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Abstract
In this paper, we study the global existence and nonexistence to the nonnegative
solution of a class of parabolic systems with time-dependent coefficients. More
precisely, the existence of a global solution is established via the standard comparison
principle. Furthermore, we establish a blow-up solution and obtain both upper and
lower bounds for the maximum blow-up time under some appropriate hypotheses.
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1 Introduction and main results
This paper is concerned with the following parabolic systems with time dependent coef-
ficients:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �um + f(t)vp, (x, t) ∈ � × (, T),

vt = �vn + f(t)uq, (x, t) ∈ � × (, T),

u(x, t) = v(x, t) = , (x, t) ∈ ∂� × (, T),

u(x, ) = u(x), v(x, ) = v(x), x ∈ �.

(.)

Here � ⊂R
N is a bounded domain with smooth boundary ∂�, m, n > , p, q > , f(t), and

f(t) are positive bounded continuous functions with f(t) ≤ k̄, f(t) ≤ k̄ for any t ≥ .
The initial data u(x), v(x) are nontrivial nonnegative continuous functions and satisfy
the compatibility conditions u(x) = v(x) =  on the boundary ∂�.

Global existence and singularity analyses of the solutions to the nonlinear parabolic
equation have been investigated extensively [] and []. It is well known that the solu-
tions of parabolic problems may remain bounded for all time, or blow up in a finite time.
When blow-up occurs in a finite time T , the evaluation of maximal blow-up time T is
of great practical interest. The first purpose in this paper is to investigate the sufficient
conditions to the global existence or nonexistence of the classical solution to the bound-
ary value problem (.). Furthermore, we will investigate the solution which blows up in a
finite time and estimate the life span of the singular solution.
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One of the motivations to investigate the singular solution comes from [], in which
the single parabolic equation in the linear diffusion case (m = ) has been considered.
However, the degenerate diffusion and the structure here make the present problem more
complicated and show more essential difficulties here. We would like to recall some results
on blow-up solutions to the degenerate parabolic equations and system in [–] and the
references therein. We also would like to mention some results on the global existence and
nonexistence of the classical solution of several similar mathematical models in [, –].

First of all, we give the global existence of the classical solution to the boundary value
problem (.) as follows.

Theorem . If pq < mn, then every classical solution to the initial-boundary value prob-
lem (.) is global.

Second, the result on the blow-up solution to the boundary value problem (.) is estab-
lished in the next theorem.

Theorem . Assume k := min{inf f(t), inf f(t)} > . If pq > mn, then the classical solution
to the initial-boundary value problem (.) blows up in finite time T for large data u(x),
v(x).

In the following theorem, we give the upper bound for the blow-up time as long as blow-
up occurs.

Theorem . Assume k := min{inf f(t), inf f(t)} > . If q ≥ m, p ≥ n, k > λ, then the clas-
sical solution to the initial-boundary value problem (.) blows up in finite time T for large
data u(x), v(x), where λ is the first eigenvalue to the following problem:

⎧
⎨

⎩

�φ + λφ = , x ∈ �,

φ = , x ∈ ∂�,
(.)

with φ ≥  and
∫

�
φ dx = . Moreover, there exists a T > , which depends on p, q, m, n, k,

and the initial data, such that T ≤ T.

Remark . Indeed, the idea to show Theorem . is based on the method in [] to obtain
an estimate to the life span. However, there are still some essential differences and difficul-
ties. One is that the system considered in the present paper is degenerate and quasilinear,
and the system in [] is semilinear. As we know, there are many essential difficulties to
extend the technique to the degenerate system. The method in [] cannot be applied to
the quasilinear case directly. Here we borrowed the idea and modified the technique in
[] to deal with the degenerate system and obtain the estimates of the life span to a de-
generate, quasilinear system. The second one is that we can deal with the critical case in
this paper, which is one of the main differences from the results in [].

Remark . In fact, along the proof of Theorem ., we can conclude that the solution
blows up in finite time for the critical case p = n and q = m.

Finally, we give a lower estimate to the maximum blow-up time T .
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Theorem . Suppose that � is a convex domain in R
 and (u, v) blows up in finite time

T ; there exists a positive constant T such that T ≥ T, where T depends only on m, n, p,
q, f, f, and the initial data.

The remainder of this paper is organized as follows. The global existence of the solution
to the problem (.) is established in Section , by the standard comparison argument.
In Section , we show that the classical solution to the problem (.) will blow up in a
finite time for some sufficiently large initial data. In the final section, with the aid of some
differential inequality, we will establish both lower and upper estimates to the maximal
blow-up time.

