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1 Introduction
Consider the following fractional p-Laplacian equation:

Dβ

+φp
(
Dα

+ x(t)
)

= f
(
t, x(t), Dα

+ x(t)
)
, t ∈ [, ], (.)

with the boundary value conditions either

x() = x(), Dα
+ x() = , (.)

or

x() = x(), Dα
+ x() = , (.)

where  < α, β ≤ , φp(s) = |s|p–s (p > ), Dα
+ is a Caputo fractional derivative, and f :

[, ] ×R
 →R is a continuous function.

In the last two decades, the theory of fractional calculus has gained popularity due to
its wide applications in various fields of engineering and the sciences [–]. Moreover,
the p-Laplacian equations often exist in non-Newtonian fluid theory, nonlinear elastic
mechanics, and so on.

Recently, many important results on the p-Laplacian equations or the fractional differ-
ential equations have been given. We refer the reader to [–]. However, as far as we
know, there is little work about boundary value problems (BVPs for short) for the frac-
tional differential equations with p-Laplacian operator at resonance.
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Note that BVP (.)-(.) (or BVP (.)-(.)) happens to be at resonance because its
associated homogeneous BVP

⎧
⎨

⎩
Dβ

+φp(Dα
+ x(t)) = , t ∈ [, ],

x() = x(), Dα
+ x() =  (or x() = x(), Dα

+ x() = ),

has a solution x(t) = c, ∀c ∈R.
The rest of this paper is organized as follows. Section  contains some definitions, lem-

mas and notations. In Section , some related lemmas are stated and proved which are
useful in the proof of our main results. In Section  and Section , in view of the contin-
uation theorem due to Ge, we establish two theorems about the existence of solutions for
BVP (.)-(.) (Theorem .) and BVP (.)-(.) (Theorem .).

2 Preliminaries
We give here some definitions and lemmas about the fractional calculus.

Definition . [] The Riemann-Liouville fractional integral operator of order α >  of
a function x : (, +∞) →R is given by

Iα
+ x(t) =


�(α)

∫ t


(t – s)α–x(s) ds,

provided that the right side integral is pointwise defined on (, +∞).

Definition . [] The Caputo fractional derivative of order α >  of a continuous func-
tion x : (, +∞) → R is given by

Dα
+ x(t) = In–α

+
dnx(t)

dtn

=


�(n – α)

∫ t


(t – s)n–α–x(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right side
integral is pointwise defined on (, +∞).

Lemma . [] Let α > . Assume that x, Dα
+ x ∈ L([, ],R). Then the following equality

holds:

Iα
+ Dα

+ x(t) = x(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , and n is the smallest integer greater than or equal to α.

Lemma . [] For any u, v ≥ ,

φp(u + v) ≤ φp(u) + φp(v), if p < ;

φp(u + v) ≤ p–(φp(u) + φp(v)
)
, if p ≥ .
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Next we introduce an extension of Mawhin’s continuation theorem [, ] which allows
us to deal with the more general abstract operator equations, such as BVPs of p-Laplacian
equations.

Let X and Z be Banach spaces with norms ‖ · ‖X and ‖ · ‖Z , respectively.

Definition . [] A continuous operator M : dom M∩X → Z is said to be a quasi-linear
operator if

() Im M = M(dom M ∩ X) is a closed subset of Z,
() Ker M = {x ∈ dom M ∩ X|Mx = } is linearly homeomorphic to R

n with n < ∞.

Definition . [] Let Z be a subspace of Z. An operator Q : Z → Z is said to be a
semi-projector provided that

() Qz = Qz, ∀z ∈ Z,
() Q(λz) = λQz, ∀z ∈ Z, λ ∈R.

Set X = Ker M and let X be the complement space of X in X, then X = X ⊕X. Suppose
Z is a subspace of Z and Z is the complement space of Z in Z such that Z = Z ⊕ Z. Let
P : X → X be a projector and Q : Z → Z a semi-projector, and � ⊂ X an open bounded
set with the origin θ ∈ �.

Definition . [] A continuous operator Nλ : � → Z, λ ∈ [, ] is said to be M-compact
in � if there is a vector subspace Z of Z with dim Z = dim X, and an operator R : � ×
[, ] → X being continuous and compact such that

(I – Q)Nλ(�) ⊂ Im M ⊂ (I – Q)Z, (.)

QNλx = θ , λ ∈ (, ) ⇔ QNx = θ , (.)

