
)

+
√


(
eλ – 

)
sin

(√
λ



)
+

(
eλ + 

)
cos

(√
λ



)
– eλ/ cos(

√
λ) = .

λ
 � . is the least positive solution of W 

 [λ]() = , which can be represented
as the first positive root of the following equation:

sin(λ)
(
– cos(λ) + cosh(

√
λ) + 

)
–  sin

(
λ



)
cosh

(√
λ



)
= .

The biggest negative eigenvalue of the operator u()(t) in X and X is given by –(λ
).

The least positive eigenvalue of the operator u()(t) in X and X is (λ
).

The biggest negative eigenvalue of the operator u()(t) in X is –(λ
).

Hence, we can affirm without calculating it explicitly, that the Green’s function related
to the operator u()(t) + Mu(t):

• in X or in X is negative if, and only if, M ∈ [–(λ
), (λ

)),
• in X or in X is positive if, and only if, M ∈ (–(λ

), (λ
)],

• in X is negative if, and only if, M ∈ [–(λ
), (λ

)).
– Order 
We are not able to obtain analytically the eigenvalues of the operator u()(t), but we can

obtain them numerically.
The least positive eigenvalue of this operator in X is (λ

), where λ
 � ..

The biggest negative eigenvalue in X is –(λ
), where λ

 � ..
The least positive eigenvalue in X is (λ

), where λ
 � ..

The biggest negative eigenvalue in X is –(λ
).

The least positive eigenvalue in X is (λ
).

The biggest negative eigenvalue in X is –(λ
).

So, we conclude, without calculating it explicitly, that the Green’s function related to the
operator u()(t) + Mu(t):

• in X is positive if, and only if, M ∈ (–(λ
), (λ

)],
• in X is negative if, and only if, M ∈ [–(λ

), (λ
)),



Cabada and Saavedra Boundary Value Problems  (2016) 2016:44 Page 25 of 35

• in X is positive if, and only if, M ∈ (–(λ
), (λ

)],
• in X is negative if, and only if, M ∈ [–(λ

), (λ
)),

• in X is positive if, and only if, M ∈ (–(λ
), (λ

)],
• in X is negative if, and only if, M ∈ [–(λ

), (λ
)).

– Order 
λ

 � ., λ
 � ., λ

 � ., and λ
 � . can be obtained analyti-

cally as the least positive solution of W 
 [λ]() = , W 

 [–λ]() = , W 
 [λ]() = , and

W 
 [–λ]() = , respectively, but their expressions are too big to show it here and they do

not bring about any important information.
The biggest negative eigenvalue of the operator u()(t) in X and X is given by –(λ

).
The least positive eigenvalue of the operator u()(t) in X and X is given by (λ

).
The biggest negative eigenvalue of the operator u()(t) in X and X is given by –(λ

).
The least positive eigenvalue of the operator u()(t) in X is (λ

).
So, we can affirm without calculating it explicitly, that the Green’s function related to

the operator u()(t) + Mu(t):
• in X or in X is negative if, and only if, M ∈ [–(λ

), (λ
)),

• in X or in X is positive if, and only if, M ∈ (–(λ
), (λ

)],
• in X or in X is negative if, and only if, M ∈ [–(λ

), (λ
)),

• in X is positive if, and only if, M ∈ (–(λ
), (λ

)].
As we have said before, third-order problems were explicitly calculated in []. Fourth-

order problems were calculated in [] in X and in [] in X and X, respectively. But
in all of these cases it was necessary to obtain the expression of the Green’s function and
analyze it.

Moreover, in all the problems treated in [–] it is also satisfied that the open optimal
interval where the Green’s function is of constant sign coincide with the optimal interval
where equation () is disconjugate.

However, in Theorem . of [] the following characterization of the interval of dis-
conjugacy is proved.

Theorem . Let M̄ ∈R and n ≥  be such that Tn[M̄]u(t) =  is a disconjugate equation
on I . Then, Tn[M]u(t) =  is a disconjugate equation on I if, and only if, M ∈ (M̄ – λ, M̄ –
λ), where:

• λ = +∞ if n =  and, for n > , λ >  is the minimum of the least positive eigenvalues
on Tn[M̄] in Xk , with n – k even.

• λ <  is the maximum of the biggest negative eigenvalues on Tn[M̄] in Xk , with n – k
odd.

As a consequence we see that the interval of constant sign of the Green’s function and
the one of the disconjugacy for the linear operator are not the same in general. We have
already proved (see Lemma .) that while equation () is disconjugate its related Green’s
function must be of constant sign. So, if both intervals do not coincide, the optimal interval
where equation () is disconjugate must be contained in the open optimal interval where
the Green’s function is of constant sign.

