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Abstract
In this article, we establish a space-time continuous finite element (STCFE) method for
viscoelastic wave equation. The existence, uniqueness, and stability of the STCFE
solutions are proved, and the optimal rates of convergence of STCFE solutions are
obtained without any time and space mesh size restrictions. Two numerical examples
on unstructured meshes are employed to verify the efficiency and feasibility of the
STCFE method and to check the correctness of theoretical conclusions.
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1 Introduction
In this paper, we investigate the space-time continuous finite element (STCFE) method
for two-dimensional (D) viscoelastic wave equation. For convenience, without loss of
generality, we consider the following initial boundary value problem of D viscoelastic
wave equation.

Problem I Find u = u(x, y, t) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

utt – ε�ut – γ�u = f , (x, y, t) ∈ � × [, T],

u(x, y, t) = ϕ(x, y, t), (x, y, t) ∈ ∂� × [, T],

u(x, y, ) = ϕ(x, y), ut(x, y, ) = ϕ(x, y), (x, y) ∈ �,

(.)

where � ⊂ R is a bounded convex polygonal region with smooth boundary ∂�, utt =
∂u/∂t, ut = ∂u/∂t, ε and ν are positive constants, and T is the final time. The source
term f (x, y, t), the boundary value function ϕ(x, y, t), and the initial value functions ϕ(x, y)
and ϕ(x, y) are smooth enough so that the following theoretical proofs are effective.

Equation (.) is known as a system of viscoelastic wave equation. It is used to describe
the wave propagation phenomena of actual vibration through a viscoelastic medium (see,
e.g., [, ]). Though the researches of numerical solutions of viscoelastic wave equation
have made a great progress (see, e.g., [–]), most of the existing papers either used the
classical finite element (FE) methods or used finite difference (FD) schemes as discretiza-
tion tools (see [, ]).
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The STCFE method is a kind of FE technique that adopts FE to discretize the tempo-
ral and spatial variables, respectively, and provides a consistent treatment of temporal and
spatial discretizations. Therefore, as long as the STCFE method employs higher degrees of
polynomials about time appropriately, its numerical solutions can have higher accuracy
with respect to time than those of the classical FE methods, where the time derivative
is discretized by Euler backward difference with first-order accuracy, and even than the
Crank-Nicolson FE solutions with second-order accuracy (see, e.g., [–]). In addition,
the theoretical analyses of the classical FE methods will certainly change with the varia-
tions of discretization methods of time derivative, whereas the theoretical analysis of the
STCFE method holds for approximate subspaces with any degrees of time polynomials, so
the theoretical analysis of the STCFE method is more convenient than those of the classi-
cal FE methods. Especially, the STCFE method is very suitable for wave problems because
they retain energy conservation properties of the corresponding discrete problems (see
[]). Therefore, it is considered to be one of the most effective numerical methods. It
plays an important role in finding numerical solutions for time-dependent partial differ-
ential equations (TDPDEs) and forms a hot research topic. It has been widely used to find
numerical solutions of various types of TDPDEs, such as parabolic equations, hyperbolic
equations, nonlinear Schrödinger equation, and convection diffusion equations (see [–
]).

Aziz and Monk [] used the STCFE method to study the heat equation. Bales and
Lasiecka [] and French and Peterson [] also investigated the wave equation by means of
the STCFE method. However, to the best of our knowledge, the STCFE method was used
for solving the D viscoelastic wave equation, which is different to and far more complex
than the heat equation and the wave equation. Therefore, in this study, we employ the
STCFE technique to study the D viscoelastic wave equation. However, our theoretical
analysis is different from those in [–]; it is more concise and easier for obtaining var-
ious error estimates with different norms, so it should be an interesting work. Especially,
our estimates are obtained without any restriction conditions between temporal and spa-
tial grid sizes, so that our method is more suitable for practical applications and is different
from the existing methods (see, e.g., [–]). Therefore, it is a kind of improvement and
development of the existing papers.

The remainder of this paper is organized as follows. In Section , we establish the STCFE
approach approximate scheme for the D viscoelastic wave equation. In Section , the op-
timal rates of convergence of the STCFE solutions are derived. In Section , some numer-
ical experiments are provided for illustrating the correctness of the theoretical analysis.
Moreover, we verify that the STCFE method is more feasible and efficient for solving vis-
coelastic wave equation than the classical FE methods. Section  gives the main conclu-
sions and some perspectives.

2 STCFE method for 2D viscoelastic wave equation
The Sobolev spaces and norms along with their theories applied in this paper are standard
(see []). The spaces Hs(�) are equipped with the norms ‖·‖s and seminorms | · |s (s ≥ ).
If s = , then the space H(�) is written as L(�) with inner product (·, ·) and norm ‖·‖. In
addition, we define the energy norm on L(�)×H(�) by |||(v, u)||| = {‖v‖ +‖∇u‖} 

 . We
also use the space H

(�) = {v ∈ H(�); v|∂� = } and its dual space H–(�). For g ∈ H–(�),
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its norm is defined by

‖g‖– = sup
v∈H

(�)

〈g, v〉
‖v‖

.

Moreover, space-time Sobolev spaces are defined by

Hl(, tn; Hm(�)
)

=

{

v(x, t);
l∑

i=

∫ tn



∥
∥
∥
∥

di

dti v(·, t)
∥
∥
∥
∥



m
dt < ∞

}

with norms

‖v‖Hl(,tn ;Hm) =

[ l∑

i=

∫ tn



∥
∥
∥
∥

di

dti v(·, t)
∥
∥
∥
∥



m
dt

]/

.