R(·, ) is the zero operator and R(·,λ)|∑
λ

= (I – P)|∑
λ
, (.)

M
(
P + R(·,λ)

)
= (I – Q)Nλ, (.)

where λ ∈ [, ], N = N, and
∑

λ = {x ∈ �|Mx = Nλx}.

Lemma . [] Suppose M : dom M ∩ X → Z is a quasi-linear operator and Nλ : � → Z,
λ ∈ [, ] is M-compact in �. In addition, if

(C) Mx = Nλx for every (x,λ) ∈ [(dom M \ Ker M) ∩ ∂�] × (, );
(C) QNx =  for every x ∈ Ker M ∩ ∂�;
(C) deg{JQN ,� ∩ Ker M, } = ,

where N = N and J : Z → X is a homeomorphism with J(θ ) = θ , then the abstract equa-
tion Mx = Nx has at least one solution in dom M ∩ �.

We set Z = C([, ],R) with the norm ‖z‖ = maxt∈[,] |z(t)|, and X = {x ∈ Z|Dα
+ x ∈ Z,

x() = x(), Dα
+ x() = }, X = {x ∈ Z|Dα

+ x ∈ Z, x() = x(), Dα
+ x() = } with the norm

‖x‖X = max{‖x‖,‖Dα
+ x‖}. By using linear functional analysis theory, we can prove X, X

are Banach spaces.
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3 Related lemmas
We will give some lemmas that are useful in the proof of our main results.

Define the operator M : dom M ∩ X → Z by

Mx = Dβ

+φp
(
Dα

+ x
)
, (.)

where dom M = {x ∈ X|Dβ

+φp(Dα
+ x) ∈ Z}. For λ ∈ [, ], we define Nλ : X → Z by

Nλx(t) = λf
(
t, x(t), Dα

+ x(t)
)
, ∀t ∈ [, ]. (.)

Then BVP (.)-(.) is equivalent to the equation

Mx = Nx, x ∈ dom M,

where N = N.

Lemma . The operator M, defined by (.), is a quasi-linear operator.

Proof The proof will be given in the following two steps.
Step . Ker M is linearly homeomorphic to R.
From Lemma ., the homogeneous equation Dβ

+φp(Dα
+ x(t)) =  has the following so-

lutions:

x(t) = d +
φq(d)

�(α + )
tα , d, d ∈R.

Thus, by the boundary value condition Dα
+ x() = , one has

Ker M =
{

x ∈ X|x(t) = d,∀t ∈ [, ], d ∈ R
}

.

Obviously, Ker M �R.
Step . Im M is a closed subset of Z.
Take x ∈ dom M and consider the equation Dβ

+φp(Dα
+ x(t)) = z(t). Then we have z ∈ Z

and

φp
(
Dα

+ x(t)
)

= d + Iβ

+ z(t), d ∈R.

By the condition Dα
+ x() = , one has d = . Thus we get

x(t) = d + Iα
+φq

(
Iβ

+ z
)
(t), d ∈R,

where φq is understood as the operator φq : Z → Z defined by φq(x)(t) = φq(x(t)). Hence,
from the condition x() = x(), we obtain

Iα
+φq

(
Iβ

+ z
)
() = . (.)
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Suppose z ∈ Z and satisfies (.). Let x(t) = Iα
+φq(Iβ

+ z)(t), then we have x ∈ dom M
and

Mx(t) = Dβ

+φp
[
Dα

+ Iα
+φq

(
Iβ

+ z
)]

(t) = z(t).

Hence we obtain

Im M =
{

z ∈ Z
∣
∣∣
∫ 


( – s)α–φq

(∫ s


(s – τ )β–z(τ ) dτ

)
ds = 

}
.

Obviously, Im M ⊂ Z is closed.
Therefore, by Definition ., M is a quasi-linear operator. �

Let X = Ker M and define the continuous operators P : X → X, Q : Z → Z by

Px(t) = x(), ∀t ∈ [, ],

Qz(t) = φp

[

ρ

∫ 


( – s)α–φq

(∫ s


(s – τ )β–z(τ ) dτ

)
ds

]
, ∀t ∈ [, ],

where ρ = 
βq–

∫ 
 ( – s)α–sβ(q–) ds > . It is easy to see that P is a projector and Qz = Qz,

Q(λz) = λQz, ∀z ∈ Z, λ ∈R, that is, Q is a semi-projector. Moreover, X = Im P and Im M =
Ker Q.