If, using the characterization given in Theorem ., we calculate the optimal interval on
M of disconjugacy for the equation

u()(t) + Mu(t) = , t ∈ [, ].
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It is given by (–(λ
), (λ

)).
But, as we have shown before, the Green’s function related to the problem on the space

X remains positive on the interval (–(λ
), –(λ

)]. So, its biggest open interval is strictly
bigger than the optimal interval of disconjugacy.

Remark . In this kind of problems, if λ is an eigenvalue on [, ], then λ
(b–a)n is an eigen-

value on [a, b].
So, we can obtain our conclusions about Green’s function’ sign on any arbitrary interval

[a, b].

4.2 Operators with constant coefficients
This characterization of the interval where the Green’s function is of constant sign is also
useful for those problems which have more non-nulls coefficients.

For example we can consider the operator of fourth order

Tn[M]u(t) ≡ u()(t) + u()(t) + u′′(t) + u′(t) + Mu(t), t ∈ [, ]. ()

We can show, using the characterization given in Theorem ., that Tn[]u(t) =  is a
disconjugate equation on [, ] and, so, Theorem . can be applied.

First, we calculate numerically the eigenvalues closest to zero in each Xk , k = , , .
• The biggest negative eigenvalue in X is –(.).
• The least positive eigenvalue in X is (.).
• The biggest negative eigenvalue in X is –(.).
Realize that in this case we need to obtain the three corresponding Wronskians because

it is not possible to connect the eigenvalues in X with those in X by means of its corre-
sponding adjoint equation.

So, we conclude that the Green’s function related to the operator Tn[M]u(t) defined in
():

• in X is negative if, and only if, M ∈ [–(.), (.)),
• in X is positive if, and only if, M ∈ (–(.), (.)],
• in X is negative if, and only if, M ∈ [–(.), (, )).
Notice that in this case the interval of disconjugation is (–(.), (.)). So,

we have obtained an example of a fourth-order equation in which its interval of discon-
jugation does not coincide with the biggest open interval where the Green’s function is of
constant sign in X.

In the sequel, we show an example where the operator Tn[M] does not verify disconju-
gation hypothesis for M̄ = .

If we choose the operator

Tn[M]u(t) ≡ u()(t) + u()(t) + u′(t) + Mu(t), t ∈ [, ]. ()

We see that the equation Tn[]u(t) =  is not disconjugate on [, ], but if we analyze the
equation Tn[–]u(t) =  we can affirm, by means of Theorem ., that it is disconjugate
on [, ].

Hence, Theorem . can be applied to the operator Tn[–]u(t).
If we calculate the eigenvalues closest to zero we have:
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• The biggest negative eigenvalue of Tn[–]u(t) in X is –,..
• The least positive eigenvalue in X is ..
• The biggest negative eigenvalue in X is –..
Hence, using Theorem ., we can affirm that operator Tn[M]u(t), defined in ():
• in X is inverse negative if, and only if,

M ∈ [– – ., – + ,.) = [–., ,.),
• in X is inverse positive if, and only if,

M ∈ (– – ., – + .] = (–., –.],
• in X is inverse negative if, and only if,

M ∈ [– – ., – + .) = [–., –.).

4.3 Operators with non-constant coefficients
We have already seen that applying Theorem . is much easier to calculate optimal inter-
vals for M where the Green’s function related to the operator Tn[M]u(t) than obtaining
Green’s function expression explicitly. But, if we are referring to an operator with non-
constant coefficients this characterization is even more useful because in the majority of
the situations we are not able to obtain the explicit expression for the Green’s function.

Consider now the third-order operator

Tn[M]u(t) ≡ u()(t) + tu′(t) + Mu(t), t ∈ [, ] ()

for which, by means of Theorem ., we can verify that the equation Tn[]u(t) =  is dis-
conjugate on [, ].

If we calculate numerically the eigenvalues closest to zero of the operator defined in ()
we obtain:

• (.) is the least positive eigenvalue of the operator Tn[]u(t) in X.
• –(.) is the biggest negative eigenvalue of the operator Tn[]u(t) in X.
So, we can affirm
• the Green’s function related to the operator Tn[M]u(t) in X is positive if, and only if,

M ∈ (–(.), (.)],
• the Green’s function related to the operator Tn[M]u(t) in X is negative if, and only if,

M ∈ [–(.), (.)).
We can also apply it to a fourth-order operator whose eigenvalues were also obtained

numerically.

