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Abstract
New results on the existence and multiplicity of the solutions for some nonlinear
boundary value problems with singular φ-Laplacian are obtained via a bend-twist
fixed point theorem. These results improve related theorems in the previous literature.
Moreover, the geometric approach in this paper provides a new method to
investigate the existence and multiplicity of periodic motions of charged particles in a
three-dimensional electromagnetic field.
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1 Introduction
In this paper, we are concerned with the existence and multiplicity of the solutions of
boundary value problems for nonlinear differential equations with the vectorial singular
φ-Laplacian

(
φ
(
x′))′ = f

(
t, x, x′), (.)

where x ∈ R
, and φ : Ba() → R

 is a homeomorphism of the open ball Ba() centered
at the origin with the radius a ( < a < +∞) such that φ() =  and |φ(v)| → ∞ as v →
∂Ba(), φi (i = , , ) is monotonous with respect to the ith component of variable, and
f(t, u, v) : [, T] ×R

 ×R
 →R

 is a Lipschitz continuous vector-valued function.
Equation (.) includes many interesting physical and mechanical models. A significant

example is that equation (.) describes the dynamics of a charged particle in electric and
magnetic fields when the particle velocities are relativistic [].

Let us consider a particle of mass m >  and charge e in an electromagnetic field, where
the electric potential is V (x), and the periodic magnetic vector potential A(t) depends on
time t periodically with the least period T . The position of the particle is given by x ∈R

.
Then the relativistic equations of the motion of the particle are described by the Lagrange
function

L(x, ẋ, t) = mc
(

 –
√

 –
|ẋ|
c

)
– eV (x) +

e
c
〈
ẋ, A(t)

〉
, (.)
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where 〈·, ·〉 denotes the usual inner product, and c is the speed of light. By the standard
variational principle the function (.) leads to the Euler-Lagrange equation

d
dt

Lẋ(x, ẋ, t) = Lx(x, ẋ, t),

which is a system consisting of three second-order differential equations

d
dt

(
mẋi√
 – |ẋ|

c

)
+ Vxi (x) +

e
c

Ai(t) = , i = , , . (.)

When the magnetic potential A is independent of time t, equation (.) corresponds
to an autonomous Hamiltonian system of second-order differential equations, which is
discussed by Moser and Zehnder [], pp.-. These problems were also studied by many
mathematicians and physicists (see [–]).

In case that the electric and magnetic potentials are symmetric with respect to the three-
dimensional space, equation (.) drops into the one-dimensional system

(
φ
(
x′))′ = f

(
t, x, x′), (.)

where φ : (–a, a) →R ( < a < +∞) is a monotonous homeomorphism such that φ() = ,
and f : [, T] ×R

 →R is locally Lipschitz continuous function.
Recently, Bereanu and Mawhin obtained several interesting results on the existence and

multiplicity of the solutions for various boundary value problems of equation (.) by using
the Leray-Schauder degree, the lower and upper solutions, and the method of variational
calculation; see [–] and other related works; we can refer to [–]. In particular, a uni-
versal existence theorem for Dirichlet problem and an existence theorem for periodic and
Neumann problem were established when f satisfies some sign conditions []. Moreover,
the problem for the existence of periodic solutions under the Hartman-type condition or
the modified Hartman-type condition was considered in [].

A special interesting example of (.) is given by a one-dimensional singular φ-Laplacian
of relativistic type (φ(s) = s√

–s ), which describes the dynamics of the acceleration of a
relativistic particle of mass one at rest moving on a straight line (with the velocity of light
normalized to one) [, ]. The existence of periodic solutions for the forced pendulum
equation with relativistic effects

(
x′

√
 – |x′|

c

)′
+ kx′ + a sin x = p(t) (.)

was proved by Torres [], where c >  is the speed of light in the vacuum, and k ≥  is a
possible viscous friction coefficient. The result shows that if cT ≤ , then for any values a,
k and any p ∈ C̃T , equation (.) has at least one T-periodic solution, where C̃T denote the
Banach space of continuous and T-periodic functions with zero mean value. The result in
[] was extended to generalized pendulum-type equation with Liénard term []

(
φ
(
x′))′ + f (x)x′ + g(x) = e(t) + s. (.)
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The method used in [, ] is based on a nonstandard change of variables (based on
some sign condition of g ′(x)) and an application of the Schauder fixed point theorem. Re-
cently, Littlewood’s boundedness problem and the existence of quasi-periodic solutions
for relativistic oscillators with anharmonic potentials were studied in [].

The existence of periodic solutions for nonlinear problems with singular φ-Laplacian
was extended to the n-dimensional case by Brezis and Mawhin [], where the approach
is mostly variational, but requires the use of results on an auxiliary system based upon
fixed point theory and Leray-Schauder degree. The multiplicity and existence of periodic
solutions in the n-dimensional case was proved by Mawhin in [] by using a Lusternik-
Schnirelman-type multiplicity result for some indefinite functionals. We refer to [, ]
for the related developments.

The purpose of this paper is to find some method to deal with the problem with higher-
dimensional system (.). Our discussion is based on a geometric idea by phase-space anal-
ysis. We show that when f satisfies some general condition, then the solutions of (.) have
some ‘bend-twist’ property in the generalized phase-space. This observation inspires us
constructing a bend-twist fixed point theorem to prove the existence and multiplicity of
periodic solutions for three-dimensional system (.).

More specifically, we extend the universal existence theorem for Dirichlet problem and
the existence theorem for periodic (or Neumann) problem in [] to the existence and mul-
tiplicity theorem for three-dimensional system, respectively. Even for the scalar equation
(.), an interesting feature of our result is that the existence of periodic solutions is inde-
pendent of the condition of g ′(x) and the damping coefficient f .

The paper is organized as follows. Section  is devoted to introducing some prelimi-
nary results with respect to equation (.). A geometric fixed theorem (Theorem .) is
proved by simple topological degree argument. This theorem is the basic tool used in
this paper. In Section ., we obtain a universal existence theorem for equation (.) with
the Dirichlet condition, which generalizes the result in []. This is not the case for other
boundary condition; an existence and multiplicity result (see Theorem .) is proved in
Section . when f satisfies some local sign condition. Periodic motions of relativistic os-
cillators of charged particles in a three-dimensional electromagnetic field are investigated
in Section .. In Section , a new result on the existence and multiplicity of periodic so-
lutions of generalized pendulum-type equations that does not need any information upon
the differentiability of g is obtained by the geometric approach.

2 Bend-twist theorem and some preliminary results
In this section, we first introduce a geometric fixed point theorem, which will be used
frequently in the subsequent sections. The geometric fixed point theorem is a small
variation of the Poincaré-Miranda theorem (see [] for instance), which goes back to
Poincaré () and has been used many times in the study of boundary value prob-
lems and periodic solutions. For example, see a recent paper [] and the references
therein.