Lemma . Let � ⊂ X be an open bounded set. Then the operator Nλ, defined by (.), is
M-compact in �.

Proof Choose X = Ker P, Z = Im Q and define the operator R : � × [, ] → X by

R(x,λ)(t) = Iα
+φq

[
Iβ

+ (I – Q)Nλx
]
(t)

=


�(α)

∫ t


(t – s)α–φq

[


�(β)

·
∫ s


(s – τ )β–(λf

(
τ , x(τ ), Dα

+ x(τ )
)

– QNλx(τ )
)

dτ

]
ds.

Obviously, dim Z = dim X = . The remainder of the proof will be given in the following
two steps.

Step . R : � × [, ] → X is continuous and compact.
By the definition of R, we obtain

Dα
+ Rx(t) = φq

[
Iβ

+ (I – Q)Nλx
]
(t).

Clearly, the operators R, Dα
+ R are compositions of the continuous operators. So R, Dα

+ R
are continuous in Z. Hence R is a continuous operator, and R(�), Dα

+ R(�) are bounded
in Z. Furthermore, there exists a constant T >  such that |Iβ

+ (I – Q)Nλx(t)| ≤ T , ∀x ∈ �,
t ∈ [, ]. Thus, based on the Arzelà-Ascoli theorem, we need only to show R(�) ⊂ X is
equicontinuous.



Chen et al. Boundary Value Problems  (2016) 2016:51 Page 6 of 14

For  ≤ t < t ≤ , x ∈ �, we have

∣∣Rx(t) – Rx(t)
∣∣

=


�(α)

∣∣∣
∣

∫ t


(t – s)α–φq

[
Iβ

+ (I – Q)Nλx(s)
]

ds

–
∫ t


(t – s)α–φq

[
Iβ

+ (I – Q)Nλx(s)
]

ds
∣
∣∣∣

≤ Tq–

�(α)

{∫ t



[
(t – s)α– – (t – s)α–]ds +

∫ t

t

(t – s)α– ds
}

=
Tq–

�(α + )
[
tα
 – tα

 + (t – t)α
]
.

As tα is uniformly continuous in [, ], we obtain R(�) ⊂ Z is equicontinuous. A similar
proof can show that Iβ

+ (I – Q)Nλ(�) ⊂ Z is equicontinuous. This, together with the uni-
formly continuity of φq(s) on [–T , T], shows that Dα

+ R(�) ⊂ Z is equicontinuous. Thus
we find R is compact.

Step . Equations (.)-(.) are satisfied.
For x ∈ �, it is easy to show that Q(I – Q)Nλx = QNλx – QNλx = . So (I – Q)Nλx ∈

Ker Q = Im M. Moreover, for z ∈ Im M ⊂ Z, one has Qz = . Thus z = z – Qz = (I – Q)z ∈
(I – Q)Z. Hence (.) holds. Since QNλx = λQNx, (.) holds too.

For x ∈ ∑
λ, we have Mx = Nλx ∈ Im M = Ker Q. So QNλx = . From the condition

Dα
+ x() = , one has Iβ

+ Dβ

+φp(Dα
+ x) = φp(Dα

+ x). Thus we obtain

R(x,λ)(t) = Iα
+φq

(
Iβ

+ Nλx
)
(t)

= Iα
+φq

[
Iβ

+ Dβ

+φp
(
Dα

+ x
)]

(t)

= x(t) – x()

= (I – P)x(t).

Furthermore, when λ = , we have Nλx(t) ≡ , which yields R(x, )(t) ≡ , ∀x ∈ �. Hence
(.) holds.

For x ∈ �, one has

M
(
Px + R(x,λ)

)
(t) = Dβ

+φp
[
Dα

+
(
Px + R(x,λ)

)]
(t)

= Dβ

+φp
[
Dα

+ Iα
+φq

(
Iβ

+ (I – Q)Nλx
)]

(t)

= (I – Q)Nλx(t),

which implies that (.) holds.
Therefore, by Definition ., Nλ is M-compact in �. �

4 Solutions of BVP (1.1)-(1.2)
We will give a theorem on the existence of solutions for BVP (.)-(.).

Theorem . Let f : [, ] ×R
 →R be continuous. Assume that:
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(H) there exist nonnegative functions a, b, c ∈ Z such that

∣
∣f (t, x, y)

∣
∣ ≤ a(t) + b(t)|x|p– + c(t)|y|p–, ∀t ∈ [, ], (x, y) ∈R

;

(H) there exists a constant A >  such that, for ∀x ∈ dom M \ Ker M satisfying |x(t)| > A for
∀t ∈ [, ], we have

∫ 


( – s)α–φq

(∫ s


(s – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

)
ds = ;

(H) there exists a constant B >  such that, for ∀r ∈R with |r| > B, we have either

φq(r)
∫ 


( – s)α–φq

(∫ s


(s – τ )β–f (τ , r, ) dτ

)
ds >  (.)

or

φq(r)
∫ 


( – s)α–φq

(∫ s


(s – τ )β–f (τ , r, ) dτ

)
ds < . (.)

