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Abstract
The coercive properties of degenerate abstract convolution-elliptic equations are
investigated. Here we find sufficient conditions that guarantee the separability of
these problems in Lp spaces. It is established that the corresponding
convolution-elliptic operator is positive and is also a generator of an analytic
semigroup. Finally, these results are applied to obtain the maximal regularity
properties of the Cauchy problem for a degenerate abstract parabolic equation in
mixed Lp norms, boundary value problems for degenerate integro-differential
equations, and infinite systems of degenerate elliptic integro-differential equations.
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1 Introduction, notations, and background
In recent years, maximal regularity properties for differential operator equations, es-
pecially of parabolic and elliptic type, have been studied extensively e.g. in [–] and
the references therein. Moreover, convolution-differential equations (CDEs) have been
treated e.g. in [, –] (for comprehensive references see []). Convolution operators
in Banach-valued spaces were studied e.g. in [–, –]. However, the convolution-
differential operator equations (CDOEs) are a relatively poorly investigated subject. In []
the parabolic type CDEs with bounded operator coefficients were investigated. In [] the
regularity properties of degenerate ordinary CDOEs were studied. The main aim of the
present paper is to study the following degenerate elliptic CDOEs:

∑

|α|≤l

aα ∗ D[α]u + (A + λ) ∗ u = f (x) (.)

and the Cauchy problem for the degenerate parabolic CDOE

∂u
∂t

+
∑

|α|≤l

aα ∗ D[α]u + A ∗ u = f (t, x), u(, x) = ,

in E-valued Lp spaces, where E is a Banach space, A = A(x) is a linear operator in E, aα =
aα(x) are complex-valued functions, α = (α,α, . . . ,αn), λ is a complex number, γ = γ (x)
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is a positive measurable function on � ⊂ Rn, and

D[α] = D[α]
x D[α]

x · · ·D[αn]
xn , D[αi]

xi
=

(
γ (x)

∂

∂xi

)αi

.

Here the convolutions aα ∗D[α]u and A∗u are defined in the distribution sense (see e.g. []).
In applications, particularly the above equations describe the charged particle motion

for certain configurations of oscillating magnetic fields (see e.g. []). Maximal regular-
ity has proven very useful in handling some concrete non-linear evolution equations as
shown by [] and [], which deal with the Navier-Stokes equations of fluid dynamics.
One of the main features of the present work is that the convolution equations are de-
generate on some points of R =(–∞,∞). Moreover, equation (.) has a variable operator
coefficient. Since such a type equations occur in applications, it is important to show the
existence and uniqueness of the solution. In this paper, we establish the separability prop-
erties of the problem (.) and the maximal regularity of Cauchy problem for parabolic
CDOE. Moreover, we prove that the operator generated by problem (.) is positive. The
main tools of this work are the operator-valued Fourier multipliers. Since equation (.)
has unbounded operator coefficients there occurs some difficulty. This fact is derived by
using the representation formula for a solution of the problem (.) and operator-valued
multiplier in Lp,γ (Rn; E).

Let E be a Banach space and γ = γ (x), x = (x, x, . . . , xn) be a positive measurable
weighted function on a measurable subset � ∈ Rn. Let Lp,γ (�; E) denote the space of
strongly E-valued functions that are defined on � with the norm

‖f ‖Lp,γ = ‖f ‖Lp,γ (�;E) =
∫

�

(∥∥f (x)
∥∥p

Eγ (x) dx
)/p,  ≤ p < ∞.

For γ (x) ≡ , the space Lp,γ (�, E) will be denoted by Lp = Lp(�; E).

‖f ‖L∞,p,γ (�;E) = ess sup
x∈�

[
γ (x)

∥∥f (x)
∥∥

E

]
.

The weight γ (x) we will consider to satisfy an Ap condition; i.e., γ (x) ∈ Ap,  < p < ∞, if
there is a positive constant C such that

(


|Q|
∫

Q
γ (x) dx

)(


|Q|
∫

Q
γ

– 
p– (x) dx

)p–

≤ C

for all compacts Q ⊂ Rn.
Let C be the set of complex numbers and

Sϕ =
{
λ;λ ∈C, | argλ| ≤ ϕ

} ∪ {},  ≤ ϕ < π .

Let E and E be two Banach spaces and let B(E, E) denote the spaces of bounded linear
operators acting from E to E. For E = E = E we denote B(E, E) by B(E).

A closed linear operator function A = A(x) is said to be uniformly ϕ-positive in Banach
space E, if D(A(x)) is dense in E and does not depend on x and there is a positive constant
M so that

∥∥(
A(x) + λI

)–∥∥
B(E) ≤ M

(
 + |λ|)–
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for every x ∈ Rn and λ ∈ Sϕ , ϕ ∈ [,π ), where I is an identity operator in E. Sometimes
instead of A + λI we will write A + λ and it will be denoted by Aλ. It is well known [],
Section .., that there exist fractional powers Aθ of the positive operator A.

Let E(Aθ ) denote the space D(Aθ ) with the graphical norm

‖u‖E(Aθ ) =
(‖u‖p +

∥∥Aθ u
∥∥p) 

p ,  ≤ p < ∞, –∞ < θ < ∞.

Let S = S(Rn; E) denote a Schwartz class, i.e. the space of E-valued rapidly decreas-
ing smooth functions on Rn equipped with its usual topology generated by seminorms.
S(Rn;C) is denoted by just S.

Let S′(Rn; E) denote the space of all continuous linear operators, L : S → E, equipped
with the bounded convergence topology. Recall S(Rn; E) is norm dense in Lp,γ (Rn; E) when
 < p < ∞, γ ∈ Ap.

Let � be a domain in Rn. C(�, E) and Cm(�; E) will denote the spaces of E-valued
bounded uniformly strongly continuous and m-times continuously differentiable func-
tions on �, respectively.