Consider a parallelotope D with n faces, that is,

D =
{

(x, x, . . . , xn) ∈ R
n : αi ≤ xi ≤ βi, i = , , . . . , n

}
,
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Figure 1 Bend-twist in various spaces: (a) a line
segment in R

1; (b) a rectangle in R
2; (c) a cuboid

in R
3.

where αi, βi, i = , , . . . , n, are constants such that αi < βi. The boundary of the parallelo-
tope consists of n faces. Denote them by

V i
– =

{
(x, . . . , xn) ∈R

n : xi = αi,αj ≤ xj ≤ βj, j �= i and j ∈ {, . . . , n}},

V i
+ =

{
(x, . . . , xn) ∈R

n : xi = βi,αj ≤ xj ≤ βj, j �= i and j ∈ {, . . . , n}},

respectively. Let � be an open subset of Rn, and D ⊂ �. We say that a continuous map
F = (F,F, . . . ,Fn) : � →R

n satisfies the bend-twist condition on D if

Fji
(
V i

–
)
Fji

(
V i

+
) ≤ , i = , , . . . , n,

where ji ∈ {, , . . . , n} are such that jm �= jk for m �= k.
Here, Fji (V i

–)Fji (V i
+) ≤  means that Fji (V i

–) ≤  and Fji (V i
+) ≥ , or Fji (V i

–) ≥  and
Fji (V i

+) ≤ ; Fji (V i±) >  means that Fji (x) ≥  for all x ∈ V i± and there exists at least one
x ∈ V i± such that Fji (x) > ; Fji (V i±) =  means that Fji (x) =  for all x ∈ V i±. The figures
may help us to understand the ‘bend-twist’ condition well; see Figure .

Theorem . (Bend-twist theorem) Assume that a continuous map

F = (F,F, . . . ,Fn) : � →R
n

satisfies the bend-twist condition. Then there exists at least one point (x
, x

, . . . , xn
) ∈ D

such that F (x
, x

, . . . , xn
) = .

Since the only difference between Theorem . and Poincaré-Miranda theorem is the
permutation of the indexes in F , that is, we have to consider Fji instead of Fi, we omit
the proof of Theorem .. We can refer to [] for an elementary proof based upon basic
exterior calculus.

Next, we perform some preliminary results on the existence and uniqueness of a solution
of initial value problem for equation (.) based on phase-plane analysis, which imply that
the Poincaré mapping of (.) can be well defined.

Let CT denote the Banach space of continuous functions on [, T] with uniform norm
‖ · ‖∞, and C̃T denote the Banach space of continuous and T-periodic functions with zero
mean value. We also denote the inverse function of φ by φ– : R → Ba() ( < a < +∞).
Since φi (i = , , ) is a monotonous homeomorphism with respect to the ith component
of variable, the inverse function φ–

i is also a monotonous homeomorphism with respect
to the ith component of variable.

Lemma . Every solution of equation (.) can be uniquely defined on the interval
(–∞, +∞).
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Proof We rewrite equation (.) in the form

x′ = φ–(y), y′ = f
(
t, x,φ–(y)

)
. (.)

Since f : [, T] ×R
 ×R

 → R
 is locally Lipschitz continuous, every solution of equa-

tion (.) with the initial value (x, y) exists uniquely.
By the first equation of (.) and the bounded range of φ– we can see that if xi(t) exists,

then

∣∣x′
i(t)

∣∣ < a.

Hence, |x(t)| cannot go to infinity as t goes to finite time. Moreover, the second equation
of (.) implies that |y′(t)| is bounded if |x(t)| is bounded. Therefore, |y(t)| cannot go to
infinity as t goes to finite time, that is, blow-up does not occur. The global existence of
solutions is thus proved. �

From Lemma . we can see that the Poincaré mapping of equation (.) is well de-
fined. Let (x(t; x(), y()), y(t; x(), y())) be a solution of equation (.) with initial condition
x(; x(), y()) = x(), y(; x(), y()) = y(). We define the Poincaré mapping P : R × R

 →
R

 ×R
 by

P
(
x(), y()) =

(
x
(
T ; x(), y()), y

(
T ; x(), y())).

Consequently, P is a continuous and one-to-one mapping. Every zero point of the contin-
uous mapping F : R ×R

 →R
 ×R

, defined by F = P – id, corresponds to a T-periodic
solution of equation (.), where id denotes the identity mapping.

3 Three-dimensional systems with singular φ-Laplacian
3.1 The case of Dirichlet boundary condition
In this section, we investigate the existence of solutions of equation (.) with Dirichlet
boundary condition

x() =  = x(T).

A ‘universal’ solvability result is obtained, and we conclude the result in the following the-
orem.

Theorem . For each continuous vector-valued function f : [, T] × R
 × R

 → R
, the

Dirichlet boundary problem

(
φ
(
x′))′ = f

(
t, x, x′), x() =  = x(T), (.)

has at least one solution.

In fact, the existence of Theorem . for Dirichlet boundary conditions is well known
for more general systems from the work of Bereanu and Mawhin []. Therefore, we leave
the proof for the reader while using directly Theorem . or topology degree theory, and
we can also refer to the proof of Theorem ..
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3.2 Periodic or Neumann problems with nonlinearities
In this section, we consider the existence of solutions of equation (.) with periodic
boundary condition

x() – x(T) =  = x′() – x′(T)

or Neumann boundary condition

x′() =  = x′(T).

There is no universal existence for equation (.) with periodic boundary condition or
Neumann boundary condition. The following lemma is a result of nonexistence of solu-
tions.

Lemma . If there exists a component function fi : [, T] × R
 × R

 → R such that fi

is always positive or negative on its domain, then equation (.) with periodic boundary
condition or Neumann boundary condition has no solution.

Proof Let ϕ(t) be a solution of equation (.) with periodic boundary condition or
Neumann boundary condition. Integrating the equation

(
φi

(
ϕ′(t)

))′ = fi
(
t,ϕ(t),ϕ′(t)

)

with respect to t on interval [, T], we have

 =
∫ T


fi
(
s,ϕ(s),ϕ′(s)

)
ds.

Since fi always has a positive sign or a negative sign on its domain, the integral on the
right side of the equation does not vanish. Thus, it is a contradiction, which implies that
equation (.) with periodic or Neumann boundary condition has no solution. �

In the following, we will show that a general sign condition upon f can guarantee the ex-
istence and multiplicity of solutions for equation (.) with periodic or Neumann boundary
condition.

First, we consider the periodic boundary value problem

(
φ
(
x′))′ = f

(
t, x, x′), x() – x(T) =  = x′() – x′(T). (.)

A result on the existence and multiplicity of solutions is obtained in the following theo-
rem.

Theorem . Assume that f is a continuous vector-valued function and there exist positive
increasing sequences {αi

k} with

αi
 < αi

 < · · · < αi
n, i = , , , n ≥ , n ∈N,
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and ε ∈ {–, } such that for all t ∈ [, T],

ε

∫ T


fi
(
s, x(s), x′(s)

)
ds ≥  if

∣∣xi(t) – αi
k
∣∣ < aT ,

∣∣x′
i(t)

∣∣ < a, (.)

