Some existence results on boundary value problems for fractional p-Laplacian equation at resonance

Taiyong Chen*, Wenbin Liu and Huixing Zhang

"Correspondence:
taiyongchen@cumt.edu.cn Department of Mathematics, China University of Mining and Technology, Xuzhou, 221116 P.R. China

Abstract

Two boundary value problems of the fractional p-Laplacian equation at resonance are considered in this paper. By using the continuation theorem due to Ge , we obtain some existence results for such boundary value problems.

MSC: 34A08; 34B15 Keywords: fractional differential equation; p-Laplacian operator; boundary value problem; continuation theorem; resonance

1 Introduction

Consider the following fractional p-Laplacian equation:

$$
\begin{equation*}
D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)=f\left(t, x(t), D_{0^{+}}^{\alpha} x(t)\right), \quad t \in[0,1], \tag{1.1}
\end{equation*}
$$

with the boundary value conditions either

$$
\begin{equation*}
x(0)=x(1), \quad D_{0^{+}}^{\alpha} x(0)=0, \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
x(0)=x(1), \quad D_{0^{+}}^{\alpha} x(1)=0, \tag{1.3}
\end{equation*}
$$

where $0<\alpha, \beta \leq 1, \phi_{p}(s)=|s|^{p-2} s(p>1), D_{0^{+}}^{\alpha}$ is a Caputo fractional derivative, and f : $[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function.

In the last two decades, the theory of fractional calculus has gained popularity due to its wide applications in various fields of engineering and the sciences [1-8]. Moreover, the p-Laplacian equations often exist in non-Newtonian fluid theory, nonlinear elastic mechanics, and so on

Recently, many important results on the p-Laplacian equations or the fractional differential equations have been given. We refer the reader to [9-31]. However, as far as we know, there is little work about boundary value problems (BVPs for short) for the fractional differential equations with p-Laplacian operator at resonance.

Note that BVP (1.1)-(1.2) (or BVP (1.1)-(1.3)) happens to be at resonance because its associated homogeneous BVP

$$
\left\{\begin{array}{l}
D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)=0, \quad t \in[0,1] \\
x(0)=x(1), \quad D_{0^{+}}^{\alpha} x(0)=0 \quad\left(\text { or } x(0)=x(1), D_{0^{+}}^{\alpha} x(1)=0\right)
\end{array}\right.
$$

has a solution $x(t)=c, \forall c \in \mathbb{R}$.
The rest of this paper is organized as follows. Section 2 contains some definitions, lemmas and notations. In Section 3, some related lemmas are stated and proved which are useful in the proof of our main results. In Section 4 and Section 5, in view of the continuation theorem due to Ge , we establish two theorems about the existence of solutions for BVP (1.1)-(1.2) (Theorem 4.1) and BVP (1.1)-(1.3) (Theorem 5.1).

2 Preliminaries

We give here some definitions and lemmas about the fractional calculus.

Definition 2.1 [32] The Riemann-Liouville fractional integral operator of order $\alpha>0$ of a function $x:(0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
I_{0^{+}}^{\alpha} x(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} x(s) d s
$$

provided that the right side integral is pointwise defined on $(0,+\infty)$.

Definition 2.2 [32] The Caputo fractional derivative of order $\alpha>0$ of a continuous function $x:(0,+\infty) \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
D_{0^{+}}^{\alpha} x(t) & =I_{0^{+}}^{n-\alpha} \frac{d^{n} x(t)}{d t^{n}} \\
& =\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}(t-s)^{n-\alpha-1} x^{(n)}(s) d s
\end{aligned}
$$

where n is the smallest integer greater than or equal to α, provided that the right side integral is pointwise defined on $(0,+\infty)$.

Lemma 2.1 [8] Let $\alpha>0$. Assume that $x, D_{0^{+}}^{\alpha} x \in L([0,1], \mathbb{R})$. Then the following equality holds:

$$
I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} x(t)=x(t)+c_{0}+c_{1} t+\cdots+c_{n-1} t^{n-1}
$$

where $c_{i} \in \mathbb{R}, i=0,1, \ldots, n-1$, and n is the smallest integer greater than or equal to α.

