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Abstract
In this paper, we apply the Nehari manifold method to study the fractional
p-Laplacian differential equation

{
tDα

T φp(0Dα
t u(t)) = f (t,u(t)), t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0Dα
t , tD

α
T are the left and right Riemann-Liouville fractional derivatives of order

0 ≤ α < 1, respectively. We prove the existence of a ground state solution for the
boundary value problem.
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1 Introduction
Fractional differential equations have played an important role in many fields such as en-
gineering, science, electrical circuits, diffusion and applied mathematics. In the recent
years, some authors have studied the fractional differential equation by using different
methods, such as fixed point theorem, coincidence degree theory, critical point theory,
etc. (see [–]).

By using the mountain pass theorem, Jiao and Zhou [] studied the existence of solu-
tions for the following boundary value problem:

{
d
dt ( 

 D–β
t (u′(t)) + 

 tD–β

T (u′(t))) + ∇F(t, u(t)) = , t ∈ [, T],
u() = u(T) = ,

where  < β < , D–β
t , and tD–β

T are the left and right fractional integrals of order β , re-
spectively, F : [, T] ×R

N →R, and ∇F(t, x) is the gradient of F with respect to x.
The authors in [–] studied the existence and multiplicity of solutions for the related

problems with the help of critical point theory. Furthermore, the author in [] studied
the Boundary value problem with fractional p-Laplacian operator by using the mountain
pass theorem.
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Motivated by the above results, we would like to investigate the ground state solution
for the following fractional boundary value problem:

{
tDα

Tφp(Dα
t u(t)) = f (t, u(t)), t ∈ [, T],

u() = u(T) = ,
(.)

where Dα
t , tDα

T are the left and right Riemann-Liouville fractional derivatives of order
 ≤ α <  and φp(s) = |s|p–s, p > . The technical tool is the method of Nehari manifold,
see [, ]. It is worth mentioning that there are real applications of such equations when
p =  in [, ].

This article is organized as follows. In Section , some preliminaries on the fractional
calculus are presented. In Section , we set up the variational framework of problem (.)
and give some necessary lemmas. Finally, Section  presents the main result and its proof.

2 Preliminaries on the fractional calculus
In this section, we will introduce some notations, definitions and preliminary facts on
fractional calculus which are used throughout this paper.

Definition . (Left and right Riemann-Liouville fractional integrals) Let f be a function
defined on [a, b]. The left and right Riemann-Liouville fractional integrals of order α for
function f denoted by aD–α

t f (t) and tD–α
b f (t) function, respectively, are defined by

aD–α
t f (t) =


�(α)

∫ t


(t – s)α–f (s) ds, t ∈ [a, b],α > ,

tD–α
T f (t) =


�(α)

∫ T

t
(t – s)α–f (s) ds, t ∈ [a, b],α > ,

provided that the right-hand side integral is pointwise defined on [a, b].

Definition . (Left and right Riemann-Liouville fractional derivatives) Let f be a func-
tion defined on [a, b]. The left and right Riemann-Liouville fractional derivatives of order
α for a function f denoted by aDα

t f (t) and tDα
b f (t), respectively, are defined by

aDα
t f (t) =

dn

dtn aDα–n
t f (t)

=


�(α)
dn

dtn

∫ t


(t – s)n–α–f (s) ds, t ∈ [a, b],α > ,

tDα
b f (t) = (–)n dn

dtn tDα–n
b f (t)

=
(–)n

�(α)
dn

dtn

∫ b

t
(s – t)n–α–f (s) ds, t ∈ [a, b],α > ,

provided that the right-hand side integral is pointwise defined on [a, b].

Definition . (Left and right Caputo fractional derivatives) If α ∈ (n – , n) and f ∈
ACn([a, b],R), then the left and right Caputo fractional derivatives of order α for func-
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tion f denoted by C
a Dα

t f (t) and C
t Dα

b f (t) function, respectively, are defined by

C
a Dα

t f (t) = aDα–n
t

dn

dtn f (t)

=


�(α)

∫ t


(t – s)n–α–f (n)(s) ds, t ∈ [a, b],α > ,

C
t Dα

b f (t) = (–)n
tDα–n

b
dn

dtn f (t)

=
(–)n

�(α)

∫ b

t
(s – t)n–α–f (n)(s) ds, t ∈ [a, b],α > ,

respectively, where t ∈ [a, b].