2 Global solution for the problem (1.1)
In this section, we focus on the global solution to the problem (.). First, set

A =

(
m –p
–q n

)

and l =

(
l

l

)

.

In the following, we will introduce some lemmas which play important roles in the fol-
lowing proof. We would like to refer to [] and [] for the proof.

Lemma . If pq < mn, then there exist two positive constants l, l, such that Al = (, )T .
Moreover, A(cl) > (, )T for any c > .

Lemma . If pq > mn, then there exist two positive constants l, l, such that Al < (, )T .
Moreover, A(cl) < (, )T for any c > .

Next, we will give the proof of Theorem . as follows.

Proof Here, we construct some super-solution to the problem, which is bounded for any
T > . Let ϕ(x) be the solution of the following elliptic problem:

⎧
⎨

⎩

–�ϕ(x) = , x ∈ �,

ϕ(x) = , x ∈ ∂�.
(.)

Denote C = max�̄ ϕ(x). Namely,  ≤ ϕ(x) ≤ C.
We define the functions ū(x, t) and v̄(x, t) as

ū =
(
K

(
ϕ(x) + 

))l , v̄ =
(
K

(
ϕ(x) + 

))l , (.)

where l, l satisfy ml < , nl < , and K >  will be fixed later. Clearly, (ū, v̄) is bounded
for any t >  and ū ≥ Kl , v̄ ≥ Kl . Thus, a series of direct computations give

ūt – �ūm = –mlKml
{

(ml – )
[
 + ϕ(x)

]ml–∣∣∇ϕ(x)
∣
∣ +

[
 + ϕ(x)

]ml–
�ϕ(x)

}

≥ –mlKml
[
 + ϕ(x)

]ml–
�ϕ(x) = mlKml

[
 + ϕ(x)

]ml–

≥ mlKml ( + C)ml–, (.)
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and

f(t)v̄p ≤ k̄v̄p ≤ k̄
[
K

(
 + ϕ(x)

)]pl ≤ k̄
[
K( + C)

]pl . (.)

Similarly, we have

v̄t – �v̄n = –nlKnl
{

(nl – )
[
 + ϕ(x)

]nl–∣∣∇ϕ(x)
∣
∣ +

[
 + ϕ(x)

]nl–
�ϕ(x)

}

≥ nlKnl ( + C)nl– (.)

and

f(t)ūq ≤ k̄ūq ≤ k̄
[
K

(
 + ϕ(x)

)]ql ≤ k̄
[
K( + C)

]ql . (.)

Set

K =
[

k̄

ml
( + C)pl–ml+

] 
ml–pl

and K =
[

k̄

nl
( + C)ql–nl+

] 
nl–ql

. (.)

If pq < mn, it follows from Lemma . that there exist positive constants l, l, such that
ml – pl > , nl – ql > , and ml < , nl < .

Therefore, we can choose K sufficiently large so that K > max{K, K} and

[
K

(
ϕ(x) + 

)]l ≥ u(x),
[
K

(
ϕ(x) + 

)]l ≥ v(x). (.)

Now, it follows from (.)-(.) that (ū, v̄) defined by (.) is a positive super-solution to
the problem (.). Hence, the comparison principle gives (u, v) ≤ (ū, v̄), which implies (u, v)
exists globally. �

3 Blow-up solution for the problem (1.1)
In this section, we will discuss the blow-up solution to the problem (.) under some ap-
propriate hypotheses and show Theorem ..

Proof We will construct some blow-up subsolution in some subdomain of � in which
u, v > . Some ideas are borrowed from work by Du [].

Let ψ(x) be a nontrivial nonnegative continuous function that vanishes on ∂�. With-
out loss of generality, we assume that  ∈ � and ψ() > . We shall construct a blow-up
subsolution to complete the proof.

Set

u(x, t) =


(T – t)l
ω


m

( |x|
(T – t)σ

)

, v(x, t) =


(T – t)l
ω


n

( |x|
(T – t)σ

)

, (.)

with

ω(r) =
R


–

R


r +



r, r =
|x|

(T – t)σ
,  ≤ r ≤ R,
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where the parameters l, l, σ , and T >  are be determined later. Clearly,  ≤ ω(r) ≤ R


and ω(r) is nonincreasing since ω′(r) = r(r–R)

 ≤ . Note that

supp u(·, t) = supp v(·, t) = B
(
, R(T – t)σ

) ⊂ B
(
, RTσ

) ⊂ �, (.)

for sufficiently small T > . Obviously, (u, v) becomes unbounded as t → T– at the point
x = .