Lemma 2.2 [33] For any $u, v \geq 0$,

$$
\begin{aligned}
& \phi_{p}(u+v) \leq \phi_{p}(u)+\phi_{p}(v), \quad \text { if } p<2 \\
& \phi_{p}(u+v) \leq 2^{p-2}\left(\phi_{p}(u)+\phi_{p}(v)\right), \quad \text { if } p \geq 2 .
\end{aligned}
$$

Next we introduce an extension of Mawhin's continuation theorem $[34,35]$ which allows us to deal with the more general abstract operator equations, such as BVPs of p-Laplacian equations.
Let X and Z be Banach spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Z}$, respectively.

Definition 2.3 [35] A continuous operator M : $\operatorname{dom} M \cap X \rightarrow Z$ is said to be a quasi-linear operator if
(1) $\operatorname{Im} M=M(\operatorname{dom} M \cap X)$ is a closed subset of Z,
(2) $\operatorname{Ker} M=\{x \in \operatorname{dom} M \cap X \mid M x=0\}$ is linearly homeomorphic to \mathbb{R}^{n} with $n<\infty$.

Definition 2.4 [35] Let Z_{1} be a subspace of Z. An operator $Q: Z \rightarrow Z_{1}$ is said to be a semi-projector provided that
(1) $Q^{2} z=Q z, \forall z \in Z$,
(2) $Q(\lambda z)=\lambda Q z, \forall z \in Z, \lambda \in \mathbb{R}$.

Set $X_{1}=\operatorname{Ker} M$ and let X_{2} be the complement space of X_{1} in X, then $X=X_{1} \oplus X_{2}$. Suppose Z_{1} is a subspace of Z and Z_{2} is the complement space of Z_{1} in Z such that $Z=Z_{1} \oplus Z_{2}$. Let $P: X \rightarrow X_{1}$ be a projector and $Q: Z \rightarrow Z_{1}$ a semi-projector, and $\Omega \subset X$ an open bounded set with the origin $\theta \in \Omega$.

Definition 2.5 [35] A continuous operator $N_{\lambda}: \bar{\Omega} \rightarrow Z, \lambda \in[0,1]$ is said to be M-compact in $\bar{\Omega}$ if there is a vector subspace Z_{1} of Z with $\operatorname{dim} Z_{1}=\operatorname{dim} X_{1}$, and an operator $R: \bar{\Omega} \times$ $[0,1] \rightarrow X_{2}$ being continuous and compact such that

$$
\begin{align*}
& (I-Q) N_{\lambda}(\bar{\Omega}) \subset \operatorname{Im} M \subset(I-Q) Z, \tag{2.1}\\
& Q N_{\lambda} x=\theta, \quad \lambda \in(0,1) \quad \Leftrightarrow \quad Q N x=\theta, \tag{2.2}\\
& R(\cdot, 0) \text { is the zero operator } \quad \text { and }\left.\quad R(\cdot, \lambda)\right|_{\sum_{\lambda}}=\left.(I-P)\right|_{\sum_{\lambda}}, \tag{2.3}\\
& M(P+R(\cdot, \lambda))=(I-Q) N_{\lambda}, \tag{2.4}
\end{align*}
$$

where $\lambda \in[0,1], N=N_{1}$, and $\sum_{\lambda}=\left\{x \in \bar{\Omega} \mid M x=N_{\lambda} x\right\}$.

Lemma 2.3 [35] Suppose $M: \operatorname{dom} M \cap X \rightarrow Z$ is a quasi-linear operator and $N_{\lambda}: \bar{\Omega} \rightarrow Z$, $\lambda \in[0,1]$ is M-compact in $\bar{\Omega}$. In addition, if
$\left(\mathrm{C}_{1}\right) \quad M x \neq N_{\lambda} x$ for every $(x, \lambda) \in[(\operatorname{dom} M \backslash \operatorname{Ker} M) \cap \partial \Omega] \times(0,1)$;
$\left(C_{2}\right) Q N x \neq 0$ for every $x \in \operatorname{Ker} M \cap \partial \Omega$;
$\left(\mathrm{C}_{3}\right) \operatorname{deg}\{J Q N, \Omega \cap \operatorname{Ker} M, 0\} \neq 0$,
where $N=N_{1}$ and $J: Z_{1} \rightarrow X_{1}$ is a homeomorphism with $J(\theta)=\theta$, then the abstract equation $M x=N x$ has at least one solution in $\operatorname{dom} M \cap \bar{\Omega}$.