Lemma . ([]) The left and right Riemann-Liouville fractional integral operators have
the property of a semigroup, i.e.

∫ b

a

[
aD–α

t f (t)
]
g(t) dt =

∫ b

a

[
tD–α

b g(t)
]
f (t) dt, α > ,

provided that f ∈ Lp([a, b],R), g ∈ Lq([a, b],R), and p ≥ q, q ≥ , 
p + 

q ≤  + α or p �= ,
q �= , 

p + 
q =  + α.

Lemma . ([]) Assume that n –  < α < n and f ∈ Cn[a, b]. Then

aD–α
t

(C
a Dα

t f (t)
)

= f (t) –
n–∑
j=

f (j)(a)
j!

(t – a)j,

tD–α
b

(C
t Dα

b f (t)
)

= f (t) –
n–∑
j=

(–)jf (j)(b)
j!

(b – t)j

for t ∈ [a, b].

Lemma . ([]) Assume that n –  < α < n, then

C
a Dα

t f (t) = aDα
t f (t) –

n–∑
j=

f (j)(a)
�(j – α + )

(t – a)j–α , t ∈ [a, b],

C
t Dα

b f (t) = tDα
b f (t) –

n–∑
j=

f (j)(b)
�(j – α + )

(b – t)j–α , t ∈ [a, b].

3 A variational setting
To apply critical point theory of the existence of solutions for boundary value problem
(.), we shall state some basic notation and results, which will be used in the proof of our
main results.

Throughout this paper, we assume that the following conditions are satisfied.

(H) f ∈ C(R×R);
(H) f (t, ) =  = ∂f

∂s (t, ) for every t ∈R;
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(H) for t ∈ [, T], x ∈R, one has

lim sup
|x|→

F(t, x)
|x|p <

(�(α + ))p

pTαp ;

here

F(t, s) =
∫ s


f (t, x) dx;

(H) there exist constants μ ∈ (, /p), M >  such that

 < F(t, x) ≤ μxf (t, x), ∀t ∈ [, T], x ∈R with |x| ≥ M;

(H) the map t → t–(p–)sf (x, ts) is increasing on (, +∞), for every x ∈R and s ∈R.

In order to establish a variational structure which enables us to transform the existence
of solutions for boundary value problem (.) into the existence of critical points for the
corresponding functional, it is necessary to construct an appropriate function space. In
the following, we introduce some results from [, ].

Definition . (see [, ]) Let  < α ≤  and  < p < ∞. The fractional derivative space
Eα,p

 is defined by

Eα,p
 =

{
u ∈ Lp([, T],R

)|cDα
t u ∈ Lp([, T],R

)
, u() = u(T) = 

}

with the norm

‖u‖α,p =
(‖u‖p

Lp +
∥∥c

Dα
t u

∥∥p
Lp

) 
p , ∀u ∈ Eα,p

 , (.)

where ‖u‖Lp = (
∫ T

 |u(t)|p dt)/p is the norm of Lp([, T],R).

Remark . For any u ∈ Eα,p
 , noting the fact that u() = u(T) = , we have c

Dα
t u(t) =

Dα
t u(t), c

t Dα
T u(t) = tDα

T u(t), t ∈ [, T].

Lemma . (see [, ]) Let  < α ≤  and  < p < ∞. The fractional derivative space Eα,p


is a reflexive and separable Banach space.

Lemma . (see [, ]) Let  < α ≤  and  < p < ∞. For u ∈ Eα,p
 , we have

‖u‖Lp ≤ Tα

�(α + )
∥∥c

Dα
t u

∥∥
Lp . (.)