Thus, we have

ut(x, t) – �um(x, t) =
mlω


m (r) + σ rω′(r)ω –m

m

m(T – t)l+ +
R – r

(T – t)ml+σ
+

(N – )(R – r)
(T – t)ml+σ

≤ l( R

 ) 
m

(T – t)l+ +
NR – (N + )r
(T – t)ml+σ

(.)

and

vt(x, t) – �vn(x, t) ≤ l( R
 )


n

(T–t)l+ + NR–(N+)r
(T–t)nl+σ , (.)

noticing that T <  is sufficiently small.
Case . If  ≤ r ≤ NR

N+ , we have ω(r) ≥ (N+)R

(N+) , then

f(t)vp(x, t) = f(t)


(T – t)pl
ω

p
n (r) ≥ k

(T – t)pl

(
(N + )R

(N + )

) p
n

(.)

and

f(t)uq(x, t) = f(t)


(T – t)ql
ω

q
m (r) ≥ k

(T – t)ql

(
(N + )R

(N + )

) q
m

. (.)

Hence,

ut(x, t) – �um(x, t) – f(t)vp(x, t) ≤ l( R

 ) 
m

(T – t)l+ –
k

(T – t)pl

(
(N + )R

(N + )

) p
n

(.)

and

vt(x, t) – �vn(x, t) – f(t)uq(x, t) ≤ l( R

 ) 
n

(T – t)l+ –
k

(T – t)ql

(
(N + )R

(N + )

) q
m

. (.)

Case . If NR
N+ < r ≤ R, then

ut(x, t) – �um(x, t) – f(t)vp(x, t) ≤ l( R

 ) 
m

(T – t)l+ +
NR – (N + )r
(T – t)ml+σ

(.)

and

vt(x, t) – �vn(x, t) – f(t)uq(x, t) ≤ l( R

 ) 
n

(T – t)l+ +
NR – (N + )r
(T – t)nl+σ

. (.)
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If pq > mn, it follows from Lemma . that there exist positive constants l, l, such that

ml – pl < –, nl – ql < – and (m – )l > , (n – )l > .

Thus, we get

pl > ml +  > l + , ql > nl +  > l + ,

and

ml + σ > l + , nl + σ > l + ,

for any σ > .
Hence, for sufficiently small σ >  and T > , (.) holds. Thus, (.)-(.) imply that

ut(x, t) – �um(x, t) – f(t)vp(x, t) ≤ , vt(x, t) – �vn(x, t) – f(t)uq(x, t) ≤ , (.)

where (x, t) ∈ B(, R(T – t)σ ) × (, T).
Since ψ(x) is a nontrivial nonnegative continuous function and ψ() > , there exist

two positive constants ρ and ε such that ψ(x) > ε for all x ∈ B(,ρ) ⊂ �. Choose T small
enough to ensure B(, R(T – t)σ ) ⊂ B(,ρ), hence u ≤ , v ≤  on ∂B(, R(T – t)σ ) × (, T).
Thanks to (.), it follows that u(x, ) ≤ M̄ψ(x), v(x, ) ≤ M̄ψ(x) for sufficient large M̄.
By the comparison principle, we have (u, v) ≤ (u, v), provided that u(x) ≥ M̄ψ(x), v(x) ≥
M̄ψ(x). This implies that the solution (u, v) of the problem (.) blows up in finite time. �

4 Upper bound to the maximal blow-up time
In this section, we will estimate the upper bound to the maximal blow-up time under some
appropriate hypotheses and show Theorem ..

Proof Denote

(t) =
∫

�

uφ dx, �(t) =
∫

�

vφ dx and F(t) = (t) + �(t). (.)

Case . q > m, p > n.
With the aid of (.) and (.), we have

′(t) =
∫

�

[
�um + f(t)vp]φ dx ≥ –λ

∫

�

umφ dx + k
∫

�

vpφ dx (.)

and

� ′(t) =
∫

�

[
�vn + f(t)uq]φ dx ≥ –λ

∫

�

vnφ dx + k
∫

�

uqφ dx. (.)