Tn[M] ≡ u()(t) + etu′(t) + Mu(t), t ∈ [, ]. ()

We can verify, by means of Theorem . again, that Tn[]u(t) =  is disconjugate on
[, ].

If we calculate its eigenvalues we obtain:
• The biggest negative eigenvalue in X is –(.).
• The least positive eigenvalue in X is (.).
• The biggest negative eigenvalue in X is –(.).
So, applying Theorem ., we conclude that:
• the Green’s function related to the operator Tn[M]u(t) in X is negative if, and only if,

M ∈ [–(.), (.)),
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• the Green’s function related to the operator Tn[M]u(t) in X is positive if, and only if,
M ∈ (–(.), (.)],

• the Green’s function related to the operator Tn[M]u(t) in X is negative if, and only if,
M ∈ [–(.), (.)).

5 Disconjugacy hypothesis cannot be removed on Theorem 3.1
In this last section we show that the disconjugacy hypothesis on Theorem . for some
M = M̄ cannot be avoided in general.

To this end, we consider the operator

T[M]u(t) = u()(t) – ,u′(t) + Mu(t), t ∈ [, ], ()

coupled with two-point boundary value conditions

u() = u′() = u′′() = u() = . ()

Equation () is not disconjugate for M = , indeed

u(t) =
–e(t–) – e–t cos(

√
(t – )) + 

,

is a solution of T[]u(t) =  with five zeros on [, ].
In a first moment we will verify that the Green’s function related to problem ()-()

satisfies condition (Ng ) for M̄ = . So, by means of Theorem ., we know that NT =
[–μ, –λ) for some μ ≥ .

In a second part, we will prove that μ �= λ, with λ the first eigenvalue related to the
operator T[] on the space X.

As a consequence, we deduce that the validity of Theorem . is not ensured when the
disconjugacy assumption fails.

We point out that, since the existence of at least one M̄ for which operator T[M̄] is
disconjugate on [, ] implies the validity of Theorem ., the operator T[M] cannot be
disconjugate on [, ] for any real parameter M and not only for M̄ = .

First, we obtain the Green’s function expression related to the operator T[]u(t) in X,
g(t, s). By means of the Mathematica package developed in [], we see that if it obeys the
expression

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e(t–s)– e–(s+t)(–es++es cos(
√

(s–))+e)(–et +et + cos(
√

t))
–e+e+ cos(

√
)

+es–t cos(
√

(t–s))–

, ,
 ≤ s ≤ t ≤ ,

– e–(s+t)(–es++es cos(
√

(s–))+e)(–et+et+ cos(
√

t))
,(–e+e+ cos(

√
)) ,

 < t < s ≤ .

Let us see now that g(t, s) ≤  on [, ] × [, ] and that it satisfies condition (Ng ), i.e.,
the following inequality is satisfied:

g(t, s)
t(t – )

>  for all (t, s) ∈ [, ] × (, ).
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To study the behavior on a neighborhood of t =  and t = , we define the following
functions:

k(s) = lim
t→+

g(t, s)
t(t – )

=
e–s(–es+ + es cos(

√
(s – )) + e)

(–e + e +  cos(
√

))
,

k(s) = lim
t→–

g(t, s)
t(t – )

=



e–s–

(
es(√ sin

(

√

(s – )
)

– cos
(

√

(s – )
))

+ e e

e

+
(–es+ + es cos(

√
(s – )) + e)(–e +

√
 sin(

√
) + cos(

√
))

–e + e +  cos(
√

)

)
.

In the sequel we will prove that both functions are strictly positive on (, ).
It is not difficult to verify that k() = k′

() = k′′
 () =  and that

k()
 () = –

e

–e + e +  cos(
√

)
< .

If we prove that k()
 (s) is strictly negative on [, ], since, in such a case, k′′

 (s) would be
positive and k′

(s) negative, we will deduce that k(s) >  for s ∈ (, ).
Due to the fact that

k()
 (s) = –

e–s(es cos(
√

(s – )) + e)
(–e + e +  cos(

√
))

,

we only must check that

k(s) := es cos
(

√

(s – )
)

+ e > , s ∈ [, ].

But the previous inequality holds immediately from the fact that

min
s∈[,]

k(s) = e( – e– π√

)

> , s ∈ [, ].

Consider now the function k. We see that k() =  and

k′
() =

 + e(e –
√

(e – ) sin(
√

) – ( + e) cos(
√

))
e(–e + e +  cos(

√
))

> .