Moreover, if α > /p and /p + /q = , then

‖u‖∞ ≤ Tα– 
p

�(α)((α – )q + )

q

∥∥c
Dα

t u
∥∥

Lp , (.)

where ‖u‖∞ = maxt∈[,T] |u(t)| is the norm of C([, T],R).
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Remark . According to (.), we know that the norm (.) is equivalent to the norm of
the form

‖u‖α,p =
∥∥c

Dα
t u

∥∥
Lp . (.)

Hence, we can consider Eα,p
 with the norm (.) in the following analysis.

Lemma . (see [, ]) Let  < α ≤  and  < p < ∞. Assume that α > /p and the se-
quence {uk} converges weakly to u in Eα,p

 , i.e. uk ⇀ u. Then uk → u in C([, T],R), i.e.

‖uk – u‖∞ → , k → ∞.

Now we give the definition of weak solutions of boundary value problem (.).

Definition . By a weak solution of boundary value problem (.), we mean that the
function u ∈ Eα,p

 such that f (·, u(·)) ∈ L([, T],R) satisfies the following equation:
∫ T



[
tDα

Tφp
(

Dα
t u(t)

)]
v(t) dt =

∫ T


f
(
t, u(t)

)
v(t) dt, ∀v ∈ Eα,p

 .

Then define the functional I : Eα,p
 → R by

I(u) =

p

∫ T



∣∣c
Dα

t u(t)
∣∣p dt –

∫ T


F
(
t, u(t)

)
dt, (.)

where F(t, s) =
∫ s

 f (t, τ ) dτ .

Next we will establish a variational structure of boundary value problem (.) on Eα,p
 .

Also, we will show that the critical points of I are weak solutions of boundary value prob-
lem (.).

Remark . From Lemma ., we can see that the functional u → ∫ T
 F(t, u(t)) dt is

weakly continuous on Eα,p
 . As the above functional is convex continuous and weakly con-

tinuous, we know that I is a weakly lower semi-continuous functional on Eα,p
 with α > /p.

Then following [], we can see that I ∈ C(Eα,p
 ,R) and we have

I ′(u)v =
∫ T


φp

(c
Dα

t u(t)
)c

Dα
t v(t) dt –

∫ T


f
(
t, u(t)

)
v(t) dt, ∀v ∈ Eα,p

 . (.)

Lemma . Let  < α ≤  and I be defined by (.). If (H) is satisfied and u ∈ Eα,p
 is a

solution of the corresponding Euler equation I ′(u) = , then u is a weak solution of boundary
value problem (.).

Proof For u, v ∈ Eα,p
 , by Remark . and Definition ., one has

∫ T



[
tDα

Tφp
(

Dα
t u(t)

)]
v(t) dt =

∫ T



[
tDα

Tφp
(c

Dα
t u(t)

)]
v(t) dt

= –
∫ T


v(t)d

[
tDα–

T φp
(c

Dα
t u(t)

)]

=
∫ T



[
tDα–

T φp
(c

Dα
t u(t)

)]
v′(t) dt.
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Thus, from Lemma ., we have

∫ T



[
tDα

Tφp
(

Dα
t u(t)

)]
v(t) dt =

∫ T


φp

(c
Dα

t u(t)
)

Dα–
t v′(t) dt

=
∫ T


φp

(c
Dα

t u(t)
)c

Dα
t v(t) dt,

which together with (.) and I ′(u) =  shows that

 = I ′(u)v =
∫ T



[
tDα

Tφp
(

Dα
t u(t)

)]
v(t) dt –

∫ T


f
(
t, u(t)

)
v(t) dt

for any v ∈ Eα,p
 . Hence, according to Definition ., u is weak solution of boundary value

problem (.). The proof is complete. �

4 Main result
In this section, we shall investigate the solvability of boundary value problem (.) with
the aid of the Nehari manifold method.

There is one-to-one correspondence between the critical points of I and weak solutions
of boundary value problem (.). Now, we define

N =
{

u ∈ Eα,p
 \ {}|I ′(u)u = 

}
. (.)