Especially, when l =  and m = , , the corresponding norms are denoted by

‖v‖L(,tn ;L) =
[∫ tn



∥
∥v(·, t)

∥
∥ dt

]/

and

‖v‖L(,tn ;H) =
[∫ tn



∥
∥v(·, t)

∥
∥

 dt
]/

.

If tn = T , then ‖v‖Hl(,tn ;Hm) are denoted by ‖v‖Hl(Hm).
We reformulate Problem I as a first-order system with respect to time by introducing

the function v = ut . Thus, Problem I may be rewritten as follows.

Problem II Find (u, v) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt – ε�v – γ�u = f , (x, y, t) ∈ � × [, T],

v – ut = , (x, y, t) ∈ � × [, T],

u(x, y, t) = ϕ(x, y, t), (x, y, t) ∈ ∂� × [, T],

u(x, y, ) = ϕ(x, y), v(x, y, ) = ϕ(x, y), (x, y) ∈ �.

(.)

For convenience and without loss of generality, we may also suppose that ϕ(x, y, t),
ϕ(x, y), and ϕ(x, y) are all zero functions in the following theoretical analysis. Let U =
H(, T ; H

(�)). Thus, we can write the weak formulation for Problem II as follows.

Problem III Find (u, v) ∈ U × U such that

∫ T



[
(v, wt) – (ut , wt)

]
dt = , ∀w ∈ U , (.)

∫ T



[
(vt , zt) + εa(v, zt) + γ a(u, zt)

]
dt =

∫ T


(f , zt) dt, ∀z ∈ U , (.)

u(x, y, ) = , v(x, y, ) = , (x, y) ∈ �, (.)

where a(u, v) = (∇u,∇v).
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In order to construct the SCTFE formulation, let �h = {K} be a quasi-uniform triangu-
lation subdivision of computational region � with h = max hK , where hK denotes the di-
ameter of the triangle K ∈ �h (see [, , ]), and take a partition  = t < t < · · · < tN = T
on time span [, T] with the time step k = max≤j≤N |tj – tj–|. Then, we introduce the sub-
space Shm(�) ⊂ H

(�) consisting of piecewise continuous polynomials of degree m de-
fined on the partition �h of � with mesh parameter h. Let Skl([, T]) be a finite element
subspace on time partition consisting of piecewise continuous polynomials of degree l,
that is, Skl([, T]) = {ν ∈ C([, T]) : ν|[tj–,tj] ∈ Pl([tj–, tj]), j = , . . . , N}, where Pl([tj–, tj]) is
the set of polynomials  = t < t < · · · < tN = T of degrees not higher than l. Finally, we
define space-time element subspace Uhk = Shm(�) ⊗ Skl([, T]). Then, the STCFE formu-
lation for D wave equations is established as follows.

Problem IV Find (uhk , vhk) ∈ U
hk such that

∫ T



[(
vhk , wt

)
–

(
uhk

t , wt
)]

dt = , ∀w ∈ Uhk , (.)

∫ T



[(
vhk

t , zt
)

+ εa
(
vhk , zt

)
+ γ a

(
uhk , zt

)]
dt =

∫ T


(f , zt) dt, ∀z ∈ Uhk , (.)

uhk(x, y, ) = , vhk(x, y, ) = , (x, y) ∈ �. (.)

The STCFE solution pair (uhk , vhk) can be found by advancing via successive time levels.
To this end, let Jn = [tn–, tn], and let Pl(Jn) be the set of polynomial functions on the time
interval Jn of degree not higher than l. Then, for n = , , . . . , N , the STCFE solution pair
(uhk , vhk) is found as the unique solution of

∫

Jn

[(
vhk , wt

)
–

(
uhk

t , wt
)]

dt = , ∀w ∈ Shm(�) ⊗ Pl(Jn), (.)

∫

Jn

[(
vhk

t , zt
)

+ εa
(
vhk , zt

)
+ γ a

(
uhk , zt

)]
dt =

∫

Jn

(f , zt) dt, ∀z ∈ Shm(�) ⊗ Pl(Jn), (.)

or is equivalently written as

∫

Jn

[(
vhk , w

)
–

(
uhk

t , w
)]

dt = , ∀w ∈ Shm(�) ⊗ Pl–(Jn), (.)

∫

Jn

[(
vhk

t , z
)

+ εa
(
vhk , z

)
+ γ a

(
uhk , z

)]
dt

=
∫

Jn

(f , z) dt, ∀z ∈ Shm(�) ⊗ Pl–(Jn), (.)

with uhk(x, y, ) = , vhk(x, y, ) = , where uhk(x, y, tn), vhk(x, y, tn) (n = , , . . . , N – , (x, y) ∈
�) are given and have been found at the previous time step.

Remark  The system of equations (.)-(.) can be seen by applying Petrov-Galerkin
approach to approximate the viscoelastic wave equation, where the trial functions vhk and
uhk are continuous with respect to time and space, whereas the test functions w and z are
space-continuous and time-discontinuous.
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In order to discuss the existence, uniqueness, and stability for Problem IV, it is necessary
to introduce the discrete operator Ah : L(, T ; H

(�)) → Shm(�) × L(, T) defined by

∫ T


(Ahu,φ) dt =

∫ T


(∇u,∇φ) dt, ∀φ ∈ Shm(�) ⊗ L(, T). (.)

Theorem  If f ∈ L(, tn; L(�)), then there exists a unique solution pair (uhk , vhk) ∈ U
hk

to Problem IV such that

∥
∥vhk(tn)

∥
∥

 +
∥
∥∇uhk

t
∥
∥

L(,tn ;L(�)) +
∥
∥∇uhk(tn)

∥
∥



≤ C‖f ‖L(,tn ;L(�)), n = , , . . . , N , (.)

where C is a positive constant depending on ε and γ but is always independent of h and k
and may be different at different places.