We set $Z=C([0,1], \mathbb{R})$ with the norm $\|z\|_{0}=\max _{t \in[0,1]}|z(t)|$, and $X=\left\{x \in Z \mid D_{0^{+}}^{\alpha} x \in Z\right.$, $\left.x(0)=x(1), D_{0^{+}}^{\alpha} x(0)=0\right\}, X^{1}=\left\{x \in Z \mid D_{0^{+}}^{\alpha} x \in Z, x(0)=x(1), D_{0^{+}}^{\alpha} x(1)=0\right\}$ with the norm $\|x\|_{X}=\max \left\{\|x\|_{0},\left\|D_{0^{+}}^{\alpha} x\right\|_{0}\right\}$. By using linear functional analysis theory, we can prove X, X^{1} are Banach spaces.

3 Related lemmas

We will give some lemmas that are useful in the proof of our main results.
Define the operator $M: \operatorname{dom} M \cap X \rightarrow Z$ by

$$
\begin{equation*}
M x=D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x\right) \tag{3.1}
\end{equation*}
$$

where $\operatorname{dom} M=\left\{x \in X \mid D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x\right) \in Z\right\}$. For $\lambda \in[0,1]$, we define $N_{\lambda}: X \rightarrow Z$ by

$$
\begin{equation*}
N_{\lambda} x(t)=\lambda f\left(t, x(t), D_{0^{+}}^{\alpha} x(t)\right), \quad \forall t \in[0,1] . \tag{3.2}
\end{equation*}
$$

Then BVP (1.1)-(1.2) is equivalent to the equation

$$
M x=N x, \quad x \in \operatorname{dom} M
$$

where $N=N_{1}$.

Lemma 3.1 The operator M, defined by (3.1), is a quasi-linear operator.

Proof The proof will be given in the following two steps.
Step $1 . \operatorname{Ker} M$ is linearly homeomorphic to \mathbb{R}.
From Lemma 2.1, the homogeneous equation $D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)=0$ has the following solutions:

$$
x(t)=d_{2}+\frac{\phi_{q}\left(d_{1}\right)}{\Gamma(\alpha+1)} t^{\alpha}, \quad d_{1}, d_{2} \in \mathbb{R}
$$

Thus, by the boundary value condition $D_{0^{+}}^{\alpha} x(0)=0$, one has

$$
\operatorname{Ker} M=\{x \in X \mid x(t)=d, \forall t \in[0,1], d \in \mathbb{R}\}
$$

Obviously, $\operatorname{Ker} M \simeq \mathbb{R}$.
Step $2 . \operatorname{Im} M$ is a closed subset of Z.
Take $x \in \operatorname{dom} M$ and consider the equation $D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)=z(t)$. Then we have $z \in Z$ and

$$
\phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)=d_{1}+I_{0^{+}}^{\beta} z(t), \quad d_{1} \in \mathbb{R}
$$

By the condition $D_{0^{+}}^{\alpha} x(0)=0$, one has $d_{1}=0$. Thus we get

$$
x(t)=d_{2}+I_{0^{+}}^{\alpha} \phi_{q}\left(I_{0^{+}}^{\beta} z\right)(t), \quad d_{2} \in \mathbb{R}
$$

where ϕ_{q} is understood as the operator $\phi_{q}: Z \rightarrow Z$ defined by $\phi_{q}(x)(t)=\phi_{q}(x(t))$. Hence, from the condition $x(0)=x(1)$, we obtain

$$
\begin{equation*}
I_{0^{+}}^{\alpha} \phi_{q}\left(I_{0^{+}}^{\beta} z\right)(1)=0 \tag{3.3}
\end{equation*}
$$