Recalling that q > m > , p > n > , and applying Hölder’s and Young’s inequality yield

∫

�

umφ dx ≤
(∫

�

uφ dx
) q–m

q–
(∫

�

uqφ dx
) m–

q–

≤ q – m
q – 

∫

�

uφ dx +
m – 
q – 

∫

�

uqφ dx, (.)
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∫

�

vnφ dx ≤
(∫

�

vφ dx
) p–n

p–
(∫

�

vpφ dx
) n–

p–

≤ p – n
p – 

∫

�

vφ dx +
n – 
p – 

∫

�

vpφ dx, (.)

and

∫

�

uqφ dx ≥
(∫

�

uφ dx
)q

,
∫

�

vpφ dx ≥
(∫

�

vφ dx
)p

. (.)

This together with (.) gives the following inequality:

F ′(t) ≥ –CF(t) + C
[
q(t) + �p(t)

]
, (.)

where C = max{λ
q–m
q– ,λ

p–n
p– } >  and C = min{k – λ

m–
q– , k – λ

n–
p– } > .

For the special case p = q, applying the inequality

ap + bp ≥ –p(a + b)p for p > , a, b > ,

we obtain

F ′(t) ≥ –CF(t) + –pCFp(t). (.)

Furthermore, choosing u(x) sufficiently large such that

–pCFp–() – C > , (.)

we conclude that F(t) is increasing for any t > , where

F() =
∫

�

(
u(x) + v(x)

)
φ dx.

Moreover, according to (.) and p > , we can see that there exists a T > , such that

lim
t→T

F(t) = +∞ (.)

and

T ≤
∫ +∞

F()

dτ

–Cτ + –pCτ p < +∞. (.)

For the case p 
= q, without loss of generality, we assume that p > q. For any c > , we have

�q(t) =
(
c�p(t)

) q
p
(
c– q

p–q
) p–q

p ≤ q
p

c�p(t) +
p – q

p
c– q

p–q . (.)

Let c = p
q , we have

�q ≤ �p + A, (.)
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where A = p–q
p ( p

q )– q
p–q . Thus,

F ′(t) ≥ –AC – CF(t) + C
[
q(t) + �q(t)

] ≥ –AC – CF(t) + –qCFq(t). (.)

Choosing u(x) sufficiently large such that

–qCFq() – CF() – AC > , (.)

we conclude that F(t) is monotonic increasing for any t > .
Furthermore, applying (.) and q > , we can see that there exists a T > , such that

lim
t→T

F(t) = +∞ (.)

and

T ≤
∫ +∞

F()

dτ

–AC – Cτ + –qCτ q < +∞. (.)

Likewise, we can obtain similar results for the following cases; there exist Tk < +∞
(k = , . . . , ), such that

T ≤
∫ +∞

F()

dτ

–Cτ + –pCτ p for Case . q = m, p > n (p = q),

T ≤
∫ +∞

F()

dτ

–AC – Cτ + –qCτ q for Case . q = m, p > n (p > q),

T ≤
∫ +∞

F()

dτ

–Cτ + –pCτ p for Case . q > m, p = n (p = q),

T ≤
∫ +∞

F()

dτ

–AC – Cτ + –qCτ q for Case . q > m, p = n (p > q),

T ≤
∫ +∞

F()

dτ

–pCτ p for Case . q = m, p = n (p = q),

T ≤
∫ +∞

F()

dτ

–AC + –qCτ q for Case . q = m, p = n (p > q),

(.)

and

lim
t→Tk

F(t) = +∞,

for any k = , . . . , . Here, C = λ
p–n
p– > , C = k – λ > , and C = λ

q–m
q– > .

Hence, denoting T = min≤k≤ Tk , Theorem . follows immediately. �

5 Lower bound to the finite blow-up time
In this section, we study the lower bound to the blow-up time when blow-up occurs and
show Theorem ..

Proof Here, suppose that � is a convex domain in R
, and (u, v) blows up in a finite time

T (< +∞).
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First, setting

�(t) =
∫

�

uq+m+ dx +
∫

�

vp+n+ dx, (.)

and recalling (.), we have

�′(t) = (q + m + )
∫

�

uq+m[
�um + f(t)vp]dx

+ (p + n + )
∫

�

vp+n[�vn + f(t)uq]dx

= –
(q + m + )(q + m)

(q + m)

∫

�

∣
∣∇uq+m∣

∣ dx + (q + m + )f(t)
∫

�

uq+mvp dx

–
(p + n + )(p + n)

(p + n)

∫

�

∣
∣∇vp+n∣∣ dx + (p + n + )f(t)

∫

�

vp+nuq dx. (.)