Proof Because Problem IV is a linear system of equations, in order to prove the existence
and uniqueness of the solution pair for Problem IV, it is necessary to demonstrate that if
f = , then there exists a unique zero solution pair to Problem IV.

Taking w = vhk
t in (.) and z = uhk

t in (.) yields

∫

Jn

[(
vhk , vhk

t
)

+ εa
(
vhk , uhk

t
)

+ γ a
(
uhk , uhk

t
)]

dt =
∫

Jn

(
f , uhk

t
)

dt. (.)

Further, taking w = Ahuhk
t in (.) and combining (.) with (.), we have

∫

Jn

[(
vhk , vhk

t
)

+ εa
(
uhk

t , uhk
t

)
+ γ a

(
uhk , uhk

t
)]

dt =
∫

Jn

(
f , uhk

t
)

dt. (.)

Equation (.) is equivalently written as follows:

∫

Jn

[



d
dt

∥
∥vhk∥∥

 + ε
∥
∥∇uhk

t
∥
∥

 +
γ


d
dt

∥
∥∇uhk∥∥



]

dt =
∫

Jn

(
f , uhk

t
)

dt. (.)

Noting that ‖u‖ ≤ c‖∇u‖ in H
(�) (where c is a positive constant independent of h and

k, possibly different at different occurrences). By the Hölder and Cauchy inequalities, for
the right-hand side of (.), we have

∫

Jn

[



d
dt

∥
∥vhk∥∥

 + ε
∥
∥∇uhk

t
∥
∥

 +
γ


d
dt

∥
∥∇uhk∥∥



]

dt

≤
∫

Jn

‖f ‖
∥
∥uhk

t
∥
∥

 dt ≤
∫

Jn

c‖f ‖
∥
∥∇uhk

t
∥
∥

 dt

≤
∫

Jn




[
c

ε
‖f ‖

 + ε
∥
∥∇uhk

t
∥
∥



]

dt. (.)

Thus, inequality (.) can be simplified as

∫

Jn

[
d
dt

∥
∥vhk∥∥

 + ε
∥
∥∇uhk

t
∥
∥

 + γ
d
dt

∥
∥∇uhk∥∥



]

dt ≤ c

ε

∫

Jn

‖f ‖
 dt. (.)
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Further, we obtain

∥
∥vhk(tn)

∥
∥

 + ε
∥
∥∇uhk

t
∥
∥

L(Jn ;L) + γ
∥
∥∇uhk(tn)

∥
∥



≤ c

ε
‖f ‖

L(Jn ;L) +
∥
∥vhk(tn–)

∥
∥

 + γ
∥
∥∇uhk(tn–)

∥
∥

, n = , , . . . , N . (.)

Since uhk(x, y, ) =  and vhk(x, y, ) = , by summing (.) from  to n we obtain

∥
∥vhk(tn)

∥
∥

 + ε
∥
∥∇uhk

t
∥
∥

L(,tn ;L) + γ
∥
∥∇uhk(tn)

∥
∥



≤ c

ε
‖f ‖

L(,tn ;L), n = , , . . . , N . (.)

If f = , then from (.) we get that uhk
t (x, y, t) = νhk(tn) = ∇uhk(tn) =  ((x, y, t) ∈ � × Jn,

n = , , . . . , N ). Further, from uhk(x, y, ) =  we obtain uhk(x, y, t) =  ((x, y, t) ∈ �× [, T]).
In addition, taking z = vhk

t in (.) and then summing from n =  to N , we get ‖vhk
t ‖L(L) =

‖∇vhk(T)‖ = ((x, y, t) ∈ � × [, T]), which implies that vhk(x, y, t) =  ((x, y, t) ∈ � ×
[, T]) since vhk(x, y, ) = vhk(x, y, tn) =  ((x, y, t) ∈ � × Jn, n = , , . . . , N ). Therefore, Prob-
lem IV has a unique solution pair (uhk , vhk) ∈ U

hk . From (.) we immediately obtain
(.), which finishes the proof of Theorem . �

3 Error estimates of the TSCFE solutions
To estimate the errors between exact and STCFE solutions, we need to define a space-
variable Ritz projection Ph : H

(�) → Shm(�); namely, for u ∈ H
(�), we have

(∇Phu,∇φh) = (∇u,∇φh), ∀φh ∈ Shm(�). (.)

Owing to the regularity of the triangulation �h, it is well known (see [, ]) that Ph has
the following approximation properties. If u ∈ H

(�) ∩ Hr(�), then

‖Phu – u‖s ≤ chr–s‖u‖r ,  ≤ r ≤ m + , s = , . (.)

The projection Ph can be extended to functions of x, y and t in an L sense. Thus, we define
the extended projection Ph : H(, T ; H

(�)) → Shm(�) × L(, T) by

∫ T


(∇Phu,∇φ) dt =

∫ T


(∇u,∇φ) dt, ∀φ ∈ Shm(�) × L(, T). (.)

Next, we define the solution operator T : H–(�) → H
(�) of the Dirichlet problem for the

Laplace equation on � and its FE approximate operator Th : H–(�) → Shm(�) as follows.
For g ∈ H–(�), there exist Tg ∈ H

(�) and Thg ∈ Shm(�) such that

(∇Tg,∇φ) = (g,φ), ∀φ ∈ H
(�), (.)