Let α = (α,α, . . . ,αn), where αi are integers. An E-valued generalized function Dαf is
called a generalized derivative in the sense of Schwartz distributions of the function f ∈
S(Rn, E), if the equality

〈
Dαf ,ϕ

〉
= (–)|α|〈f , Dαϕ

〉

holds for all ϕ ∈ S.
Let F denote the Fourier transform. Through this section the Fourier transformation of

a function f will be denoted by f̂ , Ff = f̌ , and F–f = f̌ . It is well known that

F
(
Dα

x f
)

= (iξ)α · · · (iξn)αn f̂ , Dα
ξ

(
F(f )

)
= F

[
(–ix)α · · · (–ixn)αn f

]

for all f ∈ S′(Rn; E).
Suppose E and E are two Banach spaces. A function � ∈ L∞(Rn; B(E, E)) is called a

multiplier from Lp,γ (Rn; E) to Lp,γ (Rn; E) for p ∈ (,∞) if the map u → Tu = F–�(ξ )Fu,
u ∈ S(Rn; E) is well defined and extends to a bounded linear operator

T : Lp,γ
(
Rn; E

) → Lp,γ
(
Rn; E

)
.

The space of all Fourier multipliers from Lp,γ (Rn; E) to Lp,γ (Rn; E) will be denoted by
Mp,γ

p,γ (E, E). For E = E = E we denote Mp,γ
p,γ (E, E) by Mp,γ

p,γ (E).
A Banach space E is called a UMD-space [, ] if the Hilbert operator

(Hf )(x) = lim
ε→

∫

|x–y|>ε

f (y)
x – y

dy

is bounded in Lp(R; E), p ∈ (,∞) (see e.g. []). UMD spaces include e.g. Lp, lp spaces and
the Lorentz spaces Lpq, p, q ∈ (,∞).
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A set K ⊂ B(E, E) is called R-bounded (see [, , , ]) if there is a constant C > 
such that, for all T, T, . . . , Tm ∈ K and u, u, . . . , um ∈ E, m ∈ N

∫ 



∥∥∥∥∥

m∑

j=

rj(y)Tjuj

∥∥∥∥∥
E

dy ≤ C
∫ 



∥∥∥∥∥

m∑

j=

rj(y)uj

∥∥∥∥∥
E

dy,

where {rj} is a sequence of independent symmetric {–; }-valued random variables on
[, ] and N denotes the set of natural numbers. The smallest C for which the above esti-
mate holds is called the R-bound of K and is denoted by R(K).

Definition . A Banach space E is said to be a space satisfying the weighted multiplier
condition if for any � ∈ C(n)(Rn\{}; B(E)) the R-boundedness of the set {|ξ ||β|Dβ

ξ �(ξ ) : ξ ∈
Rn\{},β = (β,β, . . . ,βn),βk ∈ {, }} implies that � is a Fourier multiplier in Lp,γ (Rn; E),
i.e., � ∈ Mp,γ

p,γ (E) for any p ∈ (,∞).

Remark . Note that, if E is a UMD space, then by virtue of [, , , ] it satisfies the
multiplier condition.

Definition . A positive operator A(x), x ∈ Rn is said to be uniformly R-positive in a
Banach space E if there exists a ϕ = ϕA ∈ [,π ) such that the set LA = {ξ (A + ξ )– : ξ ∈ Sϕ}
is uniformly R-bounded, i.e.

sup
x∈Rn

R
({[

A(x)
(
A(x) + ξ I

)–] : ξ ∈ Sϕ

}) ≤ M.

Note that in Hilbert spaces every norm bounded set is R-bounded. Therefore, in Hilbert
spaces all positive operators are R-positive.

Let h ∈R, m ∈N, and ek , k = , , . . . , n, be standard unit vectors of Rn. Let

�k(h)f (x) = f (x + hek) – f (x).

Let A = A(x), x ∈ Rn be closed linear operator in E with domain D(A) independent of x.
The Fourier transformation of A(x) is a linear operator with the domain D(A) defined as

Âu(ϕ) = Au(ϕ̂) for u ∈ S′(Rn; E(A)
)
,ϕ ∈ S

(
Rn).

(For details see [].)
A(x) is differentiable if we have the limit

(
∂A
∂xk

)
u = lim

h→

�k(h)A(x)u
h

, k = , , . . . n, u ∈ D(A),

in the sense of the E-norm.
Let E and E be two Banach spaces, where E is continuously and densely embeds into E.

Let l be a integer number. W l
p,γ (Rn; E, E) denotes the space of all functions from S′(Rn; E)

such that u ∈ Lp,γ (Rn; E) and the generalized derivatives Dl
ku = ∂ lu

∂xl
k

∈ Lp,γ (Rn; E) with the
norm

‖u‖W l
p,γ (Rn ;E,E) = ‖u‖Lp,γ (Rn ;E) +

n∑

k=

∥∥Dl
ku

∥∥
Lp,γ (Rn ;E) < ∞.
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It is clear that

W l
p,γ

(
Rn; E, E

)
= W l

p,γ
(
Rn; E

) ∩ Lp,γ
(
Rn; E

)
.

Consider the problem

∑

|α|≤l

aα ∗ Dαu + (A + λ) ∗ u = f (x), (.)

where A = A(x) is a linear operator in E, aα = aα(x) are complex-valued functions, α =
(α,α, . . . ,αn), λ is a complex parameter.

A function u ∈ W l
p,γ (Rn; E(A), E) satisfying equation (.) a.e. on Rn is called the solution

of equation (.).
The elliptic CDOE (.) is said to be uniform separable in Lp,γ (Rn; E) if equation (.) has

a unique solution u for f ∈ Lp,γ (Rn; E)and the following coercive estimate holds:

∑

|α|≤l

∥∥aα ∗ Dαu
∥∥

Lp,γ (Rn ;E) + ‖A ∗ u‖Lp,γ (Rn ;E) ≤ C‖f ‖Lp,γ (Rn ;E),

where the positive constant C is independent of f .
In a similar way to [], Theorem A, we obtain the following.