Then we know any non-zero critical point of I must be on N . Define

G(u) = I ′(u)u =
∫ T


φp

(c
Dα

t u(t)
)c

Dα
t u(t) dt –

∫ T


f
(
t, u(t)

)
u(t) dt. (.)

Lemma . Assume the hypotheses (H)-(H) hold. If u ∈N is a critical point of I|N , then
I ′(u) = .

Proof For u ∈N , together with (H),

G′(u)u =
∫ T


pφp

(c
Dα

t u(t)
)c

Dα
t u(t) –

∂

∂u
f
(
t, u(t)

) · u(t) – f
(
t, u(t)

)
u(t) dt

=
∫ T


pf

(
t, u(t)

)
u(t) –

∂

∂u
f
(
t, u(t)

) · u(t) – f
(
t, u(t)

)
u(t) dt

=
∫ T


(p – )f

(
t, u(t)

)
u(t) –

∂

∂u
f
(
t, u(t)

) · u(t) dt < . (.)

If u ∈N is a critical point of I|N , then there exists a Lagrange multiplier λ ∈R, such that
I ′(u) = λG′(u). Then we have

I ′(u)u = λG′(u)u = .

By (.), G′(u)u �= , we have λ = . So we can see that I ′(u) = . The proof is complete.
�

Lemma . Assume the hypotheses (H)-(H) hold. For any u ∈ Eα,p
 \{}, there is a unique

y = y(u) such that y(u)u ∈N and we have I(yu) = maxy≥ I(yu) > .
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Proof First, we claim that there exist constants σ > , ρ >  such that I(u) >  for all u ∈
Bρ() \ {} and I(u) ≥ σ for all u ∈ ∂Bρ(). That is,  is a strict local minimizer of I . In fact,
by (H) we can see that there exist ε ∈ (, ), δ >  such that

F(t, x) ≤ ( – ε)(�(α + ))p

pTαp |x|p, t ∈ [, T], x ∈R with |x| ≤ δ. (.)

Let ρ = �(α)((α–)q+)/q

Tα–/p δ >  and σ = ερp/p > . Then, by Lemma ., we have

‖u‖∞ ≤ Tα– 
p

�(α)((α – )q + )

q
‖u‖α,p = δ, u ∈ Eα,p

 with ‖u‖α,p = ρ,

which together with Lemma . and (.) implies that

I(u) =

p
‖u‖p

α,p –
∫ T


F
(
t, u(t)

)
dt

≥ 
p
‖u‖p

α,p –
( – ε)(�(α + ))p

pTαp

∫ T



∣∣u(t)
∣∣p dt

≥ 
p
‖u‖p

α,p –
 – ε

p
‖u‖p

α,p

=
ε

p
‖u‖p

α,p = σ , ∀u ∈ Eα,p
 with ‖u‖α,p = ρ.

Next, we claim that I(yu) → –∞, as y → ∞. In fact, by (H), there exists a constant A > 
such that F(t, u) ≥ A|u| 

μ for |u| ≥ M. On the other hand, we can see that there exists a
constant B such that F(t, u) ≥ B for |u| ≤ M. For any u ∈ Eα,p

 \ {}, y ∈ R
+, noting that

μ ∈ (, /p), we get

I(yu) =

p
‖yu‖p

α,p –
∫ T


F
(
t, yu(t)

)
dt

≤ yp

p
‖u‖p

α,p – A
∫ T



∣∣yu(t)
∣∣ 

μ dt – BT

=
yp

p
‖u‖p

α,p – Ay

μ ‖u‖


μ

L

μ

– BT

→ –∞, y → ∞.

Let g(y) := I(yu) for y > . From what we have proved, there has to be at least one yu =
y(u) >  such that

g(yu) = max
y≥

g(y) = max
y≥

I(yu) = I(yuu).