So, we study the sign of its first derivative

k′
(s) =

e–s–

(–e + e +  cos(
√

))
k(s),

with

k(s) = es(√
(
e(e – 

)
sin

(

√

(s – )
)

+ sin(
√

s)
)

– e cos
(

√

(s – )
)

+  cos(
√

s)
)

+ e(e –
√

 sin(
√

) –  cos(
√

)
)
.
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It is clear that such a function satisfies

k(s) >
(
– – e +

√

(
– + e – e))es + e(e –

√
 sin(

√
) –  cos(

√
)

)
,

which is positive for

s <



(
log

(
e –

√
e sin(

√
) – e cos(

√
)

)

– log
(
 +

√
 + e – 

√
e + 

√
e))

� ..

Moreover, for s ∈ [ – π


√

 ,  – π


√

 ] � [., .] we see that

k(s) >
(
– – e)es + e(e –

√
 sin(

√
) –  cos(

√
)

)
,

and the right part of the previous equality is positive for

s <



(
log

(
e –

√
e sin(

√
) – e cos(

√
)

)
– log

(
 + e))

� ..

Then, we see that k′
(s) >  for s ∈ [,  – π


√

 ], and, as a consequence, the same holds for
k(s).

On the other hand, we see that k() = k′
() =  and k′′

 () = , moreover,

k′′
 (s) =

e–s–

(–e + e +  cos(
√

))
k(s),

where

k(s) = es(√
(
e sin

(

√

(s – )
)

– sin(
√

s)
)

+ e(e – 
)

cos
(

√

(s – )
)

+  cos(
√

s)
)

+ e(–e +
√

 sin(
√

) +  cos(
√

)
)
.

Now, we must verify that k(s) > .
If s > . we can bound it from below by the following function:

es
(

––
√


(
+e)+e(e –

)
cos

(√




))
+e(–e +

√
 sin(

√
)+ cos(

√
)

)
.

It is clear that it is positive for s ∈ (s, ], where

s =



log

(
–e +

√
e sin(

√
) + e cos(

√
)

 +
√

 +
√

e + e cos(
√


 ) – e cos(

√


 )

)
� .,

which ensures that k(s) >  on (., ).
On the other hand, for every s ∈ [, ], function es+k(s) is bounded from below

by

k =



(
–es + es+ – e),
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which is positive for s ∈ (s, s), where

s =  +



log

(



+



√
 sin

(



tan–
(


√

,
,

))

–



cos

(



tan–
(


√

,
,

)))

� .

and

s =  +



log

(



+



cos

(



tan–
(


√

,
,

)))
� ..

So, we conclude that k(s) >  for every s ∈ (, ).
Now, in order to deduce condition (Ng ), we only have to verify that g(t, s) <  for every

(t, s) ∈ (, ) × (, ).
If t < s we can express

g(t, s) = –
e–(s+t)�(s)�(t)

,(–e + e +  cos(
√

))
,

where

�(s) =
(
–es+ + es cos

(

√

(s – )
)

+ e),

�(t) =
(
–et + et +  cos(

√
t)

)
.

So, we must prove that both functions are positive on (, ).
�(s) is a positive multiple of k(s), so, as we have proved before, it is positive for s ∈ (, ).
To study the sign of �, since it satisfies �() = �′

() = �′′
() = , from the following

expressions, valid for all t ∈ [, ]:

�
()
 (t) = 

(
–et + et + 

√
 sin(

√
t)

) ≥ 
(
–et + et – 

√

)

> ,

we deduce that �(t) >  for every t ∈ (, ).
Let us see now what happens for  < s ≤ t < .
We can express g(t, s) as follows:

g(t, s) =


,
(
p(t – s) – p(t, s)

)
,  < s ≤ t < ,

where

p(t, s) =
e–(s+t)�(s)�(t)

–e + e +  cos(
√

)

and

p(r) = er + e–r cos(
√

r) – .
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From the previously proved positiveness of � and �, we know that p(t, s) > .
On the other hand, since p() = p′

() = p′′
() = , if we verify that p()

 (r) >  for every
r ∈ [, ], then we conclude that the same holds for p on (, ]. In this case

p()
 (r) = ,er + ,e–r cos(

√
r).

This function is trivially positive whenever  ≤ r ≤ π


√

 � ..
Moreover, for every r ∈ [, ], we see that

p()
 (r) > ,er – ,e–r ,

which is positive if, and only if, r > log()
 � ..