Proposition A Let E be a UMD space and γ ∈ Ap. Assume �h is a set of operator func-
tions from Cn(Rn\{}; B(E)) depending on the parameter h ∈ Q ∈ R and there is a positive
constant K such that

sup
h∈Q

R
({|ξ ||β|Dβ�h(ξ ) : ξ ∈ Rn\{},βk ∈ {, }}) ≤ K .

Then the set �h is a uniformly bounded collection of Fourier multipliers in Lp,γ (Rn; E).
Let E and E be two Banach spaces. Suppose T ∈ B(E, E) and  ≤ p < ∞. T̃ ∈

B(Lp(Rn; E), Lp(Rn; E)) will denote the operator (T̃ f )(x) = T(f (x)) for f ∈ Lp(Rn; E) and
x ∈ Rn.

From [] we have the following.

Proposition A Let  ≤ p < ∞. If W ⊂ B(E, E) is R-bounded, then the collection W̃ =
{T̃ : T ∈ W } ⊂ B(Lp(Rn; E), Lp(Rn; E)) is also R-bounded.

2 Elliptic CDOE
Condition . Assume Â(ξ ) is a uniformly positive operator in E and aα ∈ L∞(Rn) such
that

L(ξ ) =
∑

|α|≤l

âα(ξ )(iξ )α ∈ Sϕ ,
∣∣L(ξ )

∣∣ ≥ C
n∑

k=

|âk||ξk|l,

for

k = k(α) = (α,α, . . . ,αn), αk = l,αi = , i �= k,
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ϕ ∈ [,π ), ξ = (ξ, ξ, . . . , ξn) ∈ Rn,

where ak denote the coefficients of ξ l
k in the polynomial L(ξ ). Consider

σ(ξ ,λ) = λD(ξ ,λ), σ(ξ ,λ) = Â(ξ )D(ξ ,λ),

σ(ξ ,λ) =
∑

|α|≤l

|λ|– |α|
l aα(ξ )(iξ )αD(ξ ,λ),

where

D(ξ ,λ) =
[
Â(ξ ) + L(ξ ) + λ

]–.

Lemma . Assume the Condition . holds and λ ∈ Sϕ with ϕ ∈ [,π ), where ϕA + ϕ +
ϕ < π , then the operator functions σi(ξ ,λ) are uniformly bounded, i.e.,

∥∥σi(ξ ,λ)
∥∥

B(E) ≤ C, i = , , .

Proof By virtue of [], Lemma ., for L(ξ ) ∈ Sϕ , λ ∈ Sϕ , and ϕ +ϕ < π , there is a positive
constant C such that

∣∣λ + L(ξ )
∣∣ ≥ C

(|λ| +
∣∣L(ξ )

∣∣). (.)

Since L(ξ ) ∈ Sϕ , in view of (.) and the resolvent properties of positive operators, we see
that Â(ξ ) + L(ξ ) + λ is invertible and

 + M
∣∣λ + L(ξ )

∣∣( +
∣∣λ + L(ξ )

∣∣)– ≤ M.

Next, let us consider σ. It is clear that

∥∥σ(ξ ,λ)
∥∥

B(E) ≤ C
∑

|α|≤l

|λ|
n∏

k=

[|ξ ||λ|– 
l
]αk

∥∥D(ξ ,λ)
∥∥

B(E). (.)

Since A is uniformly positive and L(ξ ) ∈ Sϕ , setting yk = (|λ|– 
l |ξk|)αk in the following well-

known inequality:

yα
 yα

 · · · yαn
n ≤ C

(
 +

n∑

k=

yl
k

)
, yk ≥ , |α| ≤ l, (.)

we obtain

∥∥σ(ξ ,λ)
∥∥

B(E) ≤ C
∑

|α|≤l

|λ|
[

 +
n∑

k=

|ξk|l|λ|–

]
∣∣λ + L(ξ )

∣∣–.

Taking into account the Condition . and (.)-(.) we get

∥∥σ(ξ ,λ)
∥∥

B(E) ≤ C

(
|λ| +

n∑

k=

|ξk|l
)

(|λ| +
∣∣L(ξ )

∣∣)– ≤ C. �
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Lemma . Assume the Condition . holds. Suppose âα ∈ C(n)(Rn), [DβÂ(ξ )]Â–(ξ) ∈
C(Rn; B(E)) and

|ξ ||β|∣∣Dβaα(ξ )
∣∣ ≤ C, βk ∈ {, }, ξ ∈ Rn\{},  ≤ |β| ≤ n, (.)

∥∥|ξ ||β|[DβÂ(ξ )
]
Â–(ξ)

∥∥
B(E) ≤ C, βk ∈ {, }, ξ , ξ ∈ Rn\{}. (.)

Then the operator functions |ξ ||β|Dβσi(ξ ,λ), i = , , , are uniformly bounded.

Proof Let us first prove that ξk
∂σ
∂ξk

is uniformly bounded. In fact,

∥∥∥∥ξk
∂σ

∂ξk

∥∥∥∥
B(E)

≤ ‖I‖B(E) + ‖I‖B(E) + ‖I‖B(E),

where

I =
[
ξk

∂Â(ξ )
∂ξk

]
D(ξ ,λ), I = Â(ξ )

[
ξk

∂Â(ξ )
∂ξk

]
D(ξ ,λ)

and

I = Â(ξ )
[
ξk

∂L(ξ )
∂ξk

]
D(ξ ,λ).

By using (.) and (.) we get

‖I‖B(E) ≤
∥∥∥∥

[
ξk

∂Â(ξ )
∂ξk

]
Â–(ξ)

∥∥∥∥
B(E)

‖σ‖B(E) ≤ C.

Due to the positivity of Â, by using (.) and (.) we obtain

‖I‖B(E) ≤
∥∥∥∥

[
ξk

∂Â(ξ )
∂ξk

]
Â–(ξ)

∥∥∥∥
B(E)

‖σ‖
B(E) ≤ C.