(∇Thg,∇φh) = (g,φh), ∀φh ∈ Shm(�). (.)

From (.) we know that Th is a symmetric and positive operator. Further, Th satisfies the
following bound (see []):

 ≤ (g, Thg) ≤ c‖g‖
–, ∀g ∈ H–(�). (.)
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Finally, we also need to define the time projection Pk : H(, T) → Skl([, T]); namely, for
w ∈ H(, T), we have

∫ T


(Pkw)tφ

k
t dt =

∫ T


wtφ

k
t dt, ∀φk ∈ Skl

(
[, T]

)
. (.)

By standard FE techniques we can easily derive that Pk satisfies the following estimate: for
w ∈ H(, T) ∩ Hr(, T),

‖Pkw – w‖Hs(,T) ≤ chr–s‖w‖Hr (,T), –l +  ≤ s ≤  ≤ r ≤ l + . (.)

Also, we can extend Pk to functions of x, y, and t in an L sense. Thus, we define the
extended time projection Pk : H(, T ; L(�)) → L(�) × Skl([, T]) by

∫ T



(
(Pkw)t ,φk

t
)

dt =
∫ T



(
wt ,φk

t
)

dt, ∀φk ∈ L(�) ⊗ Skl
(
[, T]

)
, (.)

with the initial condition (Pkw(),φ) = (w(),φ)(∀φ ∈ L(�)). Further, we take Pkw(tn) =
w(tn) (n = , , , . . . , N ). In addition, we have the following properties (see []).

Lemma  If v ∈ H(, T ; H(�)), then

(Phv)t = Phvt , ∇(Pkv) = Pk∇v, PhPkv = PkPhv, ThPkv = PkThv. (.)

Let Ph and Pk be defined in the extended sense by (.) and (.).
() If v ∈ Hr(, tn; L(�)), then, for –l +  ≤ s ≤  ≤ r ≤ l + , we have

∫

�

n∑

m=

‖v – Pkv‖
Hs(Jn) dx dy ≤ ck(r–s)‖v‖

Hr(,tn ;L(�)). (.)

() If v ∈ H(, T ; Hm+(�)) ∩ H(, T ; H
(�)), then

∥
∥(v – Phv)(t)

∥
∥

s ≤ chm+–s∥∥v(t)
∥
∥

m+, s = , . (.)

() If v ∈ L(, tn; Hr(�)) ∩ H(, tn; H
(�)), then

∥
∥(v – Phv)(t)

∥
∥

L(,tn ;L(�)) ≤ chr∥∥v(t)
∥
∥

L(,tn ;Hr (�)),  ≤ r ≤ m + . (.)

() If v ∈ Hl+(, tn; L(�)) ∩ H(, tn; H
(�)) and vt ∈ L(, tn; Hm+(�)) ∩ H(, tn;

H
(�)), then

∥
∥(v – PhPkv)t

∥
∥

L(,tn ;L(�))

≤ c
{

hm+‖vt‖L(,tn ;Hm+(�)) + kl‖v‖Hl+(,tn ;L(�))
}

. (.)
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Lemma  Let Ph and Pk be the projections defined before, and let u, v ∈ H(, tn; H
(�)).

Then, for any (φ,ϕ) ∈ U
hk , we have

∫ tn



[((
Phv – vhk)

t ,φt
)

+ ε
(∇(

Phv – vhk),∇φt
)

+ γ
(∇(

PkPhu – uhk),∇φt
)]

dt

=
∫ tn



[(
(Phv – v)t ,φt

)
+ γ

(∇(Pku – u),∇φt
)]

dt (.)

and

∫ tn



[(
Phv – vhk ,ϕt

)
–

((
PkPhu – uhk)

t ,ϕt
)]

dt = . (.)

Proof By the definitions of Ph and Pk and the properties of projections we have

∫ tn



[((
Phv – vhk)

t ,φt
)

+ ε
(∇(

Phv – vhk),∇φt
)

+ γ
(∇(

PkPhu – uhk),∇φt
)]

dt

=
∫ tn



[(
(Phv – v)t ,φt

)
+ ε

(∇(Phv – v),∇φt
)

+ γ
(∇(PkPhu – Phu),∇φt

)]
dt

+
∫ tn



[((
v – vhk)

t ,φt
)

+ ε
(∇(

v – vhk),∇φt
)

+ γ
(∇(

Phu – uhk),∇φt
)]

dt

=
∫ tn



[(
(Phv – v)t ,φt

)
+ γ

(∇(Pku – u),∇φt
)]

dt

+
∫ tn



[((
v – vhk)

t ,φt
)

+ ε
(∇(

v – vhk),∇φt
)

+ γ
(∇(

u – uhk),∇φt
)]

dt. (.)

In addition,

∫ tn



[((
Phv – vhk),ϕt

)
–

((
PkPhu – uhk)

t ,ϕt
)]

dt

=
∫ tn



[
(Phv – v,ϕt) –

(
(PkPhu – u)t ,ϕt

)]
dt

+
∫ tn



[(
v – vhk ,ϕt

)
–

((
u – uhk)

t ,ϕt
)]

dt

=
∫ tn



[
(Phv – v,ϕt) –

(
(Phu – u)t ,ϕt

)]
dt

+
∫ tn



[(
v – vhk ,ϕt

)
–

((
u – uhk)

t ,ϕt
)]

dt. (.)

Since u, v and uhk , vhk are solutions of Problem III and problem IV, respectively, noting
that v = ut together with (.) and (.) finishes the proof of Lemma . �

We state the following results on the convergence of the solutions of the equation system
(.)–(.), that is, of Problem IV.