As consequence we deduce that p(r) >  for every r ∈ (, ].
Then if we prove that p(t – s) < p(t, s) for  < s ≤ t < , we can conclude that g(t, s) < .
Notice that, if we have two strictly convex functions on a suitable interval, we may affirm

that they have at most two common points. In the sequel, to prove our result, we use this
property.

Since by definition g(, s) = , we know that p(, s) = p( – s), for every fixed s ∈ (, ).
From the fact, proved before, that k >  on (, ), we know that g(t, s) <  on a neigh-

borhood of t =  for every s ∈ (, ). Then p(t, s) > p(t – s) on a neighborhood of t =  for
every s ∈ (, ).

Let us see now that, for every s ∈ (, ), p(t, s), and p(t – s) are convex functions of t
By direct calculation, we see that

∂

∂t p(t, s) =
e–(s+t)(et +

√
 sin(

√
t) – cos(

√
t))�(s)

–e + e +  cos(
√

)
,

so we only need to verify that

p(t) =
(
et +

√
 sin(

√
t) – cos(

√
t)

)
> , t ∈ (, ).

The following inequality is trivially fulfilled:

p(t) > et +
√

 sin(
√

t) –  = q(t), t ∈ [, ].

We see that

q′
(t) = et +  cos(

√
t) > 

(
et – 

)
> ,

since q() = , we conclude that q >  and, as a consequence, p(t) >  on (, ] and also
∂

∂t p(t, s) > .
We have already proved that p()

 (r) > , for r ∈ [, ], and p′′
() = , so for every fixed

s ∈ (, ), p′′
(t – s) >  for every t ∈ (s, ].

As a consequence, for any fixed s ∈ (, ), both p(t, s) and p(t – s) are convex functions
of t.
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From the fact that p(t, s) > p(t – s) on a neighborhood of t = , p(, s) = p( – s) and,
also, p(s, s) >  = p(), we can affirm that p(t, s) > p(t –s) for t ∈ [s, ), and then g(t, s) < 
for  < s ≤ t < , and condition (Ng ) is fulfilled.

Now, as a consequence of Theorem ., we know that gM(t, s) ≤  for M ∈ [, –λ),
where λ <  is the biggest negative eigenvalue of T[]u(t) in X.

To verify that Theorem . does not hold in this case we will prove that for M <  the
sign change does not come on the least positive eigenvalue of T[]u(t) in X.

As in the previous section, we can obtain numerically the first eigenvalues of T[],
which can be given by the following approximated values:

• The biggest negative eigenvalue in X is λ � –(.).
• The least positive eigenvalue in X is λ � (.).
• The biggest negative eigenvalue in X in λ � –(.).

Remark . Realize that, since T[]u(t) =  is not disconjugate on [, ], we have no a
priori information as regards the sign of the eigenvalues λ and λ. However, since g

satisfies (Ng ), we can be ensured, without calculating it, that λ < .

Finally, let us see that there exists M∗ > –λ for which gM∗ has no constant sign on I × I .
We are going to study the following function:

v(t) =
∂

∂s
gM∗ (t, s)|s= .

As we have proved in the proof of Theorem ., if this function has no constant sign on I
then the Green’s function must necessarily change sign in a neighborhood of s = .

For M∗ = – ,
 � –(.), v(t) obeys

((
e– 

 (+
√

)t
(

et((
√

 – ,)e
√


 t – , – 

√


)

+ e
√


 t

(


√
 sin

(√



t
)

+ , cos

(√



t
))))

/
,,,

)

–
((


(


√

 sin

(√




)
+ , cos

(√




))

+ e
(


√

 sinh

(√




)
– , cosh

(√




)))

/(
,,,

(
–(, + 

√
)e + (

√
 – ,)e+

√




+ e
√




(
, cos

(√




)
– 

√
 sin

(√




)))))

× e
√


 – 

 (+
√

)t
(

et((
√

 – ,)e
√


 t – , – 

√


)

+ e
√


 t

(
, cos

(√



t
)

– 
√

 sin

(√



t
)))

.

This, see Figure , changes sign on I .
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Figure 3 Graph of v.

As a consequence the Green’s function has no constant sign for a value of M bigger than
–λ.

Even more, we can verify numerically which is the interval for M where gM(t, s) is non-
positive on I × I . We observe that a change of sign comes first on the interior of I × I . It
comes in (t, s) � (., .) ∈ (, ) × (, ) for M � –(.). So we deduce that
it is given by [–(.), –λ).

As a consequence we conclude that the example shows that if we suppress the discon-
jugacy hypothesis, Theorem . is not true in general.
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