ε

∫ T


fi
(
s, x(s), x′(s)

)
ds ≤  if

∣∣xi(t) – αi
k+

∣∣ < aT ,
∣∣x′

i(t)
∣∣ < a. (.)

Then periodic boundary value problem (.) has at least one solution. Moreover, if

	
{

j ∈ Z
+∣∣ max

i=,,

(
αi

j+ – αi
j
)

> aT
}

= r, r ∈ Z
+,

where 	(·) denotes the number of elements in a set, then the periodic boundary value prob-
lem (.) has at least r geometrical distinct solutions.

Proof First, assume that f is a continuous Lipschitz vector-valued function. Suppose that
(x(t; x(), y()), y(t; x(), y())) is a solution of equation (.). Every zero point of the continu-
ous mapping F = P – id corresponds to a T-periodic solution of equation (.), where id
denotes the identity map, and P is the Poincaré mapping. By the first equation of (.) we
have

∣∣xi
(
t; x(), y()) – x()

i
∣∣ < aT ,

∣∣x′
i
(
t; x(), y())∣∣ < a, t ∈ [, T]. (.)

Let

Mi
k = max

t∈[,T]

{∣∣fi(t, u, v)
∣∣ : uj ∈

[
α

j
k – aT ,αj

k + aT
]
, vj ∈ [–a, a], j = , , 

}
.

Since fi (i = , , ) is continuous, by the boundedness of x(t) and x′(t) on [, T], y′
i(t) is also

bounded on [, T]. By the second equality of (.) we can take a sufficiently large positive
constant β i

k > Mi
kT such that

yi
(
t; x(), y())∣∣

y()
i =βi

k
>  (.)

and

yi
(
t; x(), y())∣∣

y()
i =–βi

k
<  (.)

for all t ∈ [, T] with |x()
j – α

j
k| < aT , j = , , .

Consider the parallelotope

Dk =
{

(x, x, x, y, y, y) ∈ R
 : αi

k ≤ xi ≤ αi
k+, –β i

k ≤ yi ≤ β i
k , i = , , 

}

with its boundary including  faces. We denote them by

V i
– =

{
(x, x, x, y, y, y) ∈Dk : yi = –β i

k
}

,

V i
+ =

{
(x, x, x, y, y, y) ∈Dk : yi = β i

k
}

,
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V i+
– =

{
(x, x, x, y, y, y) ∈Dk : xi = αi

k
}

,

V i+
+ =

{
(x, x, x, y, y, y) ∈Dk : xi = αi

k+
}

, i = , , ,

respectively. Integrating the first equality of (.) with respect t on the interval [, T], we
have

Fi
(
V i

+
)

= xi
(
T ; x(), y()) – xi

(
; x(), y())

=
∫ T


φ–

i
(
y
(
t; x(), y()))∣∣

y()
i =βi

k
dt ≥ 

and

Fi
(
V i

–
)

= xi
(
T ; x(), y()) – xi

(
; x(), y())

=
∫ T


φ–

i
(
y
(
t; x(), y()))∣∣

y()
i =–βi

k
dt ≤ 

for i = , , , where the last inequality follows by the monotonicity of φ–
i .

Integrating the second equality of (.) with respect t on the interval [, T], by inequal-
ities (.), (.), and (.) we have

εFi+
(
V i+

+
)

= εyi
(
T ; x(), y()) – εyi

(
; x(), y())

= –ε

∫ T


fi
(
t, x

(
t; x(), y()), x′(t; x(), y()))∣∣

x()
i =αi

k
dt ≤ 

and

εFi+
(
V i+

–
)

= εyi
(
T ; x(), y()) – εyi

(
; x(), y())

= –ε

∫ T


fi
(
t, x

(
t; x(), y()), x′(t; x(), y()))∣∣

x()
i =αi+

k
dt ≥ 

for i = , , . Thus, we have proved that

Fi
(
V i

–
)
Fi

(
V i

+
) ≤ , i = , , . . . , .

Consequently,F satisfies the bend-twist condition on parallelotope domainDk . By The-
orem ., F has at least a zero point in domain Dk . Hence, the existence of solutions is
proved.

Next, we consider the multiplicity of solutions for equation (.) with periodic boundary
condition. If, for some i ∈ {, , },

∣∣αi
j – αi

j+
∣∣ > aT , (.)

then we can define two parallelotopes Dj– and Dj+ by

Dj– =
{

(x, y) ∈R
 : αi

j– ≤ xi ≤ αi
j, –β i

j– ≤ yi ≤ β i
j–, i = , , 

}
,

Dj+ =
{

(x, y) ∈R
 : αi

j+ ≤ xi ≤ αi
j+, –β i

j+ ≤ yi ≤ β i
j+, i = , , 

}
.
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Let xj– and xj+ be T-periodic solutions of equation (.) with initial values in the
parallelotope domains Dj– and Dj+, respectively. Since x′

i(t) < a, by inequality (.) we
have

∣
∣xj–

i (t) – xj+
i (t)

∣
∣ ≥ ∣

∣(αi
j+ – aT

)
–

(
αi

j + aT
)∣∣ > 

for all t ∈ [, T]. So, in this case, the two T-periodic solutions from two distinct parallelo-
tope domains must be distinct.

Finally, we show that the continuity condition on f can take place of the Lipschitz con-
dition in our results by the method developed by Ding et al. [].

In fact, if f is a continuous function, then we can take a sequence of functions fl = fl(t, x, y)
that are T-periodic in the t-variable and locally Lipschitzian in the x, y-variable, with
{fl(t, x, y)} converging to f uniformly on each compact subset of [, T] × R

 × R
. The

existence of such a sequence, with the fl even smoother than required here, follows from
the Weierstrass approximation theorem. Of course, we can take fl ≡ f(t, x, y) if f is locally
Lipschitzian. We conclude that the equations

(
φ
(
x′))′ = fl

(
t, x, x′)

have at least one T-periodic solution xl(t) with

dist
(
xl(t),D

) ≤ √
aT , x′

l(t) < a, ∀t ∈ [, T],

where D is a uniformly bounded parallelotope domain with respect to the index l, and
dist(xl(t),D) denotes the distance from xl(t) to D. Now by a standard compactness argu-
ment we can find a subsequence {fl′ } converging to f uniformly on the compact subset

O =
{

(t, z) ∈ [, T] ×R
 : dist(z,D) ≤ √

aT
}

.

We can also find a subsequence of the {xl′ }l converging to x, which is a T-periodic solution
of equation (.). �

We remark that conditions (.) and (.) for Neumann or periodic problems in The-
orem . were first introduced by Bereanu and Mawhin, where they have established the
existence result for one-dimensional nonlinear problems with singular φ-Laplacian [],
Theorem . Moreover, the proof of Theorem . involves an idea of shooting approach to
nonlinear system with singular φ, and we can refer to [].