Suppose $z \in Z$ and satisfies (3.3). Let $x(t)=I_{0^{+}}^{\alpha} \phi_{q}\left(I_{0^{+}}^{\beta} z\right)(t)$, then we have $x \in \operatorname{dom} M$ and

$$
M x(t)=D_{0^{+}}^{\beta} \phi_{p}\left[D_{0^{+}}^{\alpha} I_{0^{+}}^{\alpha} \phi_{q}\left(I_{0^{+}}^{\beta} z\right)\right](t)=z(t) .
$$

Hence we obtain

$$
\operatorname{Im} M=\left\{z \in Z \mid \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} z(\tau) d \tau\right) d s=0\right\} .
$$

Obviously, $\operatorname{Im} M \subset Z$ is closed.
Therefore, by Definition 2.3, M is a quasi-linear operator.

Let $X_{1}=\operatorname{Ker} M$ and define the continuous operators $P: X \rightarrow X, Q: Z \rightarrow Z$ by

$$
\begin{aligned}
& P x(t)=x(0), \quad \forall t \in[0,1], \\
& Q z(t)=\phi_{p}\left[\frac{1}{\rho} \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} z(\tau) d \tau\right) d s\right], \quad \forall t \in[0,1],
\end{aligned}
$$

where $\rho=\frac{1}{\beta^{q-1}} \int_{0}^{1}(1-s)^{\alpha-1} s^{\beta(q-1)} d s>0$. It is easy to see that P is a projector and $Q^{2} z=Q z$, $Q(\lambda z)=\lambda Q z, \forall z \in Z, \lambda \in \mathbb{R}$, that is, Q is a semi-projector. Moreover, $X_{1}=\operatorname{Im} P$ and $\operatorname{Im} M=$ $\operatorname{Ker} Q$.

Lemma 3.2 Let $\Omega \subset X$ be an open bounded set. Then the operator N_{λ}, defined by (3.2), is M-compact in $\bar{\Omega}$.

Proof Choose $X_{2}=\operatorname{Ker} P, Z_{1}=\operatorname{Im} Q$ and define the operator $R: \bar{\Omega} \times[0,1] \rightarrow X_{2}$ by

$$
\begin{aligned}
R(x, \lambda)(t)= & I_{0^{+}}^{\alpha} \phi_{q}\left[I_{0^{+}}^{\beta}(I-Q) N_{\lambda} x\right](t) \\
= & \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \phi_{q}\left[\frac{1}{\Gamma(\beta)}\right. \\
& \left.\cdot \int_{0}^{s}(s-\tau)^{\beta-1}\left(\lambda f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right)-Q N_{\lambda} x(\tau)\right) d \tau\right] d s .
\end{aligned}
$$

Obviously, $\operatorname{dim} Z_{1}=\operatorname{dim} X_{1}=1$. The remainder of the proof will be given in the following two steps.

Step 1. $R: \bar{\Omega} \times[0,1] \rightarrow X_{2}$ is continuous and compact.
By the definition of R, we obtain

$$
D_{0^{+}}^{\alpha} R x(t)=\phi_{q}\left[I_{0^{+}}^{\beta}(I-Q) N_{\lambda} x\right](t)
$$

Clearly, the operators $R, D_{0^{+}}^{\alpha} R$ are compositions of the continuous operators. So $R, D_{0^{+}}^{\alpha} R$ are continuous in Z. Hence R is a continuous operator, and $R(\bar{\Omega}), D_{0^{+}}^{\alpha} R(\bar{\Omega})$ are bounded in Z. Furthermore, there exists a constant $T>0$ such that $\left|I_{0^{+}}^{\beta}(I-Q) N_{\lambda} x(t)\right| \leq T, \forall x \in \bar{\Omega}$, $t \in[0,1]$. Thus, based on the Arzelà-Ascoli theorem, we need only to show $R(\bar{\Omega}) \subset X$ is equicontinuous.