Then BVP (.)-(.) has at least one solution, provided that

γ :=


�(β + )

[
p–‖b‖

(�(α + ))p– + ‖c‖

]
< , if p < ;

γ :=


�(β + )

[
p–‖b‖

(�(α + ))p– + ‖c‖

]
< , if p ≥ .

(.)

Proof The proof will be given in the following four steps.
Step . � = {x ∈ dom M \ Ker M|Mx = Nλx,λ ∈ (, )} is bounded.
For x ∈ �, one has Nx ∈ Im M = Ker Q. Thus we have

∫ 


( – s)α–φq

(∫ s


(s – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

)
ds = .

From (H), there exists a constant ξ ∈ [, ] such that |x(ξ )| ≤ A. By Lemma ., one has

x(t) = x(ξ ) – Iα
+ Dα

+ x(ξ ) + Iα
+ Dα

+ x(t),

which together with

∣
∣Iα

+ Dα
+ x(t)

∣
∣ =


�(α)

∣∣
∣∣

∫ t


(t – s)α–Dα

+ x(s) ds
∣∣
∣∣

≤ 
�(α)

∥∥Dα
+ x

∥∥
 · 

α
tα

≤ 
�(α + )

∥∥Dα
+ x

∥∥
, ∀t ∈ [, ], (.)

and |x(ξ )| ≤ A yields

‖x‖ ≤ A +


�(α + )
∥
∥Dα

+ x
∥
∥

. (.)
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Then, from (H), we have

∣
∣Iβ

+ Nx(t)
∣
∣ =


�(β)

∣∣
∣∣

∫ t


(t – s)β–f

(
s, x(s), Dα

+ x(s)
)

ds
∣∣
∣∣

≤ 
�(β)

∫ t


(t – s)β–(a(s) + b(s)

∣∣x(s)
∣∣p–

+ c(s)
∣∣Dα

+ x(s)
∣∣p–)ds

≤ 
�(β)

(‖a‖ + ‖b‖‖x‖p–
 + ‖c‖

∥∥Dα
+ x

∥∥p–


) · 
β

tβ

≤ 
�(β + )

[
‖a‖ + ‖c‖

∥∥Dα
+ x

∥∥p–


+ ‖b‖

(
A +


�(α + )

∥∥Dα
+ x

∥∥


)p–]
, ∀t ∈ [, ]. (.)

By Mx = Nλx, Dα
+ x() = , and Lemma ., one has

φp
(
Dα

+ x(t)
)

= λIβ

+ Nx(t),

which, together with |φp(Dα
+ x(t))| = |Dα

+ x(t)|p– and (.), implies

∥∥Dα
+ x

∥∥p–
 ≤ 

�(β + )

[
‖a‖ + ‖c‖

∥∥Dα
+ x

∥∥p–


+ ‖b‖

(
A +


�(α + )

∥∥Dα
+ x

∥∥


)p–]
. (.)

If p < , from (.) and Lemma ., we have

∥∥Dα
+ x

∥∥p–
 ≤ 

�(β + )

[
‖a‖ + Ap–‖b‖

+
(

p–‖b‖

(�(α + ))p– + ‖c‖

)∥
∥Dα

+ x
∥
∥p–



]
.

Then, based on (.), one has

∥
∥Dα

+ x
∥
∥

 ≤
[‖a‖ + Ap–‖b‖

( – γ)�(β + )

]q–

:= K. (.)

Thus, from (.), we have

‖x‖ ≤ A +
K

�(α + )
. (.)

Similarly, if p ≥ , we obtain

∥
∥Dα

+ x
∥
∥

 ≤
[‖a‖ + p–Ap–‖b‖

( – γ)�(β + )

]q–

:= K, (.)