Corollary . Let p(t, u, v) : [, T]×R
 ×R

 →R
 and f(t, u) : [, T]××R

 → R
 be con-

tinuous functions, p(t, u, v) be bounded on [, T] ×R
 × Ba(), and f satisfy the conditions

lim sup
ui→–∞

fi(t, u) ≤ inf pi(t, u, v), lim inf
ui→+∞ fi(t, u) ≥ sup pi(t, u, v) (.)

or

lim inf
ui→–∞ fi(t, u) ≥ sup pi(t, u, v), lim sup

ui→+∞
fi(t, u) ≤ inf pi(t, u, v) (.)
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uniformly in t ∈ [, T]. Then the problem

(
φ
(
x′))′ + f(t, x) = p

(
t, x, x′), x() – x(T) =  = x′() – x′(T), (.)

has at least one solution.

Proof Let (.) hold. Then there exist two constants α, α with –α,α �  such that

pi
(
t, x, x′) – fi(t, x) ≥  for

∣∣xi(t) – α
∣∣ < aT ,

∣∣x′
i(t)

∣∣ < a

and

pi
(
t, x, x′) – fi(t, x) ≤  for

∣∣xi(t) – α
∣∣ < aT ,

∣∣x′
i(t)

∣∣ < a,

which implies that (.) and (.) are satisfied. It is a direct consequence of Theorem ..
The proof is similar in case (.) holds. �

Corollary . Let p(t, u, v) : [, T] × R
 × R

 → R
 and f(t, u) : [, T] × ×R

 → R
 be

continuous functions, p(t, u, v) be bounded on [, T] ×R
 × Ba(), and f satisfy the condi-

tions

lim
ui→–∞ fi(t, u) = +∞, lim

ui→+∞ f(t, u) = –∞

or

lim
ui→–∞ fi(t, u) = –∞, lim

ui→+∞ fi(t, u) = +∞

uniformly in t ∈ [, T]. Then problem (.) has at least one solution.

Corollary . is easily deduced from Corollary ..

Example . For any continuous and bounded T-periodic vector-valued function p and
constants μ �=  and λ > , the problem

d
dt

(
x′

√
 – x′

)
+ μx

(
λ + sin

√|x|) = p
(
t, x, x′),

x() – x(T) =  = x′() – x′(T),

has at least one solution.

These results also hold in the case of one-dimensional plane problems with singular
φ-Laplacian. An immediate consequence discussed by Bereanu and Mawhin ([], Theo-
rem ) follows from Theorem ..

Remark . It is not difficult to see that the results also hold for Neumann boundary
conditions.
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3.3 Relativistic equations of charged particles in an electromagnetic field
Now let us return to the relativistic equations (.) of a charged particle in an electromag-
netic field. Without loss of generality, we consider the particle of mass m = . Note that we
can rewrite the equations in the form

⎧
⎨

⎩

ẋi = yi√

+ |ẏ|
c

⇔ yi = ẋi√

– |ẋ|
c

,

ẏi = –Vxi (x) + e
c Ai(t).

(.)

By Lemma . every solution of equations (.) can be uniquely defined on the inter-
val (–∞, +∞), provided that V (x) is continuously differentiable. Here we require that the
electric potential V (x) satisfies the conditions

(H) εVxi (x)xi >  for |xi| ≥ d,

where d is a constant, and ε ∈ {–, }. Under hypothesis (H), we will investigate the peri-
odic dynamics of system (.) in the generalized phase space (x, y) ∈ R

 × R
. We con-

clude the main result in the following:

Theorem . Assume that (H) holds and the electric potential V is a continuous differ-
entiable function. Then for any continuous T-periodic vector magnetic potential A(t) with
zero mean value of every component variable, system (.) admits at least one T-periodic
motion.

Proof The proof is similar to that of Theorem . and we only give a sketch. Without loss
of generality, we assume that (H) holds for ε = . Let

ϑi = max
αi≤xi≤βi

i=,,

∣
∣Vxi (x)

∣
∣ and ‖Ai‖∞ = max

t∈[,T]

∣
∣Ai(t)

∣
∣.

Consider the parallelotope

D =
{

(x, x, x, y, y, y) ∈R
 : αi+ ≤ xi ≤ βi+,αi ≤ yi ≤ βi, i = , , 

}
,

where we fix the constants αj, βj, j = , , . . . , , such that

αi+ < –cT – d, βi+ > cT + d,

αi < –ϑiT – ‖Ai‖∞, βi > ϑiT + ‖Ai‖∞, i = , , .

Denote the faces of the boundary of the parallelotope by

V i
– =

{
(x, x, x, y, y, y) ∈D : yi = αi

}
,

V i
+ =

{
(x, x, x, y, y, y) ∈D : yi = βi

}
,

V i+
– =

{
(x, x, x, y, y, y) ∈D : xi = αi+

}
,

V i+
+ =

{
(x, x, x, y, y, y) ∈D : xi = βi+

}
, i = , , .
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Note that

∫ T


Ai(t) dt = .

Defining the operator F as in Theorem ., we can verify that

Fi+
(
V i+

–
) ≥ , Fi+

(
V i+

+
) ≤ ,

Fi
(
V i

–
) ≤ , Fi

(
V i

+
) ≥ , i = , , .

Therefore, F satisfies the bend-twist condition, and by Theorem . we complete the
proof. �

Example . For any constants m, c,μ >  and γ >  and any constant vector F =
(F, F, F), the problem

d
dt

(
mẋ

√
 – |ẋ|

c

)
+ μ∇(|x|)γ = F cos(ωt),

x() – x(T) =  = x′() – x′(T),

has at least one solution.

4 Generalized Liénard differential equations with periodic boundary value
condition

In this section, we investigate the generalized Liénard differential equations. The exis-
tence, multiplicity, and dependence on a parameter are considered. The results are illus-
trated with some examples.

4.1 Existence of periodic solutions under a sign condition
Now we recall the generalized Liénard differential equation

(
φ
(
x′))′ + ∇F(x)x′ + g(t, x) = , (.)

which is equivalent to the system

x′
i = φ–

i
(
yi – Fi(x)

)
, y′

i = –gi(t, x), i = , , , (.)

where

F = (F, F, F) : R → R


is a continuously differentiable function, and

g = (g, g, g) : R ×R
 →R



is continuous and T-periodic with respect to the variable t.
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A function g(t, x) is said to satisfy the sign condition if there exist positive constants di > 
such that

(H) sgn(xi)gi(t, x) ≥  or sgn(xi)gi(t, x) ≤ 

for all |xi| ≥ di, i = , , , and t ∈ [, T]. If the signs of inequalities replace by ‘>’ and ‘<’,
we say that g(t, x) satisfies the strict sign condition. If a function g(t, x) satisfies the sign
condition, then this means that g does not change sign on each axis direction of x. For
example, the function

g(t, x) =
 + sin t
√

 + |x| x

satisfies the sign condition for arbitrary positive constants d, d, d.
In what follows, we will apply Theorem . to discuss the existence of T-periodic solu-

tions for equation (.).