For $0 \leq t_{1}<t_{2} \leq 1, x \in \bar{\Omega}$, we have

$$
\begin{aligned}
\mid R x & \left(t_{2}\right)-R x\left(t_{1}\right) \mid \\
= & \left.\frac{1}{\Gamma(\alpha)} \right\rvert\, \int_{0}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} \phi_{q}\left[I_{0^{+}}^{\beta}(I-Q) N_{\lambda} x(s)\right] d s \\
& -\int_{0}^{t_{1}}\left(t_{1}-s\right)^{\alpha-1} \phi_{q}\left[I_{0^{+}}^{\beta}(I-Q) N_{\lambda} x(s)\right] d s \mid \\
\leq & \frac{T^{q-1}}{\Gamma(\alpha)}\left\{\int_{0}^{t_{1}}\left[\left(t_{1}-s\right)^{\alpha-1}-\left(t_{2}-s\right)^{\alpha-1}\right] d s+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1} d s\right\} \\
= & \frac{T^{q-1}}{\Gamma(\alpha+1)}\left[t_{1}^{\alpha}-t_{2}^{\alpha}+2\left(t_{2}-t_{1}\right)^{\alpha}\right] .
\end{aligned}
$$

As t^{α} is uniformly continuous in $[0,1]$, we obtain $R(\bar{\Omega}) \subset Z$ is equicontinuous. A similar proof can show that $I_{0^{+}}^{\beta}(I-Q) N_{\lambda}(\bar{\Omega}) \subset Z$ is equicontinuous. This, together with the uniformly continuity of $\phi_{q}(s)$ on $[-T, T]$, shows that $D_{0^{+}}^{\alpha} R(\bar{\Omega}) \subset Z$ is equicontinuous. Thus we find R is compact.

Step 2. Equations (2.1)-(2.4) are satisfied.
For $x \in \bar{\Omega}$, it is easy to show that $Q(I-Q) N_{\lambda} x=Q N_{\lambda} x-Q^{2} N_{\lambda} x=0$. So $(I-Q) N_{\lambda} x \in$ $\operatorname{Ker} Q=\operatorname{Im} M$. Moreover, for $z \in \operatorname{Im} M \subset Z$, one has $Q z=0$. Thus $z=z-Q z=(I-Q) z \in$ $(I-Q) Z$. Hence (2.1) holds. Since $Q N_{\lambda} x=\lambda Q N x,(2.2)$ holds too.
For $x \in \sum_{\lambda}$, we have $M x=N_{\lambda} x \in \operatorname{Im} M=\operatorname{Ker} Q$. So $Q N_{\lambda} x=0$. From the condition $D_{0^{+}}^{\alpha} x(0)=0$, one has $I_{0^{+}}^{\beta} D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x\right)=\phi_{p}\left(D_{0^{+}}^{\alpha} x\right)$. Thus we obtain

$$
\begin{aligned}
R(x, \lambda)(t) & =I_{0^{+}}^{\alpha} \phi_{q}\left(I_{0^{+}}^{\beta} N_{\lambda} x\right)(t) \\
& =I_{0^{+}}^{\alpha} \phi_{q}\left[I_{0^{+}}^{\beta} D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x\right)\right](t) \\
& =x(t)-x(0) \\
& =(I-P) x(t) .
\end{aligned}
$$

Furthermore, when $\lambda=0$, we have $N_{\lambda} x(t) \equiv 0$, which yields $R(x, 0)(t) \equiv 0, \forall x \in \bar{\Omega}$. Hence (2.3) holds.

For $x \in \bar{\Omega}$, one has

$$
\begin{aligned}
M(P x+R(x, \lambda))(t) & =D_{0^{+}}^{\beta} \phi_{p}\left[D_{0^{+}}^{\alpha}(P x+R(x, \lambda))\right](t) \\
& =D_{0^{+}}^{\beta} \phi_{p}\left[D_{0^{+}}^{\alpha} I_{0^{+}}^{\alpha} \phi_{q}\left(I_{0^{+}}^{\beta}(I-Q) N_{\lambda} x\right)\right](t) \\
& =(I-Q) N_{\lambda} x(t),
\end{aligned}
$$

which implies that (2.4) holds.
Therefore, by Definition 2.5, N_{λ} is M-compact in $\bar{\Omega}$.