We will prove g(y) has a unique critical point for y > . Consider a critical point

g ′(y) = I ′(yu)u

=

y
‖yu‖p

α,p –
∫ T


f (t, yu)u dt

= .
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Then together with (H), we have

g ′′(y) =
p – 

y ‖yu‖p
α,p –

∫ T



∂f (t, yu)
∂(yu)

u dt

= (p – )
∫ T



f (t, yu)u
y

dt –
∫ T



∂f (t, yu)
∂(yu)

u dt

=

y

[
(p – )

∫ T


f (t, yu)yu dt –

∫ T



∂f (t, yu)
∂(yu)

(yu) dt
]

< .

So we know that if y is a critical point of g , then it should be a strict local maximum. This
implies the uniqueness of the critical point. The proof is complete. �

Remark . From

g ′(y) = I ′(yu)u =

y

I ′(yu)yu,

we see y is a critical point if yu ∈ N . Define m = infN I . Then we can see that m ≥
inf∂Bρ () I ≥ σ > .

Lemma . Assume the hypotheses (H)-(H) hold and m = infN I . Then there exists u ∈
N such that I(u) = m.

Proof From Remark ., we can see that the functional u → ∫ T
 F(t, u(t)) dt and I is a

weakly lower semi-continuous functional on Eα,p
 with α > /p. Similarly we can see that

G is a weakly lower semi-continuous functional on Eα,p
 with α > /p.

Since F(t, x) – μxf (t, x) is continuous, there exists c ∈R
+ such that

F(t, x) ≤ μxf (t, x) + c, t ∈ [, T], |x| ≤ M.

Thus, together with (H), we get

F(t, x) ≤ μxf (t, x) + c, t ∈ [, T], x ∈R. (.)

Let {uk} ⊂ Eα,p
 where

∣∣I(uk)
∣∣ ≤ K , I ′(uk) →  as k → ∞.

According to (.), one has

I ′(uk)uk = ‖uk‖p
α,p –

∫ T


f
(
t, uk(t)

)
uk(t) dt,

which together with (.) shows that

K ≥ I(uk)

=

p
‖uk‖p

α,p –
∫ T


F
(
t, uk(t)

)
dt
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≥ 
p
‖uk‖p

α,p – μ

∫ T


f
(
t, uk(t)

)
uk(t) dt – cT

=
(


p

– μ

)
‖uk‖p

α,p + μI ′(uk)uk – cT

≥
(


p

– μ

)
‖uk‖p

α,p – μ
∥∥I ′(uk)

∥∥
α,q‖uk‖α,p – cT ,

where q is a constant such that /p + /q = . Since I ′(uk) → , there exists N ∈ N such
that

K ≥
(


p

– μ

)
‖uk‖p

α,p – ‖uk‖α,p – cT , k > N.

It follows from μ ∈ (, /p) that {uk} is bounded in Eα,p
 . Since Eα,p

 is a reflexive space, going
to a subsequence if necessary, we can assume that uk ⇀ u in Eα,p

 . Hence we have

(
I ′(uk) – I ′(u)

)
(uk – u) = I ′(uk)(uk – u) – I ′(u)(uk – u)

≤ ∥∥I ′(uk)
∥∥

α,q‖uk – u‖α,p – I ′(u)(uk – u)

→ , k → ∞. (.)

Moreover, by Lemma ., we see that uk is bounded in C([, T],R) and ‖uk – u‖∞ →  as
k → ∞. Then we get

∫ T



(
f
(
t, uk(t)

)
– f

(
t, u(t)

))(
uk(t) – u(t)

)
dt → , k → ∞. (.)

Noting that

(
I ′(uk) – I ′(u)

)
(uk – u)

=
∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

–
∫ T



(
f
(
t, uk(t)

)
– f

(
t, u(t)

))(
uk(t) – u(t)

)
dt,

then from (.) and (.), we have

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt →  (.)

as k → ∞.
Following [], we can see that there exist c, c >  such that

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

≥
⎧⎨
⎩

c
∫ T

 |cDα
t uk(t) – c

Dα
t u(t)|p dt, p ≥ ,

c
∫ T


|cDα

t uk (t)–c
Dα

t u(t)|
(|cDα

t uk (t)|+|cDα
t u(t)|)–p dt,  < p < .