Theorem . If g satisfies the sign condition (H) and the function F is continuous differ-
entiable, then for any given T > , equation (.) has at least one T-periodic solution.

Proof Without loss of generality, we assume that

gi(t, x) ≥ , ∀xi ∈ [di, +∞)

and

gi(t, x) ≤ , ∀xi ∈ (–∞, –di],

uniformly on t ∈ [, T]. The other cases can be dealt with similarly.
Let (x(t; x(), y()), y(t; x(), y())) be a solution of equation (.). In the following, we will

prove the existence of zero points of the mapping F = P – id, which corresponds to a
T-periodic solution of (.).

By the first equation of (.) we have

∣
∣xi

(
t; x(), y()) – x()

i
∣
∣ < aT ,

∣
∣x′

i
(
t; x(), y())∣∣ < a, t ∈ [, T]. (.)

Take fixed constants αi > di + aT , i = , , . Then we get

gi
(
t, x

(
t; x(), y()))∣∣

x()
i =αi

>  (.)

and

gi
(
t, x

(
t; x(), y()))∣∣

x()
i =–αi

<  (.)

for all t ∈ [, T], i = , , .
Let

Mi = max
{∣∣Fi(x)

∣∣ : xi ∈ [
αi – aT ,αi + aT

] ∪ [
–αi – aT , –αi + aT

]}
.
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Since gi(t, x) is continuous, by the boundedness of x(t) and x′(t) on [, T], y′
i(t) is also

bounded on [, T]. By the second equality of (.) we can take a sufficiently large posi-
tive constant β i such that

yi
(
t; x(), y())∣∣

y()
i =βi – Mi >  (.)

and

yi
(
t; x(), y())∣∣

y()
i =–βi + Mi <  (.)

for all t ∈ [, T] with |x()
i – αi| < aT , i = , , .

Consider the parallelotope

D =
{

(x, x, x, y, y, y) ∈R
 : –αi ≤ xi ≤ αi, –β i ≤ yi ≤ β i, i = , , 

}

with its boundary including  faces, denoted by

V i
– =

{
(x, x, x, y, y, y) ∈Dk : yi = –β i},

V i
+ =

{
(x, x, x, y, y, y) ∈Dk : yi = β i},

V i+
– =

{
(x, x, x, y, y, y) ∈Dk : xi = –αi},

V i+
+ =

{
(x, x, x, y, y, y) ∈Dk : xi = β i}, i = , , .

Integrating the first equality of (.) with respect to t on the interval [, T], by inequalities
(.) and (.) we have

Fi
(
V i

+
)

= xi
(
T ; x(), y()) – xi

(
; x(), y())

=
∫ T


φ–

i
(
y
(
t; x(), y()) – Fi

(
x
(
t; x(), y())))∣∣

y()
i =βi

k
dt ≥ 

and

Fi
(
V i

–
)

= xi
(
T ; x(), y()) – xi

(
; x(), y())

=
∫ T


φ–

i
(
y
(
t; x(), y()) – Fi

(
x
(
t; x(), y())))∣∣

y()
i =–βi

k
dt ≤ 

for i = , , , where the last inequality follows by the monotonicity of φ–
i .

Integrating the second equality of (.) with respect t on the interval [, T], by inequal-
ities (.) and (.) we have

Fi+
(
V i+

+
)

= yi
(
T ; x(), y()) – yi

(
; x(), y())

= –
∫ T


gi

(
t, x

(
t; x(), y()))∣∣

x()
i =αi

k
dt ≤ 
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and

Fi+
(
V i+

–
)

= yi
(
T ; x(), y()) – yi

(
; x(), y())

= –
∫ T


gi

(
t, x

(
t; x(), y()))∣∣

x()
i =–αi dt ≥ 

for i = , , . Thus, we have proved that

Fi
(
V i

–
)
Fi

(
V i

+
)

< , i = , , . . . , .

Consequently, F satisfies the bend-twist condition on the parallelotope domain D. By
Theorem ., F has at least a zero point in D. Hence, the existence of solutions is proved.

�

It is interesting to note that no assumption on the friction term F(x) is required. Some
direct consequences follow from Theorem ..

Corollary . Assume that a continuous function g : R×R
 →R

 satisfies

lim
xi→–∞ gi(t, x) = +∞, lim

xi→+∞ gi(t, x) = –∞, i = , , 

or

lim
xi→–∞ gi(t, x) = –∞, lim

xi→+∞ gi(t, x) = +∞, i = , , .

Then for any continuous function F(x), equation (.) has at least one T-periodic solution.

Proof The limits limxi→±∞ gi(t, x) = ±∞ (or limxi→±∞ gi(t, x) = ∓∞) imply that there exist
di >  (i = , , ) such that xigi(t, x) >  (or xigi(t, x) < ) for all t ∈R and |xi| > di. Therefore,
sign condition (H) holds. By applying Theorem . we end the proof. �

Example . If e(t) ∈ CT × CT × CT , c ∈R \ , d ∈R, q ≥ , and p > , then the problem

d
dt

(
x′

√
 – |x′|

)
+ d|x|qx′ + c|x|p–x = e(t)

has at least one T-periodic solution.

Notice that when i = , the equation drops into a one-dimensional system. The results
discussed before also hold. A direct consequence discussed in [] is the following exam-
ple.

Example . The equation

d
dt

(
mx′

√
 – x′

c

)
+




x –



x = –F cosωt

has at least one π
ω

-periodic solution.
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4.2 Existence and multiplicity of periodic solutions without sign condition
In most cases, the function g does not satisfy sign condition (H). It is obvious that Theo-
rem . cannot be applied to the relativistic pendulum-type equations since the potentials
of pendulum-type equations are fluctuating and oscillating. But in this circumstance, the
pendulum-type equations satisfy some sign property locally.

Let us consider the equation

(
φ
(
x′))′ + ∇F(x)x′ + g(t, x) = , (.)

where

F = (F, F, F) : R → R


is a continuously differentiable function, and

g = (g, g, g) : R×R
 →R



is a continuous function with infinitely many zero points with respect to the variable x and
is T-periodic with respect to the variable t.

Rewrite equation (.) in the equivalent form

x′
i = φ–

i
(
yi – Fi(x)

)
, y′

i = –gi(t, x), i = , , . (.)

Now we conclude by the following result on the existence and multiplicity of T-periodic
solutions.

Theorem . Assume that there exist positive increasing sequences {αi
k} with

αi
 < αi

 < · · · < αi
n, i = , , , n ≥ , n ∈N,

and ε ∈ {–, } such that for all t ∈ [, T],

ε

∫ T


gi

(
s, x(s)

)
ds ≥  if

∣∣xi(t) – αi
k
∣∣ < aT , (.)