Thus, Hölder’s inequality implies that

f(t)
∫

�

uq+mvp dx

≤ f(t)
(∫

�

u(q+m) dx
) 


(∫

�

vp dx
) 



≤ f(t)
(∫

�

u(q+m) dx
) q+m–

(q+m–)
(∫

�

uq+m+ dx
) q+m

q+m–
(∫

�

vp dx
) 


. (.)

Applying Sobolev’s inequality (see []) in R
,

(∫

�

ξ dx
) 

 ≤ 

 – 

 π– 


(∫

�

|∇ξ | dx
) 


,

we can obtain

∫

�

u(q+m) dx ≤ 
π

(∫

�

∣
∣∇uq+m∣

∣ dx
)

. (.)

Substituting (.) into (.) yields

f(t)
∫

�

uq+mvp dx

≤ f(t)
(

 √
π √π

ε

∫

�

∣
∣∇uq+m∣

∣ dx
) (q+m–)

(q+m–)

×
{

ε
– (q+m–)

q+m+


(∫

�

uq+m+ dx
) q+m

q+m+
(∫

�

vp dx
) q+m–

q+m+
} q+m+

(q+m–)

≤
√(q + m – )

π √π (q + m – )
ε

∫

�

∣
∣∇uq+m∣

∣ dx

+
q + m + 

(q + m – )
ε

– (q+m–)
q+m+



(∫

�

uq+m+ dx
) q+m

q+m+
[

f 
 (t)

∫

�

vp dx
] q+m–

q+m+
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≤
√(q + m – )

π √π (q + m – )
ε

∫

�

∣
∣∇uq+m∣

∣ dx

+
q + m + 

(q + m – )
ε

– (q+m–)
q+m+



(∫

�

uq+m+ dx
) q+m

q+m+
f(t)

(q+m–)
q+m+

×
(∫

�

vp+n+ dx
) p(q+m–)

(q+m+)(p+n+) |�|– p
p+n+ , (.)

where ε = π √π (q+m)(q+m–)
√(q+m)(q+m–)

.
Similarly, one has

f(t)
∫

�

vp+nuq dx

≤
√(p + n – )

π √π (p + n – )
ε

∫

�

∣
∣∇vp+n∣∣ dx

+
p + n + 

(p + n – )
ε

– (p+n–)
p+n+



(∫

�

vp+n+ dx
) p+n

p+n+
f(t)

(p+n–)
p+n+

×
(∫

�

uq+m+ dx
) q(p+n–)

(p+n+)(q+m+) |�|– q
q+m+ , (.)

where ε = π √π (p+n)(p+n–)
√(p+n)(p+n–)

.
Substituting (.) and (.) into (.), one has

�′(t) ≤ k(t)
[(∫

�

uq+m+ dx
)μ(∫

�

vp+n+ dx
)μ

+
(∫

�

vp+n+ dx
)μ(∫

�

uq+m+ dx
)μ]

= k(t)
[(∫

�

uq+m+ dx
) μ

μ+μ
(∫

�

vp+n+ dx
) μ

μ+μ
]μ+μ

+ k(t)
[(∫

�

uq+m+ dx
) μ

μ+μ
(∫

�

vp+n+ dx
) μ

μ+μ
]μ+μ

≤ k(t)
[
�(t)μ+μ + �(t)μ+μ

]
, (.)

where

k(t) = max

{

(q + m + )
q + m + 

(q + m – )
ε

– (q+m–)
q+m+

 |�|– p
p+n+ f(t)

(q+m–)
q+m+ ,

(p + n + )
p + n + 

(p + n – )
ε

– (p+n–)
p+n+

 |�|– q
q+m+ f(t)

(p+n–)
p+n+

}

(.)

and

μ =
q + m

q + m + 
, μ =

q(p + n – )
(q + m + )(p + n + )

,

μ =
p + n

p + n + 
, μ =

p(q + m – )
(p + n + )(q + m + )

.
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Suppose that

lim
t→T

�(t) = +∞ ( < T < +∞), (.)

then there exists a t >  such that �(t) >  (t > t).
Integrating (.) from t to T , we obtain

∫ +∞



d�

�μ+μ + �μ+μ
≤

∫ T

t

k(t) dt ≤
∫ T


k(t) dt. (.)

Let �(T) =
∫ T

 k(t) dt. Obviously, �(T) is increasing. Hence, one has

T ≥ �–(ω) := T > , (.)

where ω =
∫ +∞


d�

�μ+μ +�μ+μ , �– is the inverse function of �. �

Remark . The results in Theorem . still hold for the two-dimensional case. The lower
bound estimate to the blow-up time is valid without the convex condition on the do-
main �.
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