Theorem  Let u(x, y, t), v(x, y, t) and uhk(x, y, t), vhk(x, y, t) be the solutions of Problem III
and Problem IV, respectively. Then we have the following error estimates:
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() Let u(x, y, t) ∈ Hm+(�) ( ≤ t ≤ T ), ∇u ∈ Hl+(, T ; L(�)), and vt ∈ L(, T ;
Hm+(�)). Then

∥
∥u(tn) – uhk(tn)

∥
∥



≤ C
[
kl+‖∇u‖Hl+(,tn ;L(�))

+ hm(‖vt‖L(,tn ;Hm+(�)) +
∥
∥u(tn)

∥
∥

m+

)]
, n = , , . . . , N ; (.)

() Let ∇u ∈ Hl+(, tn; L(�)), vt ∈ L(, T ; Hm+(�)), and v(x, y, t) ∈ Hm+(�)
( ≤ t ≤ T ). Then

∥
∥
(
v(tn) – vhk(tn)

)∥
∥

 ≤ C
{

hm+(∥∥v(tn)
∥
∥

m+ + ‖vt‖L(,tn ;Hm+(�))
)

+ kl+‖∇u‖Hl+(,tn ;L(�))
}

, n = , , . . . , N . (.)

Proof By taking (φ,ϕ) = (PkPhu – uhk , Phv – vhk) in (.) and (.) we obtain

∫ tn



[(
Phv – vhk ,

(
Phv – vhk)

t

)
+ ε

(∇(
Phv – vhk),∇(

PkPhu – uhk)

t

)

+ γ
(∇(

PkPhu – uhk),∇(
PkPhu – uhk)

t

)]
dt

=
∫ tn



[(
(Phv – v)t ,

(
PkPhu – uhk)

t

)
+ γ

(∇(Pku – u),∇(
PkPhu – uhk)

t

)]
dt. (.)

Further, setting ϕ = Ah(PkPhu – uhk) in (.), from (.) and (.) it follows that

∫ tn



[(
Phv – vhk ,

(
Phv – vhk)

t

)
+ ε

(∇(
PkPhu – uhk)

t ,∇
(
PkPhu – uhk)

t

)

+ γ
(∇(

PkPhu – uhk),∇(
PkPhu – uhk)

t

)]
dt

=
∫ tn



[(
(Phv – v)t ,

(
PkPhu – uhk)

t

)
+ γ

(∇(Pku – u),∇(
PkPhu – uhk)

t

)]
dt. (.)

Applying the Hölder and Cauchy inequalities to the right-hand side of (.), we have



∥
∥Phv(tn) – vhk(tn)

∥
∥

 –


∥
∥
(
Phv() – vhk()

)∥
∥

 + ε
∥
∥∇(

PhPku – uhk)

t

∥
∥

L(,tn ;L(�))

+
γ


∥
∥∇(

PhPku(tn) – uhk(tn)
)∥
∥

 –
γ


∥
∥∇(

PkPhu() – uhk()
)∥
∥



≤ c

ε

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�)) +
ε


∥
∥∇(

PhPku – uhk)

t

∥
∥

L(,tn ;L(�))

+
γ 

ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)) +
ε


∥
∥∇(

PhPku – uhk)

t

∥
∥

L(,tn ;L(�)). (.)

Noting that u() = v() = , uhk() = vhk() = , and PkPhu(tn) = Phu(tn), (.) can be
simplified as follows:

∥
∥Phv(tn) – vhk(tn)

∥
∥

 + ε
∥
∥∇(

PhPku – uhk)

t

∥
∥

L(,tn ;L(�)) + γ
∥
∥∇(

Phu(tn) – uhk(tn)
)∥
∥



≤ c

ε

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�)) +
γ 

ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)). (.)



Li et al. Boundary Value Problems  (2016) 2016:53 Page 10 of 17

By applying triangle inequality to (.) we obtain

∥
∥v(tn) – vhk(tn)

∥
∥

 ≤ ∥
∥v(tn) – Phv(tn)

∥
∥

 +
∥
∥Phv(tn) – vhk(tn)

∥
∥



≤ ∥
∥v(tn) – Phv(tn)

∥
∥

 +
c

ε

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�))

+
γ 

ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)). (.)

In view of (.), using the approximation properties of Ph and Pk in Lemma , we get
(.). In the same way, using the triangle inequality and (.), we may write

∥
∥∇(

u(tn) – uhk(tn)
)∥
∥



≤ ∥
∥∇(

u(tn) – PkPhu(tn)
)∥
∥

 +
∥
∥∇(

PkPhu(tn) – uhk(tn)
)∥
∥



≤ ∥
∥∇(

u(tn) – PkPhu(tn)
)∥
∥

 +
c

εγ

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�))

+
γ

ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)). (.)

Thus, (.) directly follows from (.) and Lemma . �

In the following corollary, we provide the energy norm estimate.

Corollary  Under the assumptions of Theorem , we have the following estimate:

∥
∥v(tn) – vhk(tn)

∥
∥

 +
∥
∥∇(

u(tn) – uhk(tn)
)∥
∥



≤ C
[
kl+‖∇u‖Hl+(,tn ;L(�))

+ hm(‖vt‖L(,tn ;Hm+(�)) +
∥
∥u(tn)

∥
∥

m+ +
∥
∥v(tn)

∥
∥

m+

)]
, n = , , . . . , N . (.)