ε

∫ T


gi

(
s, x(s)

)
ds ≤  if

∣
∣xi(t) – αi

k+
∣
∣ < aT . (.)

Then equation (.) has at least one T-periodic solution. Moreover, if

	
{

j ∈ Z
+∣
∣ max

i=,,

(
αi

j+ – αi
j
)

> aT
}

= r, r ∈ Z
+,

where 	(·) denotes the number of elements in a set, then equation (.) has at least r geo-
metric distinct T-periodic solutions.

The proof of Theorem . is a simple adaptation of that one of Theorem ., and we do
not repeat it here.
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Obviously, the conclusion of Theorem . also holds for a one-dimensional system.
In the following, we shall perform an application of Theorem . to the following one-
dimensional relativistic pendulum-type equation with parameter s:

(
φ
(
x′))′ + f (x)x′ + g(x) = p(t) + s, (.)

where

φ : (–a, a) →R ( < a < +∞)

is a monotonous (without loss of generality, assume that it is increasing) homeomorphism
such that φ() = , f and g are continuous functions, and p is continuous and T-periodic
with zero mean value. Rewrite equation (.) in the equivalent form

x′ = φ–
i

(
y – F(x)

)
, y′ = –g(x) + p(t) + s, (.)

where

F(x) =
∫ x


f (ζ ) dζ

is the primitive function of f .
Without loss of generality, we assume that there exist an increasing sequence {ξk}, k =

, , . . . , n, n ∈N, positive sequences {bk} and {ck}, and ε ∈ {–, } such that

(H) ε sgn(x – ξk)g(x) ≥ , ∀x ∈ [–bk + ξk , ξk] ∪ [ξk , ck + ξk].

Let

gmax = max
{

g(x) : x ∈ [–bk + ξk , ξk]
}

and

gmin = min
{

g(x) : x ∈ [ξk , ck + ξk]
}

.

Theorem . Assume that (H) holds and

T ≤ min

{
bk

a
,

ck

a

}
. (.)

Then for any p(t) ∈ C̃T and any continuous function f(x), equation (.) has at least one
T-periodic solution if s satisfies gmax < s ≤  or  ≤ s < gmin.

Moreover, if ξk+ – ξk ≥ (bk+ + ck)/ + aT , k = , , . . . , n – , then equation (.) has
at least n geometric distinct T-periodic solutions xk(t) such that xk+(t) – xk(t) > , k =
, , . . . , n – .

Proof Assume that

sgn(x – ξk)g(x) ≥ , ∀x ∈ [–bk + ξk , ξk] ∪ [ξk , ck + ξk].



Wang et al. Boundary Value Problems  (2016) 2016:47 Page 18 of 27

Let

αk = –
bk


+ ξk , α̃k+ =

ck


+ ξk .

By assumption (.) we have

g
(
x(t)

) ≤  if
∣
∣x(t) – αk

∣
∣ ≤ aT

and

g
(
x(t)

) ≥  if
∣
∣x(t) – α̃k+

∣
∣ ≤ aT .

When gmax < s ≤ , we have

–
∫ T



[
g
(
x(s)

)
– s

]
ds +

∫ T


p(s) ds

≥ –
∫ T


[gmax – s] ds ≥  if

∣
∣x(t) – αk

∣
∣ < aT

and

–
∫ T



[
g
(
x(s)

)
– s

]
ds +

∫ T


p(s) ds ≤  if

∣∣x(t) – α̃k+
∣∣ < aT .

Then conditions (.) and (.) are satisfied. By Theorem . we know that equation
(.) has at least one T-periodic solution. The proof of the case  ≤ s < gmin can be dealt
with similarly.

In the following, we will give a concise proof for the multiplicity of T-periodic solutions
independent of Theorem .. Notice that the x-component of the initial value (xk(), yk())
of periodic solution (xk(t), yk(t)) belongs to [αk , α̃k+] by the bend-twist theorem. On the
other hand, since |x′

k(t)| < a for t ∈ [, T], we have xk(t) < xk() + aT ≤ α̃k+ + aT and
xk(t) > xk()–aT ≥ αk –aT . Therefore, when ξk+ –ξk > (bk+ +ck)/+aT , k = , , . . . , n–,
we have

xk+(t) – xk(t) > (αk+ – aT) – (α̃k+ + aT)

= ξk+ – ξk – (bk+ + ck)/ – aT ≥ .

Thus, we end the proof. �

The existence of T-periodic solutions of the particular relativistic pendulum equation

(
x′

√
 – x′

c

)′
+ kx′ + a sin x = p(t) (.)

was first considered by Torres []. Applying Theorem . to equation (.) we have the
following result.
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Corollary . For any values a, k and for any p(t) ∈ C̃T , equation (.) has at least one
T-periodic solution, provided that cT < π .

Proof Equation (.) is equivalent to
(

x′
√

c – x′

)′
+

k
c

x′ +
a
c

sin x =

c

p(t).

Take bk = π = ck and ξk = kπ . Obviously, condition (H) holds, and

T ≤ π

c
= min

{
bk

a
,

ck

a

}
.

Applying Theorem ., we conclude. �

Obviously, we have generalized the result [], Theorem . It is worth mentioning that
for the particular sin x in equation (.), Torres has improved his method and obtained a
better result [], Corollary . However, for general g , his method strictly depends on the
differentiability of the function g ; see [], Theorem . Note that our results do not need
any information on the differentiability of g .

Remark . We can see that if x(t) is a T-periodic solution of equation (.), then x(t) +
kπ , k ∈ Z, also is a T-periodic solution. In fact, there exists a positive increasing sequence
{ξk = kπ}+∞

k= that satisfies condition (H) of Theorem ..

Furthermore, it is interesting to note that no assumption on the friction coefficient f (x)
is required. So we obtain the following simple result.

Corollary . For any continuous function f (x) and for any p(t) ∈ C̃T , the equation

(
φ
(
x′))′ + f (x)x′ + a sin x = p(t) (.)

has at least one T-periodic solution, provided that aT < π .

Example . For any p(t) ∈ C̃T , b ∈ R, and q > , the problem
(

x′
√

 – x′

)′
+ |x|q+x – b|x|q–x = p(t),

x() – x(T) =  = x′() – x′(T),

has at least one solution. Moreover, if T < |b|/, then the problem has at least three solu-
tions.

In case g(x) does not satisfy (H), also T-periodic solutions of equation (.) can exist.
In the following, we will consider the existence of T-periodic solutions with some other
conditions on g .

Theorem . Assume that g(x) satisfies

g(x) > 
(
respectively, g(x) < 

)
for all x ∈R (.)
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and

lim
x→±∞ g(x) = . (.)

Let

s∗ = max
x∈(–∞,+∞)

g(x), s∗ = min
x∈[–aT ,aT]

g(x)

(
respectively, s† = min

x∈(–∞,+∞)
g(x), s† = max

x∈[–aT ,aT]
g(x)

)
.