Since Â(ξ ) is uniformly positive, by using (.), (.), and (.) for λ ∈ S(ϕ) and ϕ +ϕ <
π we get

‖I‖B(E) ≤
∣∣∣∣ξk

∂L
∂ξk

∣∣∣∣
∥∥D(ξ ,λ)

∥∥
B(E)

∥∥σ(ξ ,λ)
∥∥

B(E) ≤ C.

In a similar way, the uniform boundedness of σ(ξ ,λ) is proved. Next we shall prove ξk
∂σ
∂ξk

is uniformly bounded. Similarly,

∥∥∥∥ξk
∂σ

∂ξk

∥∥∥∥
B(E)

≤ ‖J‖B(E) + ‖J‖B(E),

where

J =
∑

|α|≤l

|λ|– |α|
l

(
ξk

∂aα

∂ξk

)[
(iξ )α + aα(ξ )iαk(iξ )α

]
D(ξ ,λ),
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J =
∑

|α|≤l

|λ|– |α|
l aα(ξ )(iξ )α

[
ξk

∂aα

∂ξk
+ aα(ξ )(iξ )α + ξk

∂Â(ξ )
∂ξk

]
D(ξ ,λ).

First of all, we show J is uniformly bounded. Since

‖J‖B(E) ≤
∑

|α|≤l

∣∣∣∣ξk
∂aα

∂ξk

∣∣∣∣
∥∥ξα|λ|– |α|

l D(ξ ,λ)
∥∥

B(E)

due to positivity of Â, by virtue of (.) and (.)-(.) we obtain ‖J‖B(E) ≤ C. In a sim-
ilar way we have ‖J‖B(E) ≤ C. Hence, the operator functions ξk

∂σi
∂ξk

, i = , ,  are uni-
formly bounded. From the representations of σi(ξ ,λ) it easy to see that operator functions
|ξ |βD|β|σi(ξ ,λ) contain similar terms to Ik ; namely, the functions |ξ ||β|Dβσi(ξ ,λ) will be
represented as combinations of principal terms

ξμ
[
Dν

ξ Â(ξ ) + Dν
ξ aα(ξ )

][
D(ξ ,λ)

]|β|,
∑

|α|≤l

|λ|– |α|
l ξμDν

ξ

[
Â(ξ ) + aα(ξ )

][
D(ξ ,λ)

]|β|, (.)

where μ, ν are n-dimensional integers vectors and |μ| + |ν| ≤ |β|. Therefore, by using
similar arguments to the above and in view of (.) one can easily check that

|ξ ||β|∥∥Dβσi(ξ ,λ)
∥∥

B(E) ≤ C, i = , , .

From [] we obtain the following. �

Lemma . Let all conditions of Lemma . hold. Suppose E is a Banach space satisfying
the uniform multiplier condition. Then the sets

S(ξ ,λ) =
{|ξ ||β|Dβ

ξ σ(ξ ,λ); ξ ∈ Rn\{}},

S(ξ ,λ) =
{|ξ ||β|Dβ

ξ σ(ξ ,λ); ξ ∈ Rn\{}},

S(ξ ,λ) =
{|ξ ||β|Dβ

ξ σ(ξ ,λ); ξ ∈ Rn\{}}

are uniformly R-bounded for βk ∈ {, } and  ≤ |β| ≤ n.

Result . Suppose all conditions of the Lemma . are satisfied, E is a UMD space. Then
the sets Si(ξ ,λ), i = , , , are uniformly R-bounded.

Now we are ready to present our main results. We find sufficient conditions that guar-
antee the separability of problem (.).

Condition . Suppose the following are satisfied:
()

L(ξ ) =
∑

|α|≤l

âα(ξ )(iξ )α ∈ Sϕ , ϕ ∈ [,π ),
∣∣L(ξ )

∣∣ ≥ C
n∑

k=

|âk||ξk|l, ξ ∈ Rn;
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() âα ∈ C(n)(Rn) and

|ξ ||β|∣∣Dβ âα(ξ )
∣∣ ≤ C, βk ∈ {, },  ≤ |β| ≤ n;

() for  ≤ |β| ≤ n,

[
DβÂ(ξ )

]
Â–(ξ) ∈ C

(
Rn; B(E)

)
, |ξ ||β|∥∥[

DβÂ(ξ )
]
Â–(ξ)

∥∥
B(E) ≤ C,

ξ , ξ ∈ Rn\{}.

Let

X = Lp,γ
(
Rn; E

)
, Y = W l

p,γ
(
Rn; E(A), E

)
, p ∈ (,∞).

Theorem . Suppose the Condition . holds. Assume E is a Banach space satisfying
the weighted multiplier condition. Let Â be a uniformly R-positive in E and λ ∈ Sϕ with
 ≤ ϕA + ϕ + ϕ < π . Then the problem (.) has a unique solution u and the coercive
uniform estimate holds

∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ Dαu

∥∥
X + ‖A ∗ u‖X + |λ|‖u‖X ≤ C‖f ‖X (.)

for all f ∈ X and λ ∈ Sϕ .

Proof By applying the Fourier transform to equation (.) we get

û(ξ ) = D(ξ ,λ)f̂ (ξ ), D(ξ ,λ) =
[
Â(ξ ) + L(ξ ) + λ

]–, L(ξ ) =
∑

|α|≤l

âα(ξ )(iξ )α .