Proof The result is proved by estimates (.) and (.) of the Theorem . �

Theorem  Assume that the solution u to Problem II is sufficiently smooth so that u ∈
Hl+(, T ; H(�)) ∩ H(, T ; Hm+(�)), vt ∈ L(, T ; Hm+(�)), and u(x, y, t) ∈ Hm+(�),
∀t ∈ [, T]. Then we have the following error estimates:

∥
∥u(tn) – uhk(tn)

∥
∥



≤ C
{

kl+‖∇u‖Hl+(,tn ;L(�))

+ hm+[∥∥u(tn)
∥
∥

m+ + ‖vt‖L(,tn ;Hm+(�))
]}

, n = , , . . . , N , (.)
∥
∥
(
u – uhk)

t

∥
∥

L(,tn ;L(�))

≤ C
{

kl[‖∇u‖Hl+(,tn ;L(�)) + ‖u‖Hl+(,tn ;L(�))
]

+ hm+[‖ut‖L(,tn ;Hm+(�)) + ‖vt‖L(,tn ;Hm+(�))
]}

, n = , , . . . , N . (.)
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Proof Taking (φ,ϕ) = (Th(PkPhu – uhk), Th(Phv – vhk)) in (.) and (.) and using the
definition and symmetry property of Th, we obtain

∫ tn



[
((

Phv – vhk), Th
(
Phv – vhk)

t

)
+ ε

(
Phv – vhk ,

(
PkPhu – uhk)

t

)

+ γ
((

PkPhu – uhk),
(
PkPhu – uhk)

t

)
dt

=
∫ tn



(
(Phv – v)t , Th

(
PkPhu – uhk)

t

)
]

dt

+ γ

∫ tn



[(∇(Pku – u),∇Th
(
PkPhu – uhk)

t

)]
dt. (.)

In addition, setting ϕ = PkPhu – uhk in (.), from (.) we have

∫ tn



[((
Phv – vhk), Th

(
Phv – vhk)

t

)
+ ε

((
PkPhu – uhk)

t ,
(
PkPhu – uhk)

t

)

+ γ
((

PkPhu – uhk),
(
PkPhu – uhk)

t

)]
dt

=
∫ tn



(
(Phv – v)t , Th

(
PkPhu – uhk)

t

)
dt

+ γ

∫ tn



(
�(Pku – u), Th

(
PkPhu – uhk)

t

)
dt. (.)

By (.) and the Hölder and Cauchy inequalities applied to the right-hand side of (.)
we obtain



∥
∥T /

h
(
Phv – vhk)(tn)

∥
∥

 + ε
∥
∥
(
PkPhu – uhk)

t

∥
∥

L(,tn ;L(�)) +
γ


∥
∥
(
PkPhu – uhk)(tn)

∥
∥



≤ c
ε

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�)) +
ε


∥
∥
(
PkPhu – uhk)

t

∥
∥

L(,tn ;L(�))

+
cγ 

ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)) +
ε


∥
∥
(
PkPhu – uhk)

t

∥
∥

L(,tn ;L(�)). (.)

Further, we have that

∥
∥T /

h
(
Phv – vhk)(tn)

∥
∥

 + ε
∥
∥
(
PkPhu – uhk)

t

∥
∥

L(,tn ;L(�)) + γ
∥
∥PkPhu(tn) – uhk(tn)

∥
∥



≤ c
ε

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�)) +
cγ 

ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)). (.)

Hence, employing the triangle inequality to (.), we obtain

∥
∥u(tn) – uhk(tn)

∥
∥

 ≤ ∥
∥u(tn) – PhPku(tn)

∥
∥

 +
∥
∥PkPhu(tn) – uhk(tn)

∥
∥



≤ ∥
∥u(tn) – PhPku(tn)

∥
∥

 +
c
εγ

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�))

+
cγ
ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)) (.)
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and

∥
∥
(
u – uhk)

t

∥
∥

L(,tn ;L(�))

≤ ∥
∥(u – PhPku)t

∥
∥

L(,tn ;L(�)) +
∥
∥
(
PkPhu – uhk)

t

∥
∥

L(,tn ;L(�))

≤ ∥
∥(u – PhPku)t

∥
∥

L(,tn ;L(�)) +
c
ε

∥
∥(Phv – v)t

∥
∥

L(,tn ;L(�))

+
cγ 

ε

∥
∥∇(Pku – u)

∥
∥

L(,tn ;L(�)). (.)

Theorem  now follows from (.), (.), and Lemma . �

Theorem  Under the assumptions of Theorem , we have the following estimate:

∥
∥u(t) – uhk(t)

∥
∥

L(L) ≤ C
{

kl+[‖u‖Hl+(L) + ‖∇u‖Hl+(L)
]

+ hm+
[

sup
≤t≤T

‖u‖m+ + ‖ut‖L(Hm+) + ‖vt‖L(Hm+)

]}
. (.)

Proof Let t ∈ [, T] belonging to some interval t ∈ [tn–, tn], we have the following identity:

u(t) – uhk(t) =
∫ t

tn–

(
u – uhk)

t dt + u(tn–) – uhk(tn–). (.)

It follows from (.) and the Hölder inequality that

∥
∥u(t) – uhk(t)

∥
∥

 ≤
∫ tn

tn–

∥
∥
(
u – uhk)

t

∥
∥

 dt +
∥
∥u(tn–) – uhk(tn–)

∥
∥



≤ k



(∫ tn

tn–

∥
∥
(
u – uhk)

t

∥
∥

 dt
) 


+

∥
∥u(tn–) – uhk(tn–)

∥
∥

. (.)