For any continuous function f (x) and p(t) ∈ C̃T , there exist two positive constants s∗ < s∗

such that if s /∈ (, s∗] (respectively, s /∈ [s†, )), then equation (.) has no T-periodic solu-
tion, and if s ∈ (, s∗] (respectively, s ∈ [s†, )), then equation (.) has at least two distinct
T-periodic solutions.

Proof We only consider the case of g(x) > , and the other case can be done similarly.
Equation (.) is equivalent to the system

{
x′ = φ–(y – F(x)),
y′ = –g(x) + p(t) + s.

(.)

For any s ∈ (s∗, +∞), using the second equality of (.), we have

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ =

∫ T



[
–g

(
x(τ )

)
+ s

]
dτ > ,

which implies that equation (.) has no T-periodic solution. Moreover, for any s ∈
(–∞, ], we have

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ =

∫ T



[
–g

(
x(τ )

)
+ s

]
dτ < ,

which also implies that equation (.) has no T-periodic solution.
From the limits limx→±∞ g(x) =  we know that for any s ∈ (, s∗], there exists a constant

X >  such that

 < g(x) < s, ∀|x| > X. (.)

Denote

g = max
x∈[,X+aT]

∣
∣g(x)

∣
∣, F = max

x∈[,X+aT]

∣
∣F(x)

∣
∣,

γ = F +
(
g + ‖p‖∞ + s

)
T + .

Consider the rectangle

D =
{

(x, y) ∈R
 : aT ≤ x ≤ X + aT , –γ ≤ y ≤ γ

}
,
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where the boundary is constituted by four segments

V 
– =

{
(x, y) ∈D|x = aT

}
,

V 
+ =

{
(x, y) ∈D|x = X + aT

}
,

V 
– =

{
(x, y) ∈D|y = –γ

}
,

V 
+ =

{
(x, y) ∈D|y = γ

}
.

Let (x(t; x, y), y(t; x, y)) be a solution of (.) with initial value (x, y). Define the con-
tinuous mapping F : R → R

 by F = (F,F) = P – id, where P denotes the Poincaré
mapping associated to system (.).

When (x, y) ∈ V 
–, using the inequality |x′(t)| < a, from the first equality in (.) we

know that

 < x(t) = x +
∫ t


x′(τ ) dτ < aT , ∀t ∈ [, T].

For any s ∈ (, s∗], using the definition of s∗, we know that g(x(t)) ≥ s for all t ∈ [, T]. Then
it follows that

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ

=
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ ≤ . (.)

When (x, y) ∈ V 
+, using the inequality |x′(t)| < a, from the first equality in (.) we know

that

X < x(t) = x +
∫ t


x′(τ ) dτ < X + aT , ∀t ∈ [, T].

For any s ∈ (, s∗], using (.), we know that g(x(t)) ≤ s for all t ∈ [, T]. Then it follows
that

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ

=
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ ≥ . (.)

Therefore, using (.) and (.), we have

F
(
V 

–
)
F

(
V 

+
) ≤ .

On the other hand, when (x, y) ∈ V 
– , using the inequality |x′(t)| < a, from the first

equality in (.) we know that  < x(t) < X + aT for all t ∈ [, T]. For any s ∈ (, s∗],
using the second equality of (.) and the definition of γ , we know that

y(t) = y() +
∫ t



[
–g

(
x(τ )

)
+ p(τ ) + s

]
dτ

≤ –γ +
(
g + ‖p‖∞ + s

)
T = –F – , ∀t ∈ [, T],
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which yields that y(t) – F(x(t)) ≤ –F –  – F(x(t)) <  for all t ∈ [, T] by the definition
of F. Since φ– : R → (–a, a) is a increasing homeomorphism such that φ–() = , we
have x′(t) = φ–(y – F(x)) <  for all t ∈ [, T]. Then it follows that x(T) – x() < . When
(x, y) ∈ V 

+ , we also know that  < x(t) < X + aT for all t ∈ [, T]. For any s ∈ (, s∗], we
have

y(t) = y() +
∫ t



[
–g

(
x(τ )

)
+ p(τ ) + s

]
dτ

≥ γ –
(
g + ‖p‖∞ + s

)
T = F + , ∀t ∈ [, T],

which yields that y(t) – F(x(t)) ≥ F +  – F(x(t)) >  for all t ∈ [, T]. Then it follows that
x(T) – x() > . Therefore, we have

F
(
V 

–
)
F

(
V 

+
) ≤ .

Now we have verified that F satisfies the bend-twist condition on D. By Theorem .
there exists at least one point (x, y) ∈ D such that F (x, y) = , which corresponds to a
fixed point of the Poincaré mapping.

Similarly, we consider the rectangle

D′ =
{

(x, y) ∈R
 : –X – aT ≤ x ≤ –aT , –γ ≤ y ≤ γ

}
.

By the same arguments we can verify that F satisfies the bend-twist condition on ∂D′ and
obtain another fixed point of the Poincaré mapping in D′. Since D and D′ are disjoint, we
obtain two distinct fixed points, which correspond to two distinct T-periodic solutions of
equation (.). �

Similarly, we get the following theorem.

Theorem . Assume that g(x) satisfies

lim
x→±∞ g(x) = +∞

(
respectively, lim

x→±∞ g(x) = –∞
)

.

Let

s∗ = min
x∈(–∞,+∞)

g(x), s∗ = max
x∈[–aT ,aT]

g(x)

(
respectively, s† = max

x∈(–∞,+∞)
g(x), s† = min

x∈[–aT ,aT]
g(x)

)
.

For any continuous function f (x) and p(t) ∈ C̃T , if s ∈ (–∞, s∗) (respectively, (s†, +∞)), then
equation (.) has no T-periodic solution, and if s ∈ [s∗, +∞) (respectively, (–∞, s†]), then
equation (.) has at least distinct two T-periodic solutions.

Proof We only consider the case of limx→±∞ g(x) = +∞, and the other case can be done
similarly. Equation (.) is equivalent to the system

{
x′ = φ–(y – F(x)),
y′ = –g(x) + p(t) + s.

(.)
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For any s ∈ (–∞, s∗), using the second equality of (.), we have

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ

=
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ < ,

which implies that equation (.) has no T-periodic solution.
From the limits limx→±∞ g(x) = +∞ we know that for any s ∈ [s∗, +∞), there exists a

constant X >  such that

g(x) > s, ∀|x| > X. (.)

Denote

g = max
x∈[,X+aT]

∣
∣g(x)

∣
∣, F = max

x∈[,X+aT]

∣
∣F(x)

∣
∣,

γ = F +
(
g + ‖p‖∞ + s

)
T + .

Let us consider the rectangle

D =
{

(x, y) ∈R
 : aT ≤ x ≤ X + aT , –γ ≤ y ≤ γ

}
,

where the boundary is constituted by four segments

V 
– =

{
(x, y) ∈D|x = aT

}
,

V 
+ =

{
(x, y) ∈D|x = X + aT

}
,

V 
– =

{
(x, y) ∈D|y = –γ

}
,

V 
+ =

{
(x, y) ∈D|y = γ

}
.