Hence, the solution of (.) can be represented as u(x) = F–D(ξ ,λ)f̂ and there are posi-
tive constants C and C so that

C|λ|‖u‖X ≤ ∥∥F–[σ(ξ ,λ)f̂
]∥∥

X ≤ C|λ|‖u‖X ,

C‖A ∗ u‖X ≤ ∥∥F–[σ(ξ ,λ)f̂
]∥∥

X ≤ C‖A ∗ u‖X ,

C
∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ Dαu

∥∥
X

≤ ∥∥F–[σ(ξ ,λ)f̂
]∥∥

X ≤ C
∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ Dαu

∥∥
X , (.)

where σi(ξ ,λ) are operator functions defined in Lemma .. Therefore, it is sufficient to
show that the operator functions σi(ξ ,λ) are multipliers in X. However, this follows from
Lemma .. Thus, from (.) we obtain

|λ|‖u‖X ≤ C‖f ‖X , ‖A ∗ u‖X ≤ C‖f ‖X ,
∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ Dαu

∥∥
X ≤ C‖f ‖X

for all f ∈ X. Hence, we get the assertion.
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Let O be an operator in X generated by problem (.) for λ = , i.e.

D(O) ⊂ Y , Ou =
∑

|α|≤l

aα ∗ Dα + A ∗ u.
�

Result . Theorem . implies that the operator O is separable in X, i.e. for all f ∈ X
there is a unique solution u ∈ Y of the problem (.), all terms of equation (.) also are
from X and there are positive constants C and C so that

C‖Ou‖X ≤
∑

|α|≤l

∥∥aα ∗ Dαu
∥∥

X + ‖A ∗ u‖X ≤ C‖Ou‖X .

Condition . Let D(A(x)) = D(Â(ξ )), D(Â(ξ )) is dense in E and does not depend on ξ ;
A(x) is uniformly positive in E. Moreover, there are positive constants C and C so that,
for u ∈ D(A), x ∈ Rn,

C
∥∥Â(ξ)u

∥∥ ≤ ∥∥A(x)u
∥∥ ≤ C

∥∥Â(ξ)u
∥∥.

Remark . The Condition . is checked for the regular elliptic operators with smooth
coefficients on sufficiently smooth domains � ⊂ Rm considered in the Banach space E =
Lp (�), p ∈ (,∞) (see Theorem .).

Theorem . Assume all conditions of Theorem . and Condition . are satisfied. Then
for f ∈ X and λ ∈ S(ϕ) problem (.) has a unique solution u ∈ Y and the coercive uniform
estimate holds,

∑

|α|≤l

|λ|– |α|
l
∥∥Dαu

∥∥
X + ‖Au‖X ≤ C‖f ‖X .

Proof By applying the Fourier transform to equation (.) we obtain D(ξ ,λ)û(ξ ) = f̂ (ξ ),
where

D(ξ ,λ) =
[
Â(ξ ) + L(ξ ) + λ

]–.

So, we see that the solution of equation (.) can be represented as u(x) = F–D(ξ ,λ)f̂ .
Moreover, by the Condition . we have

∥∥AF–D(ξ ,λ)f̂
∥∥

X ≤ M
∥∥Â(ξ)F–D(ξ ,λ)f̂

∥∥
X .

Hence, by using the estimates (.) it is sufficient to show that the operator functions∑
|α|≤l |λ|– |α|

l ξαD(ξ ,λ) and Â(ξ)D(ξ ,λ) are multipliers in X. In fact, in view of () part
of Condition . and R-positivity of Â these are proved by reasoning as in Lemma ..

�

Condition . Let the Condition . hold and let there be positive constants C and C

such that

C

n∑

k=

|âk||ξk|l ≤ ∣∣L(ξ )
∣∣ ≤ C

n∑

k=

|âk||ξk|l, ξ ∈ Rn,
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and

Â(ξ )A–(x) ∈ L∞
(
Rn; B(E)

)
, ξ , x ∈ Rn,

C
∥∥A(x)u

∥∥ ≤ ∥∥A(x)u
∥∥ ≤ C

∥∥A(x)u
∥∥, u ∈ D(A), x ∈ Rn.

Theorem . Assume all conditions of Theorem . and Condition . are satisfied. Then
for u ∈ Y there are positive constants M and M so that

M‖u‖Y ≤
∑

|α|≤l

∥∥aα ∗ Dαu
∥∥

X + ‖A ∗ u‖X ≤ M‖u‖Y .

Proof The left part of the above inequality is derived from Theorem .. So, it remains to
prove the right side of the estimate. In fact, from Condition . for u ∈ Y we have

‖A ∗ u‖X ≤ M
∥∥F–Âû

∥∥
X ≤ C

∥∥F–ÂA–(x)A(x)û
∥∥

X

≤ C
∥∥F–A(x)û

∥∥
X ≤ C‖Au‖X .

Hence, applying the Fourier transform to equation (.) and by a reasoning as in The-
orem ., it is sufficient to prove that the function

∑
|α|≤l âαξα(

∑n
k= ξ

lk
k )– is a uniform

multiplier in X. In fact, by using the Condition . and the proof of Lemma . we get the
desired result. Consider the following example. �

Example  Let m = , n = , E = C, aα = a(x, y), A = b(x, y) such that â(ξ ) and b̂(ξ ) are
positive real-valued functions for all ξ ∈ R satisfying the Condition .. Consider the
equation

[
–a ∗ ∂u

∂x – a ∗ ∂u
∂x ∂y

– a ∗ ∂u
∂y

]
+ b ∗ u = f (x, y).

It is clear that the above equation satisfies all conditions of Theorem ., i.e. the above
problem is Lp(R) separable.

Result . Theorems . implies that for all u ∈ Y there are positive constants C and C

so that

C‖u‖Y ≤ ‖Ou‖X ≤ C‖u‖Y .

From Theorem . we have the following.

Result . Assume all conditions of Theorem . hold. Then, for all λ ∈ Sϕ , the resolvent
of operator O exists and the following sharp estimate holds:

∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ Dα(O + λ)–∥∥

B(X) +
∥∥A ∗ (O + λ)–∥∥

B(X)

+
∥∥λ(O + λ)–∥∥

B(X) ≤ C.



Musaev and Shakhmurov Boundary Value Problems  (2016) 2016:50 Page 12 of 19

Result . Theorem . particularly implies that the operator O is uniformly sectorial
in X; i.e. if Â is uniformly R-positive for ϕ ∈ ( π

 ,π ) then (see e.g. [], Section ..) the
operator O + a is a generator of an analytic semigroup in X.