Further, squaring both sides of (.) and then integrating with respect to t from tn– to
tn, we have

∫ tn

tn–

∥
∥u(t) – uhk(t)

∥
∥

 dt ≤ c
(

k
∫ tn

tn–

∥
∥
(
u – uhk)

t

∥
∥

L(tn–,tn ;L(�)) dt

+
∫ tn

tn–

∥
∥u(tn–) – uhk(tn–)

∥
∥

 dt
)

. (.)

By summing (.) from  to N we obtain

∥
∥u(t) – uhk(t)

∥
∥

L(,T ;L(�)) ≤ c
(

k∥∥
(
u – uhk)

t

∥
∥

L(,T ;L(�))

+
∫ T



∥
∥u(tn–) – uhk(tn–)

∥
∥

 dt
)

. (.)

Finally, (.) directly follows from (.) and Theorem . �
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4 Numerical experiments
In this section, we provide two numerical examples to verify the efficiency and feasibility of
the STCFE algorithm. Moreover, we demonstrate that the numerical results are consistent
with theoretical ones. We investigate problem I on the unit spatial region � = [, ] ×
[, ] and temporal interval [, ]. Let uN = u(tN ). We take linear polynomials of spatial
variables and quadratic polynomials of temporal variable, that is, m =  and l = . All the
experiments are implemented on unstructured meshes, just as the partition presented in
Figure  with h = /, and computations were performed from t =  to the final time T = .
In addition, we also give the errors and convergence rates in the H norm of v at t = tN and
in the L(H) norm of u.

In the first example, we take ε = γ = . The exact solution u = e–t sin(πx) sin(πy), v =
–e–t sin(πx) sin(πy) is determined by (.) if f = –e–t sin(πx) sin(πy), u = sin(πx) ×
sin(πy), and v = – sin(πx) sin(πy). First, we study the rates of convergence in spatial
variables. To this end, we consider our STCFE discretization on a sequence of successive
refinements of spatial grids with fixed time step k = .. Table , Table , and Table 
show the errors and the rates of convergence of u in the L, H, L(L), and L(H) norms
and of v in the L and H norms with respect to spatial variables, respectively. From these
tables we can see that the second-order accuracy in space in the L and L(L) norms and
the first-order accuracy in space in the H and L(H) norms are derived, respectively,
which are consistent with theoretical results. Furthermore, the plots of numerical and ex-
act solutions with h = / in Figures  and  for u and in Figures  and  for v are provided,
respectively. From these figures we can see that the numerical solutions approximate the
exact ones very well.

Figure 1 A partition of domain with h=1/16.

Figure 2 The numerical solution of u at t = 1.
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Figure 3 The exact solution of u at t = 1.

Figure 4 The numerical solution of v at t = 1.

Figure 5 The exact solution of v at t = 1.

Now, we study the convergence rates with respect to temporal variable. Since we take
l =  , the optimal convergence rates in the L, L(L), H, and L(H) norms should theo-
retically be of the third-order accuracy in time. Therefore, in order to test the convergence
rates in temporal variable, we take h = O(k/) and h = O(k), respectively, so that the er-
rors in the L, L(L), H, and L(H) norms would be optimal in time. Table , Table , and
Table  indicate that the rates of convergence of u and v in time are close to the third-order
accuracy, which is also consistent with theoretical results. Here, the rates of convergence
with respect to time are calculated by the formula

Rate =
log(e/e)
log(k/k)

,

where k, k and e, e are successive time steps and errors, respectively.
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Table 1 The errors and convergence rates of u at t = tN in the L2 and H1 norms in space

h ‖uN – uhk
N ‖L2 Rate ‖uN – uhk

N ‖H1 Rate

1/8 1.4439e–2 4.8570e–1
1/16 3.5585e–3 2.0207 2.4646e–1 0.9787
1/32 9.0532e–4 1.9748 1.2406e–1 0.9903
1/64 2.3248e–4 1.9613 6.1777e–2 1.0059

Table 2 The errors and convergence rates of u at t = tN in the L2 and H1 norms in time

(h, k) ‖uN – uhk
N ‖L2 Rate (h, k) ‖uN – uhk

N ‖H1 Rate

(0.125, 0.25) 7.1268e–3 (1/8, 1/2) 2.0646e–1
(0.0442, 0.125) 8.3093e–4 3.1005 (1/27, 1/3) 6.0569e–2 3.0244
(0.0156, 0.0625) 1.0239e–4 3.0206 (1/64, 1/4) 2.5331e–2 3.0302

Table 3 The errors and convergence rates of v at t = tN in L2 and H1 norms about space

h ‖vN – vhk
N ‖L2 Rate ‖vN – vhk

N ‖H1 Rate

1/8 1.4566e–2 4.8570e–1
1/16 3.5932e–3 2.0192 2.4646e–1 0.9787
1/32 9.1396e–3 1.9751 1.2406e–1 0.9903
1/64 2.3479e–4 1.9608 6.1777e–2 1.0059

Table 4 The errors and convergence rates of v at t = tN in L2 and H1 norms about time

(h, k) ‖vN – vhk
N ‖L2 Rate (h, k) ‖vN – vhk

N ‖H1 Rate

(0.125, 1/4) 7.1701e–3 (1/8, 1/2) 2.0643e–1
(0.0442, 1/8) 8.3938e–4 3.0946 (1/27, 1/3) 6.0569e–2 3.0241
(0.0156, 1/16) 1.0343e–4 3.0202 (1/64, 1/4) 2.5331e–2 3.0302

Table 5 The errors and convergence rates of u in L2(L2) and L2(H1) norms about space

h ‖u – uhk‖L2(L2) Rate ‖u – uhk‖L2(H1) Rate

1/8 1.0458e–2 3.5296e–1
1/16 2.5742e–3 2.0224 1.7909e–1 0.9788
1/32 6.5257e–4 1.9799 9.0149e–2 0.9903
1/64 1.6514e–4 1.9824 4.4891e–2 1.0059