Let (x(t; x, y), y(t; x, y)) be a solution of (.) with initial value (x, y). Define the con-
tinuous mapping F : R →R

 by F = (F,F) = P – id.
When (x, y) ∈ V 

–, using the inequality |x′(t)| < a, from the first equality in (.) we
know that

 < x(t) = x +
∫ t


x′(τ ) dτ < aT , ∀t ∈ [, T].

For any s ∈ [s∗, +∞), using the definition of s∗, we know that g(x(t)) ≤ s for all t ∈ [, T].
Then it follows that

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ

=
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ ≥ . (.)
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When (x, y) ∈ V 
+, using the inequality |x′(t)| < a, from the first equality in (.) we

know that

X < x(t) = x +
∫ t


x′(τ ) dτ < X + aT , ∀t ∈ [, T].

For any s ∈ [s∗, +∞), using (.), we know that g(x(t)) ≥ s for all t ∈ [, T]. Then it follows
that

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ

=
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ ≤ . (.)

Therefore, using (.) and (.), we have

F
(
V 

–
)
F

(
V 

+
) ≤ .

On the other hand, when (x, y) ∈ V 
– , using the inequality |x′(t)| < a, from the first

equality in (.) we know that  < x(t) < X + aT for all t ∈ [, T]. For any s ∈ [s∗, +∞),
using the second equality of (.) and the definition of γ , we know that

y(t) = y() +
∫ t



[
–g

(
x(τ )

)
+ p(τ ) + s

]
dτ

≤ –γ +
(
g + ‖p‖∞ + s

)
T = –F – , ∀t ∈ [, T],

which yields that y(t) – F(x(t)) ≤ –F –  – F(x(t)) <  for all t ∈ [, T] by the definition
of F. Since φ– : R → (–a, a) is a increasing homeomorphism such that φ–() = , we
have x′(t) = φ–(y – F(x)) <  for all t ∈ [, T]. Then it follows that x(T) – x() < . When
(x, y) ∈ V 

+ , we also know that  < x(t) < X + aT for all t ∈ [, T]. For any s ∈ [s∗, +∞),
we have

y(t) = y() +
∫ t



[
–g

(
x(τ )

)
+ p(τ ) + s

]
dτ

≥ γ –
(
g + ‖p‖∞ + s

)
T = F + , ∀t ∈ [, T],

which yields that y(t) – F(x(t)) ≥ F +  – F(x(t)) >  for all t ∈ [, T]. Then it follows that
x(T) – x() > . Therefore, we have

F
(
V 

–
)
F

(
V 

+
) ≤ .

Now we have verified that F satisfies the bend-twist condition on D. By Theorem .
there exists at least one point (x, y) ∈ D such that F (x, y) = , which is corresponding
to a fixed point of the Poincaré mapping.

Similarly, consider the rectangle

D′ =
{

(x, y) ∈R
 : –X – aT ≤ x ≤ –aT , –γ ≤ y ≤ γ

}
.
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By the same arguments we can verify that F satisfies the bend-twist condition on ∂D′ and
obtain another fixed point of the Poincaré mapping in D′. Since D and D′ are disjoint,
we obtain two distinct fixed points, which are corresponding to two distinct T-periodic
solutions of equation (.). �

Theorem . Assume that g : (–∞, +∞) → (, +∞) is continuous and satisfies

lim
u→–∞ g(u) = +∞, lim

u→+∞ g(u) = 

or

lim
u→–∞ g(u) = , lim

u→+∞ g(u) = +∞.

For any p(t) ∈ C̃T , if s > , then equation (.) has at least one T-periodic solution, and if
s ≤ , then equation (.) has no T-periodic solution.

Proof We only consider the first case; the other case can be considered similarly. Using
the limit limx→–∞ g(x) = +∞, we know that for any s > , there exists a constant X > 
such that

g(x) > s, ∀x < –X.

Similarly, using limx→+∞ g(x) = , we know that for any s > , there exists a constant X ′
 > 

such that

g(x) < s, ∀x > X ′
.

Let γ = F + (g + ‖p‖∞ + s)T + , where

g = max
x∈[–aT–X,X′

+aT]

∣
∣g(x)

∣
∣, F = max

x∈[–aT–X,X′
+aT]

∣
∣F(x)

∣
∣.

Now consider the rectangle

D =
{

(x, y) ∈R
 : –aT – X ≤ x ≤ X ′

 + aT , –γ ≤ y ≤ γ
}

.

By the same arguments as in the proof of Theorem . or Theorem . we can verify that
F (defined in the proof of Theorem .) satisfies the bend-twist condition onD and obtain
a fixed point of the Poincaré mapping, which is corresponding to a T-periodic solution.

If s ≤ , then by integrating from  to T both sides of the second equality of (.) we
have

y(T) – y() =
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ +

∫ T


p(τ ) dτ

=
∫ T



[
–g

(
x(τ )

)
+ s

]
dτ < ,

which implies that equation (.) has no T-periodic solution. �
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Using Theorem ., we have the following example.

Example . Let e(t) ∈ C̃T , b, c, q > , p > . Then the problem

(
x′

√
 – x′

)′
+ c|x|qx′ + b exp

(|x|p–x
)

= e(t) + s,

x() – x(T) =  = x′() – x′(T),

has at least one solution if s >  and has no solution if s ≤ .
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29. Jebelean, P, Mawhin, J, Şerban, C: Multiple periodic solutions for perturbed relativistic pendulum systems. Proc. Am.

Math. Soc. 143(7), 3029-3039 (2015)
30. Rouche, N, Mawhin, JL: Ordinary Differential Equations: Stability and Periodic Solutions. Surveys and Reference Works

in Mathematics, vol. 5. Pitman Advanced Publishing Program, Boston (1980)
31. Mawhin, J: Variations on Poincaré-Miranda’s theorem. Adv. Nonlinear Stud. 13, 209-217 (2013)
32. Ding, T, Iannacci, R, Zanolin, F: Existence and multiplicity results for periodic solutions of semilinear Duffing equations.

J. Differ. Equ. 105(2), 364-409 (1993)
33. Sedziwy, S: On certain results of C. Bereanu and J. Mawhin. Bull. Belg. Math. Soc. Simon Stevin 19(4), 649-653 (2012)


	Existence and multiplicity results for some nonlinear problems with singular phi-Laplacian via a geometric approach
	Abstract
	Keywords

	Introduction
	Bend-twist theorem and some preliminary results
	Three-dimensional systems with singular phi-Laplacian
	The case of Dirichlet boundary condition
	Periodic or Neumann problems with nonlinearities
	Relativistic equations of charged particles in an electromagnetic ﬁeld

	Generalized Liénard differential equations with periodic boundary value condition
	Existence of periodic solutions under a sign condition
	Existence and multiplicity of periodic solutions without sign condition

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