‖x‖ ≤ A +
K

�(α + )
. (.)
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Therefore, combining (.), (.) with (.), (.), we have

‖x‖X = max
{‖x‖,

∥
∥Dα

+ x
∥
∥



}

≤ max

{
K, K, A +

K

�(α + )
, A +

K

�(α + )

}
:= K .

That is, � is bounded.
Step . � = {x ∈ Ker M|QNx = } is bounded.
For x ∈ �, one has x(t) = d, ∀d ∈ R. Then we have

∫ 


( – s)α–φq

(∫ s


(s – τ )β–f (τ , d, ) dτ

)
ds = ,

which together with (H) implies |d| ≤ B. Thus we obtain

‖x‖X ≤ max{B, } = B.

Hence � is bounded.
Step . If (.) holds, then

� =
{

x ∈ Ker M|λIx + ( – λ)JQNx = ,λ ∈ [, ]
}

is bounded, where J : Im Q → Ker M is a homeomorphism such that J(d) = d, ∀d ∈ R. If
(.) holds, then

�′
 =

{
x ∈ Ker M|–λIx + ( – λ)JQNx = ,λ ∈ [, ]

}

is bounded.
For x ∈ �, we have x(t) = d, ∀d ∈R, and

λd = –( – λ)φp

[

ρ

∫ 


( – s)α–φq

(∫ s


(s – τ )β–f (τ , d, ) dτ

)
ds

]
.

If λ = , then d = . If λ ∈ [, ), we can show |d| ≤ B. Otherwise, if |d| > B, in view of (.),
one has

 ≤ λd = –( – λ)φp

[
φq(d)

ρ

∫ 


( – s)α–

· φq

(∫ s


(s – τ )β–f (τ , d, ) dτ

)
ds

]
< ,

which is a contradiction. Hence � is bounded.
Similar to the above argument, we can show �′

 is also bounded.
Step . All conditions of Lemma . are satisfied.
Define

� =
{

x ∈ X|‖x‖X < max{K , B} + 
}

.
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Clearly, (� ∪� ∪�) ⊂ � (or (� ∪� ∪�′
) ⊂ �). From Lemma . and Lemma ., M

is a quasi-linear operator and Nλ is M-compact in �. Moreover, by the above arguments,
we see that the following two conditions are satisfied:

(C) Mx = Nλx for every (x,λ) ∈ [(dom M \ Ker M) ∩ ∂�] × (, );
(C) QNx =  for every x ∈ Ker M ∩ ∂�.

Now we verify the condition (C) of Lemma .. Let us define the homotopy

H(x,λ) = ±λIx + ( – λ)JQNx.

According to the above argument, we know

H(x,λ) = , ∀x ∈ ∂� ∩ Ker M.

Thus we have

deg{JQN ,� ∩ Ker M, θ} = deg
{

H(·, ),� ∩ Ker M, θ
}

= deg
{

H(·, ),� ∩ Ker M, θ
}

= deg{±I,� ∩ Ker M, θ} = .

So the condition (C) of Lemma . is satisfied.
Therefore, the operator equation Mx = Nx has at least one solution in dom M ∩ �. That

is, BVP (.)-(.) has at least one solution in X. �

5 Solutions of BVP (1.1)-(1.3)
We will give a theorem on the existence of solutions for BVP (.)-(.).

Define the operator M : dom M ∩ X → Z by

Mx = Dβ

+φp
(
Dα

+ x
)
, (.)

where dom M = {x ∈ X|Dβ

+φp(Dα
+ x) ∈ Z}. Then BVP (.)-(.) is equivalent to the op-

erator equation

Mx = Nx, x ∈ dom M,

where N = N and Nλ : X → Z, λ ∈ [, ] is defined by (.).
By similar arguments to Section , we obtain

Ker M =
{

x ∈ X|x(t) = d,∀t ∈ [, ], d ∈R
}

,

Im M =
{

z ∈ Z
∣
∣∣
∫ 


( – s)α–φq

(
–

∫ 


( – τ )β–z(τ ) dτ

+
∫ s


(s – τ )β–z(τ ) dτ

)
ds = 

}
.