Table 6 The errors and convergence rates of u in the L2(L2) and L2(H1) norms in time

(h, k) ‖u – uhk‖L2(L2) Rate (h, k) ‖u – uhk‖L2(H1) Rate

(0.125, 1/4) 1.0053e–2 (1/8, 1/2) 3.6314e–1
(0.0442, 1/8) 1.3166e–3 2.9327 (1/27, 1/3) 1.0685e–1 3.0171
(0.0156, 1/16) 1.6673e–4 2.9817 (1/64, 1/4) 4.4870e–2 3.0161

In our second example, we take ε = γ = .. The exact solution u = e–t sin(πx) ×
sin(πy), v = –e–t sin(πx) sin(πy) is also determined by (.) if f = –e–t sin(πx) sin(πy),
u = sin(πx) sin(πy), and v = – sin(πx) sin(πy). In the same way of studying conver-
gence rates as in the first example, we list the errors and rates of convergence in Tables -
. From these tables we know that the second-order accuracy in the L and L(L) norms
and the first-order accuracy in the H and L(H) norms with respect to space and the
third-order accuracy in the L, H, L(L), and L(H) norms with respect to time are also
derived, which further verify the efficiency and feasibility of the STCFE method.
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Table 7 The errors and convergence rates of u at t = tN in the L2 and H1 norms in space

h ‖uN – uhk
N ‖L2 Rate ‖uN – uhk

N ‖H1 Rate

1/8 2.9254e–3 2.0047e–1
1/16 6.8669e–4 2.0909 1.0049e–1 0.9963
1/32 1.8210e–4 1.9149 5.0419e–2 0.9950
1/64 4.5634e–5 1.9965 2.5113e–2 1.0055

Table 8 The errors and convergence rates of u at t = tN in the L2 and H1 norms in time

(h, k) ‖uN – uhk
N ‖L2 Rate (h, k) ‖uN – uhk

N ‖H1 Rate

(0.125, 0.25) 4.6260e–3 (1/8, 1/2) 2.0234e–1
(0.0442, 0.125) 4.3551e–4 3.4090 (1/27, 1/3) 6.0357e–2 2.9834
(0.0156, 0.0625) 5.0465e–5 3.1093 (1/64, 1/4) 2.5314e–2 3.0204

Table 9 The errors and convergence rates of v at t = tN in the L2 and H1 norms in space

h ‖vN – vhk
N ‖L2 Rate ‖vN – vhk

N ‖H1 Rate

1/8 1.3422e–2 2.1612e–1
1/16 3.3845e–3 1.9876 1.0199e–1 1.0833
1/32 8.5281e–4 1.9887 5.0673e–2 1.0092
1/64 2.2460e–4 1.9249 2.5147e–2 1.0108

Table 10 The errors and convergence rates of v at t = tN in the L2 and H1 norms in time

(h, k) ‖vN – vhk
N ‖L2 Rate (h, k) ‖vN – vhk

N ‖H1 Rate

(0.125, 1/4) 1.3732e–2 (1/8, 1/2) 2.2904e–1
(0.0442, 1/8) 1.7806e–3 2.9471 (1/27, 1/3) 6.1171e–2 3.2561
(0.0156, 1/16) 2.2889e–4 2.9596 (1/64, 1/4) 2.5366e–2 3.0598

Table 11 The errors and convergence rates of u in the L2(L2) and L2(H1) norms in space

h ‖u – uhk‖L2(L2) Rate ‖u – uhk‖L2(H1) Rate

1/8 9.5581e–3 3.5267e–1
1/16 2.3449e–3 2.0272 1.7901e–1 0.9782
1/32 5.9563e–4 1.9771 9.0108e–2 0.9903
1/64 1.5021e–4 1.9874 4.4884e–2 1.0054

Table 12 The errors and convergence rates of u in the L2(L2) and L2(H1) norms in time

(h, k) ‖u – uhk‖L2(L2) Rate (h, k) ‖u – uhk‖L2(H1) Rate

(0.125, 1/4) 9.4944e–2 (1/8, 1/2) 3.6262e–1
(0.0442, 1/8) 1.2179e–3 2.9627 (1/27, 1/3) 1.0680e–1 3.0148
(0.0156, 1/16) 1.5288e–4 2.9940 (1/64, 1/4) 4.4864e–2 3.0149

5 Conclusions and perspectives
In this article, we have developed the STCFE method for the D second-order viscoelas-
tic wave equation. The existence, uniqueness, and stability of the STCFE solutions are
demonstrated, and the optimal error estimates in the L, H, and L(L) norms of u and
in the L norm of v are provided. However, our theoretical analysis is different from those
in [–]; our method is more simple and convenient and easier for obtaining various
error estimates in different norms, and so it has a more important meaning. In addition,
our error estimates do not require any restriction conditions on the spatial and temporal
grid sizes. Thus, the method used here is a kind of improvement and development for the
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existing works. Finally, the numerical examples illustrate that the numerical results are
consistent with the theoretical ones and verify the efficiency and feasibility of the STCFE
method.

In the future work, we intend to employ the ideas of this work to establish the STCFE
models for more complex linear and nonlinear TDPDEs. Moreover, the STCFE method
enhance the accuracy of numerical solutions, but they include many degrees of freedom;
therefore, in the next work, we will aim to establish the reduced-order STCFE extrapolat-
ing algorithm based on proper orthogonal decomposition.
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