(.)
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When  < p < , one has

∫ T



∣∣c
Dα

t uk(t) – c
Dα

t u(t)
∣∣p dt

≤
(∫ T



|cDα
t uk(t) – c

Dα
t u(t)|

(|cDα
t uk(t)| + |cDα

t u(t)|)–p dt
) p



·
(∫ T



(∣∣c
Dα

t uk(t)
∣∣ +

∣∣c
Dα

t u(t)
∣∣)p dt

) –p


.

Noting that (s + s)γ ≤ γ –(sγ
 + sγ

 ), where s, s ≥ , γ ≥  (see []), we have

∫ T



∣∣c
Dα

t uk(t) – c
Dα

t u(t)
∣∣p dt

≤ c
(‖uk‖p

α,p + ‖u‖p
α,p

) –p


(∫ T



|cDα
t uk(t) – c

Dα
t u(t)|

(|cDα
t uk(t)| + |cDα

t u(t)|)–p dt
) p



with c = (p–)(–p)/, which together with (.) implies that

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

≥ cc
– 

p


(‖uk‖p
α,p + ‖u‖p

α,p
) p–

p ‖uk – u‖p
α,p,  < p < . (.)

When p ≥ , by (.), we get

∫ T



(
φp

(c
Dα

t uk(t)
)

– φp
(c

Dα
t u(t)

))(c
Dα

t uk(t) – c
Dα

t u(t)
)

dt

≥ c‖uk – u‖p
α,p, p ≥ . (.)

It follows from (.), (.), and (.) that

‖uk – u‖α,p → , k → ∞.

Namely {uk} converges strongly to u in Eα,p
 . Since G is weakly lower semi-continuous and

{uk} ∈N , we have

G(u) ≤ lim
k→∞

G(uk) = 

and u �= . In fact, if u = , then uk →  in Eα,p
 . From G(uk) = , we get ‖uk‖α,p → . This

is a contradiction with {uk} ∈N .
Then from Lemma ., there exists a unique y >  such that yu ∈ N . Together with the

fact that I is weakly lower semi-continuous, we have

m ≤ I(yu) ≤ lim
k→∞

I(yuk) ≤ lim
k→∞

I(yuk) ≤ lim
k→∞

I(uk) = m.

Then we see that m is obtained at yu ∈N . The proof is complete. �
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Theorem . Assume the hypotheses (H)-(H) hold, boundary value problem (.) has a
weak solution such that I(u) = m, i.e. there exists a ground state solution of boundary value
problem (.).

Proof By using Lemmas . and ., we can see that there exists u ∈N such that I(u) = m =
infN I . Then u is a critical point of I|N . From Lemma . we have I ′(u) = . So boundary
value problem (.) has a weak solution such that I(u) = m. The proof is complete. �

5 An example
In this section, we will give an example to illustrate our main result.

Example . Consider the following boundary value problem for a fractional p-Laplacian
equation:

{
tD



T φ(D



t u(t)) = cos t · u(t)|u(t)|, t ∈ [, T],

u() = u(T) = .
(.)

Corresponding to boundary value problem (.), we see that p = , α = 
 , and

f (t, u) = cos t · u|u|.

Then we have

F(t, u) =
∫ u


f (t, s) ds =

∫ u


cos t · s|s| ds.

Obviously, (H) and (H) hold. Furthermore,

lim sup
|u|→

F(t, u)
|u| =  <

(�( 
 + ))

T 
 

.

Then we see that (H) holds. Choose μ = 
 and M = . By a simple calculation, we can see

that

 < F(t, u) ≤ 


uf (t, u), ∀t ∈ [, T], u ∈R with |u| ≥ .

So, (H) holds. On the other hand, t–(p–)sf (x, ts) = cos x · ts|s| is increasing on t ∈
(, +∞), for every x ∈R and s ∈R. So, we see that (H) holds.

Then, boundary value problem (.) satisfies all assumptions of Theorem .. Hence,
there exists a ground state solution of boundary value problem (.).
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