From Theorems .-. and Proposition A we obtain the following.

Result . Let conditions of Theorems .-. hold for Banach spaces E ∈ UMD, respec-
tively. Then assertions of Theorems .-. are valid.

3 The Cauchy problem for parabolic CDOE
In this section, we shall consider the following Cauchy problem for the convolution
parabolic equation:

∂u
∂t

+
∑

|α|≤l

aα ∗ Dαu + A ∗ u = f (t, x), u(, x) = , (.)

where A = A(x) is a possibly unbounded operator in a Banach space E, aα = aα(x) are
complex-valued functions. For Rn+

+ , p = (p, p), Z = Lp,γ (Rn+
+ ; E) will denote the space

of all p-summable E-valued functions with mixed norm (see e.g. [], Section , for the
complex-valued case), i.e., the space of all measurable E-valued functions f defined on
Rn+

+ , for which

‖f ‖Z =
(∫

Rn

(∫

R+

∥∥f (x, t)
∥∥p

Eγ (x) dx
) p

p
dt

) 
p

< ∞.

Let E and E be two Banach spaces, where E continuously and densely embeds into E.
Suppose l is an integer and W ,l

p,γ (Rn+
+ ; E, E) denotes the space of all functions u ∈ Y such

that we have the generalized derivatives Dtu, Dl
ku ∈ Z, with the norm

‖u‖W ,l
p,γ (Rn+

+ ;E,E) = ‖u‖Z + ‖Dyu‖Z +
n∑

k=

∥∥Dl
ku

∥∥
Z .

Applying Theorem . we establish the maximal regularity of the problem (.) in the
mixed norm Z. To this aim we need the following result.

Theorem . Suppose the Condition . holds, E is a Banach space that satisfies the uni-
form multiplier condition, and the operator Â(ξ ) is uniformly R-positive in E. Then the
operator O is uniformly R-positive in X .

Proof Result . implies that the operator O is positive in X. We have to prove the R-
boundedness of the set

σ (ξ ,λ) =
{
λ(O + λ)– : λ ∈ Sϕ

}
.

From the proof of Theorem . we have

λ(O + λ)–f = F–�(ξ ,λ)f̂ , f ∈ X,
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where

�(ξ ,λ) = λ
[
Â(ξ ) + L(ξ ) + λ

]–.

By definition of R-boundedness, it is enough to show that the operator function �(ξ ,λ)
(dependent on the variable λ and the parameter ξ ) is a multiplier in X. In a similar manner
to Lemma . one can easily show that �(ξ ,λ) is a multiplier in X. Then by the definition
of R-boundedness we have

∫ 



∥∥∥∥∥

m∑

j=

rj(y)λj(O + λj)–fj

∥∥∥∥∥
X

dy

=
∫ 



∥∥∥∥∥

m∑

j=

rj(y)F–�(ξ ,λj)f̂j

∥∥∥∥∥
X

dy

=
∫ 



∥∥∥∥∥F–
m∑

j=

rj(y)�(ξ ,λj)f̂j

∥∥∥∥∥
X

dy ≤ C
∫ 



∥∥∥∥∥

m∑

j=

rj(y)fj

∥∥∥∥∥
X

dy

for all ξ, ξ, . . . , ξm ∈ Rn, λ,λ, . . . ,λm ∈ Sϕ , f, f, . . . , fm ∈ X, m ∈ N, where {rj} is a sequence
of independent symmetric {–, }-valued random variables on [, ]. Hence, the set σ (ξ ,λ)
is uniformly R-bounded. �

From Theorem . and Proposition A we obtain the following.

Result . Let conditions of Theorem . hold for the Banach spaces E ∈ UMD. Then the
assertion of Theorem . is valid.

Now we are ready to state the main result of this section.

Theorem . Assume the Condition . holds for ϕ ∈ ( π
 ,π ), E ∈ UMD, and the operator

Â(ξ ) is uniformly R-positive in E. Then for all f ∈ Z equation (.) has a unique solution
u ∈ W ,l

p (Rn+
+ ; E(A), E) satisfying

∥∥∥∥
∂u
∂t

∥∥∥∥
Z

+
∑

|α|≤l

∥∥aα ∗ Dαu
∥∥

Z + ‖A ∗ u‖Z ≤ C‖f ‖Z . (.)

Proof It is clear that

Z = Lp (R+; X), W ,l
p,γ

(
Rn+

+ ; E(A), E
)

= W 
p

(
R+; D(O), X

)
.

Therefore, the problem (.) can be expressed as

du
dt

+ Ou(t) = f (t), u() = , t ∈ R+. (.)

By virtue of [], Theorem .., X ∈ UMD provided E ∈ UMD, p ∈ (,∞). Then due to
R-positivity of O with ϕ ∈ ( π

 ,π ), by virtue of [], Proposition ., we see that for f ∈
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Lp (R+; X) equation (.) has a unique solution u ∈ W 
p (R+; D(O), X) satisfying

∥∥∥∥
du
dt

∥∥∥∥
Lp (R+;X)

+ ‖Ou‖Lp (R+;X) ≤ C‖f ‖Lp (R+;X).

In view of Results ., ., from the above estimate we get (.). �

4 Degenerate convolution-elliptic equations
Consider the problem (.). Let

X̃ = Lp
(
Rn; E

)
, Ỹ = W [l]

p,γ
(
Rn; E(A), E

)
, p ∈ (,∞).

We show in this section the following result.

Theorem . Suppose the Condition . holds. Then for all f ∈ X̃ there is a unique solution
of the problem (.) and the following coercive uniform estimate holds:

∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ D[α]u

∥∥
X̃ + ‖A ∗ u‖X̃ + |λ|‖u‖X̃ ≤ C‖f ‖X̃ . (.)

Proof Let us make the following substitution:

yk =
∫ xk


γ –(z) dz, k = , , . . . , n. (.)