Lemma . The operator M, defined by (.), is a quasi-linear operator.
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Let X
 = Ker M, define the projector P : X → X and the semi-projector Q : Z → Z

by

Px(t) = x(), ∀t ∈ [, ],

Qz(t) = φp

[

ρ

∫ 


( – s)α–φq

(
–

∫ 


( – τ )β–z(τ ) dτ

+
∫ s


(s – τ )β–z(τ ) dτ

)
ds

]
, ∀t ∈ [, ],

where ρ = 
βq–

∫ 
 (–s)α–φq(–+sβ ) ds < . Furthermore, let � ⊂ X be an open bounded

set, choose X
 = Ker P, Z

 = Im Q and define the operator R : � × [, ] → X
 by

R(x,λ)(t) = Iα
+φq

[
Iβ

+ (I – Q)Nλx + d̃
(
(I – Q)Nλx

)]
(t)

=


�(α)

∫ t


(t – s)α–φq

[


�(β)

·
∫ s


(s – τ )β–(λf

(
τ , x(τ ), Dα

+ x(τ )
)

– QNλx(τ )
)

dτ

–


�(β)

∫ 


( – τ )β–((I – Q)Nλx(τ )

)
dτ

]
ds,

where d̃ : Z →R is defined by

d̃(z) = –Iβ

+ z()

= –


�(β)

∫ 


( – s)β–z(s) ds.

Lemma . The operator Nλ : X → Z, λ ∈ [, ], defined by (.), is M-compact in �.

Our second result, based on Lemma . and Lemma ., is stated as follows.

Theorem . Let f : [, ] ×R
 →R be continuous. Assume that:

(H) there exists a constant A >  such that, for ∀x ∈ dom M \Ker M satisfying |x(t)| > A

for ∀t ∈ [, ], we have

∫ 


( – s)α–φq

(
–

∫ 


( – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

+
∫ s


(s – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

)
ds = ;

(H) there exists a constant B >  such that, for ∀r ∈R with |r| > B, we have either

φq(r)
∫ 


( – s)α–φq

(
–

∫ 


( – τ )β–f (τ , r, ) dτ

+
∫ s


(s – τ )β–f (τ , r, ) dτ

)
ds > 
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or

φq(r)
∫ 


( – s)α–φq

(
–

∫ 


( – τ )β–f (τ , r, ) dτ

+
∫ s


(s – τ )β–f (τ , r, ) dτ

)
ds < ,

and (H) is true. Then BVP (.)-(.) has at least one solution, provided that

δ :=


�(β + )

[
p–‖b‖

(�(α + ))p– + ‖c‖

]
< , if p < ;

δ :=


�(β + )

[
p–‖b‖

(�(α + ))p– + ‖c‖

]
< , if p ≥ .

(.)

Proof Let

�
 =

{
x ∈ dom M \ Ker M|Mx = Nλx,λ ∈ (, )

}
.

Now we prove �
 is bounded.

For x ∈ �
, one has Nx ∈ Im M = Ker Q. Thus we have

∫ 


( – s)α–φq

(
–

∫ 


( – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

+
∫ s


(s – τ )β–f

(
τ , x(τ ), Dα

+ x(τ )
)

dτ

)
ds = .

From (H), there exists a constant η ∈ [, ] such that |x(η)| ≤ A. Hence, by (.), one has

‖x‖ ≤ A +


�(α + )
∥∥Dα

+ x
∥∥

. (.)

Since Mx = Nλx, Dα
+ x() = , one has

φp
(
Dα

+ x(t)
)

= –λIβ

+ Nx() + λIβ

+ Nx(t),

which together with (.) and (.) implies

∥∥Dα
+ x

∥∥p–
 ≤ 

�(β + )

[
‖a‖ + ‖c‖

∥∥Dα
+ x

∥∥p–


+ ‖b‖

(
A +


�(α + )

∥∥Dα
+ x

∥∥


)p–]
. (.)

If p < , from (.) and Lemma ., we have

∥
∥Dα

+ x
∥
∥p–

 ≤ 
�(β + )

[
‖a‖ + Ap–

 ‖b‖

+
(

p–‖b‖

(�(α + ))p– + ‖c‖

)∥
∥Dα

+ x
∥
∥p–



]
.
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Then, in view of (.), one has

∥∥Dα
+ x

∥∥
 ≤

[
(‖a‖ + Ap–

 ‖b‖)
( – δ)�(β + )

]q–

:= T. (.)

Similarly, if p ≥ , we obtain

∥∥Dα
+ x

∥∥
 ≤

[
(‖a‖ + p–Ap–

 ‖b‖)
( – δ)�(β + )

]q–

:= T. (.)

Therefore, from (.), (.), and (.), we have

‖x‖X ≤ max

{
T, T, A +

T

�(α + )
, A +

T

�(α + )

}
.

That is, �
 is bounded.

The remainder of proof are similar to the proof of Theorem ., so we omit the details. �
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