It is clear that under the substitution (.), D[α]u transforms to Dαu. Moreover, the
spaces X̃ and Ỹ are mapped isomorphically onto the weighted spaces Lp,γ̃ (Rn; E) and
W l

p,γ̃ (Rn; E(A), E), respectively, where

γ = γ̃ (y) = γ
(
x(y)

)
= γ

(
x(y), x(y), . . . , xn(yn)

)
.

Moreover, under the substitution (.) the degenerate problem (.) is transformed into
the following non-degenerate problem:

∑

|α|≤l

aα ∗ Dαu + (A + λ) ∗ u = f , (.)

considered in the weighted space Lp,γ̃ (Rn; E) where

aα = aα

(
γ̃ (y)

)
, u = ũ(y) = u

(
γ̃ (y)

)
, A = Ã(y) = A

(
γ̃ (y)

)
, f = f̃ (y) = f

(
γ̃ (y)

)
.

Then in view of Theorem . we obtain the assertion. �

Now, we consider the Cauchy problem the degenerate parabolic convolution equation

∂u
∂t

+
∑

|α|≤l

aα ∗ D[α]u + A ∗ u = f (t, x), (.)

u(, x) = , t ∈R+, x ∈ Rn.

By using the map (.) we derive from Theorem . the following result.
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Theorem . Assume the Condition . holds, for π
 < ϕ < π , then problem (.) for all

f ∈ Lp(Rn+
+ ; E) (p = (p, p)) has a unique solution u(t, x) and the following estimate holds:

∥∥∥∥
∂u
∂t

∥∥∥∥
Lp(Rn+

+ ;E)
+

∑

|α|≤l

∥∥aα ∗ D[α]u
∥∥

Lp(Rn+
+ ;E) + ‖A ∗ u‖Lp(Rn+

+ ;E) ≤ C‖f ‖Lp(Rn+
+ ;E).

Result . If we take |α| = , n = , then we see from Theorem . that the Cauchy prob-
lem

∂u
∂t

+ a ∗ ∂ []u
∂x


+ a ∗ ∂ []u

∂x ∂x
+ a ∗ ∂ []u

∂x


+ A ∗ u = f (t, x), u(, x) = , (.)

has a unique solution satisfying the coercive estimate

∥∥∥∥
∂u
∂t

∥∥∥∥
Lp(R

+;E)
+

∑

i,j=

∥∥∥∥aij ∗ ∂ []u
∂x[]

i ∂x[]
j

∥∥∥∥
Lp(R

+;E)
+ ‖A ∗ u‖Lp(R

+;E) ≤ C‖f ‖Lp(R
+;E)

for all f ∈ LP(R
+; E).

5 Boundary value problems for integro-differential equations
In this section by applying Theorem ., the BVP for the anisotropic type convolution
equations is studied. The maximal regularity properties of this problem in weighted mixed
Lp,γ norms are derived. In this direction we can mention e.g. [, ], and [].

Let �̃ = Rn × �, where � ⊂ Rμ is an open connected set with compact Cm-boundary
∂�. Consider the BVP for integro-differential equation

(L + λ)u =
∑

|α|≤l

aα ∗ Dαu +
∑

|α|≤m

(
bαηαDα

y + λ
) ∗ u = f (x, y), x ∈ Rn, y ∈ �, (.)

Bju =
∑

|β|≤mj

bjβ (y)Dβ
y u(x, y) = , y ∈ ∂�, j = , , . . . , m, (.)

where

Dj = –i
∂

∂yj
, y = (y, . . . , yμ), bα = bα(x), ηα = ηα(y),

aα = aα(x), α = (α,α, . . . ,αn), aα = aα(x), u = u(x, y).

In general, l �= m so, equation (.) is anisotropic. For l = m we get an isotropic equation.
Let �̃ = Rn ×�, p = (p, p), and γ (x) = |x|α , Lp,γ (�̃) will denote the space of all p-summable
scalar-valued functions with mixed norm (see e.g. [], Section ), i.e. the space of all
measurable functions f defined on �̃, for which

‖f ‖Lp,γ (�̃) =
(∫

Rn

(∫

�

∣∣f (x, y)
∣∣p

γ (x) dx
) p

p
dy

) 
p

< ∞.

Analogously, W l
p,γ (�̃) denotes the weighted Sobolev space with corresponding mixed

norm [], Section . Let Q denote the operator generated by problem (.)-(.). In this
section we present the following result.
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Theorem . Let the following conditions be satisfied:
() ηα ∈ C(�̄) for each |α| = m and ηα ∈ L∞(�) + Lrk (�) for each |α| = k < m with

rk ≥ p, p ∈ (,∞), and m – k > l
rk

, να ∈ L∞, – < α < p – , k = , , . . . , n;
() bjβ ∈ Cm–mj (∂�) for each j,β , mj < m, p ∈ (,∞), λ ∈ Sϕ , ϕ ∈ [,π );
() for y ∈ �̄, ξ ∈ Rμ, σ ∈ Sϕ , ϕ ∈ (, π

 ), |ξ | + |σ | �=  let σ +
∑

|α|=m ηα(y)ξα �= ;
() for each y ∈ ∂� local BVP in local coordinates corresponding to y

σ +
∑

|α|=m

ηα(y)Dαϑ(y) = ,

Bjϑ =
∑

|β|=mj

bjβ (y)Dβϑ(y) = hj, j = , , . . . , m,

has a unique solution ϑ ∈ C(R+) for all h = (h, h, . . . , hm) ∈ Rm and for ξ ′ ∈ Rμ– with
|ξ ′| + |λ| �= ;

() the () part of Condition . is satisfied, âα , b̂α ∈ C(n)(Rn) and there are positive con-
stants Ci, i = , , so that

|ξ ||β|∣∣Dβ âα(ξ )
∣∣ ≤ C, |ξ ||β|∣∣Dβ b̂α(ξ )

∣∣ ≤ C
∣∣b̂α(ξ )

∣∣,

ξ ∈ Rn\{},βk ∈ {, },  ≤ |β| ≤ n.

Then for f ∈ Lp,γ (�̃) and λ ∈ Sϕ problem (.)-(.) has a unique solution u ∈ W l
p,γ (�̃) and

the following coercive uniform estimate holds:

∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ Dαu

∥∥
Lp,γ (�̃) +

∥∥|λ|u∥∥
Lp,γ (�̃)

+
∑

|α|≤m

∥∥bαηαDα ∗ u
∥∥

Lp,γ (�̃) ≤ C‖f ‖Lp,γ (�̃).

Proof Let E = Lp (�). It is well known [] that Lp (�) is a UMD space for p ∈ (,∞).
Consider the operator A in Lp (�) defined by

D(A) = W m
p (�; Bju = ), A(x)u =

∑

|α|≤m

bα(x)ηα(y)Dαu(y). (.)

Therefore, the problem (.)-(.) can be rewritten in the form of (.), where u(x) =
u(x, ·), f (x) = f (x, ·) are functions with values in E = Lp (�). It is easy to see that Â(ξ ) and
DβÂ(ξ ) are operators in Lp (�) defined by

D(Â) = D
(
DβÂ

)
= W m

p (�; Bju = ), Â(ξ )u =
∑

|α|≤m

b̂α(ξ )ηα(y)Dαu(y),

Dβ

ξ Â(ξ )u =
∑

|α|≤m

Dβ

ξ b̂α(ξ )ηα(y)Dαu(y).

By virtue of [], Theorem ., we have

∥∥(Â + μ)u
∥∥

Lp (�) ≤ C‖u‖W m
p (�) ≤ C

∥∥(Â + μ)u
∥∥

Lp (�),
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∥∥(
DβÂ + μ

)
u
∥∥

Lp (�) ≤ C‖u‖W m
p (�) ≤ C

∥∥(
DβÂ + μ

)
u
∥∥

Lp (�).

Moreover, by using condition (), for u ∈ W m
p (�) we have

|ξ ||β|∥∥(
Dβ

ξ Â + μ
)
u
∥∥

Lp (�) ≤ C
∥∥(Â + μ)u

∥∥
Lp (�).

Moreover, by [] we see that the space Lp (�) satisfies the multiplier condition. Then
all conditions of Theorem . hold and we obtain the assertion. �

6 Infinite system of IDEs
Consider the following infinite system of convolution equations:

∑

|α|≤l

aα ∗ Dαum +
∞∑

j=

(dj + λ) ∗ uj(x) = fm(x), x ∈ Rn, m = , , . . . . (.)

Condition . Let – < α < p – , k = , , . . . , n. There are positive constants C and C so
that, for {dj(x)}∞ ∈ lq, for all x ∈ Rn and some x ∈ Rn,

C
∣∣dj(x)

∣∣ ≤ ∣∣dj(x)
∣∣ ≤ C

∣∣dj(x)
∣∣.

Suppose âα , d̂m ∈ C(n)(Rn) and there are positive constants Mi, i = , , so that

|ξ ||β|∣∣Dβ âα(ξ )
∣∣ ≤ M, |ξ ||β|∣∣Dβ d̂m(ξ )

∣∣ ≤ M
∣∣d̂m(ξ )

∣∣,

ξ ∈ Rn\{},βk ∈ {, },  ≤ |β| ≤ n.

Let

D(x) =
{

dm(x)
}

, dm > , u = {um}, D ∗ u = {dm ∗ um},

lq(D) =

{
u ∈ lq,‖u‖lq(D) =

( ∞∑

m=

∣∣dm(x) ∗ um
∣∣q

) 
q

< ∞
}

,  < q < ∞.

Here γ (x) = |x|α . Let Q be a differential operator in Lp,γ (Rn; lq) generated by problem (.)
and

B = B
(
Lp,γ

(
Rn; lq

))
.

Applying Theorem . we have the following.

Theorem . Suppose Condition .() and Condition . are satisfied. Then:
(a) for all f (x) = {fm(x)}∞ ∈ Lp,γ (Rn; lq(D)), for λ ∈ Sϕ , ϕ ∈ [,π ) problem (.) a unique

solution u = {um(x)}∞ that belongs to W l
p,γ (Rn; lq(D), lq) and the coercive uniform estimate

holds,

∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ Dαu

∥∥
Lp,γ (Rn ;lq) + ‖D ∗ u‖Lp,γ (Rn ;lq)

+ |λ|‖u‖Lp,γ (Rn ;lq) ≤ C‖f ‖Lp,γ (Rn ;lq);
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(b) for λ ∈ Sϕ there exists a resolvent (Q + λ)– and

∑

|α|≤l

|λ|– |α|
l
∥∥aα ∗ [

Dα(Q + λ)–]∥∥
B

+
∥∥D ∗ (Q + λ)–∥∥

B +
∥∥λ(Q + λ)–∥∥

B ≤ C.

Proof In fact, let E = lq and A = [dm(x)δjm], m, j = , , . . . ,∞. Then

Â(ξ ) =
[
d̂m(ξ )δjm

]
, DβÂ(ξ ) =

[
Dβ d̂m(ξ )δjm

]
, m, j = , , . . . ,∞.

It is easy to see that Â(ξ ) is uniformly R-positive in lq and all conditions of Theorem .
hold. Moreover, by [] we see that the space lq satisfies the multiplier condition. There-
fore, by virtue of Theorem . and Result . we obtain the assertions. �

Remark . There are a lot of positive operators in concrete Banach spaces. Therefore,
putting in (.) and (.) concrete Banach spaces instead of E and concrete positive differ-
ential, pseudo differential operators, or finite, infinite matrices, etc. instead of A, by virtue
of Theorem . and Theorem . we can obtain the maximal regularity properties of dif-
ferent classes of convolution equations and Cauchy problems for parabolic CDEs or their
systems, respectively.
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