4 Solutions of BVP (1.1)-(1.2)

We will give a theorem on the existence of solutions for BVP (1.1)-(1.2).

Theorem 4.1 Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Assume that:
$\left(\mathrm{H}_{1}\right)$ there exist nonnegative functions $a, b, c \in Z$ such that

$$
|f(t, x, y)| \leq a(t)+b(t)|x|^{p-1}+c(t)|y|^{p-1}, \quad \forall t \in[0,1],(x, y) \in \mathbb{R}^{2} ;
$$

$\left(\mathrm{H}_{2}\right)$ there exists a constant $A>0$ such that, for $\forall x \in \operatorname{dom} M \backslash \operatorname{Ker} M$ satisfying $|x(t)|>A$ for $\forall t \in[0,1]$, we have

$$
\int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right) d \tau\right) d s \neq 0
$$

$\left(\mathrm{H}_{3}\right)$ there exists a constant $B>0$ such that, for $\forall r \in \mathbb{R}$ with $|r|>B$, we have either

$$
\begin{equation*}
\phi_{q}(r) \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} f(\tau, r, 0) d \tau\right) d s>0 \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi_{q}(r) \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} f(\tau, r, 0) d \tau\right) d s<0 . \tag{4.2}
\end{equation*}
$$

Then BVP (1.1)-(1.2) has at least one solution, provided that

$$
\begin{align*}
& \gamma_{1}:=\frac{1}{\Gamma(\beta+1)}\left[\frac{2^{p-1}\|b\|_{0}}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_{0}\right]<1, \quad \text { if } p<2 \tag{4.3}\\
& \gamma_{2}:=\frac{1}{\Gamma(\beta+1)}\left[\frac{2^{2 p-3}\|b\|_{0}}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_{0}\right]<1, \quad \text { if } p \geq 2 .
\end{align*}
$$

Proof The proof will be given in the following four steps.
Step 1. $\Omega_{1}=\left\{x \in \operatorname{dom} M \backslash \operatorname{Ker} M \mid M x=N_{\lambda} x, \lambda \in(0,1)\right\}$ is bounded.
For $x \in \Omega_{1}$, one has $N x \in \operatorname{Im} M=\operatorname{Ker} Q$. Thus we have

$$
\int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right) d \tau\right) d s=0 .
$$

From $\left(\mathrm{H}_{2}\right)$, there exists a constant $\xi \in[0,1]$ such that $|x(\xi)| \leq A$. By Lemma 2.1, one has

$$
x(t)=x(\xi)-I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} x(\xi)+I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} x(t),
$$

which together with

$$
\begin{align*}
\left|I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} x(t)\right| & =\frac{1}{\Gamma(\alpha)}\left|\int_{0}^{t}(t-s)^{\alpha-1} D_{0^{+}}^{\alpha} x(s) d s\right| \\
& \leq \frac{1}{\Gamma(\alpha)}\left\|D_{0^{+}}^{\alpha} x\right\|_{0} \cdot \frac{1}{\alpha} t^{\alpha} \\
& \leq \frac{1}{\Gamma(\alpha+1)}\left\|D_{0^{+}}^{\alpha} x\right\|_{0^{\prime}}, \quad \forall t \in[0,1] \tag{4.4}
\end{align*}
$$

and $|x(\xi)| \leq A$ yields

$$
\begin{equation*}
\|x\|_{0} \leq A+\frac{2}{\Gamma(\alpha+1)}\left\|D_{0^{+}}^{\alpha} x\right\|_{0} \tag{4.5}
\end{equation*}
$$

Then, from $\left(\mathrm{H}_{1}\right)$, we have

$$
\begin{align*}
\left|I_{0^{+}}^{\beta} N x(t)\right|= & \frac{1}{\Gamma(\beta)}\left|\int_{0}^{t}(t-s)^{\beta-1} f\left(s, x(s), D_{0^{+}}^{\alpha} x(s)\right) d s\right| \\
\leq & \frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1}\left(a(s)+b(s)|x(s)|^{p-1}\right. \\
& \left.+c(s)\left|D_{0^{+}}^{\alpha} x(s)\right|^{p-1}\right) d s \\
\leq & \frac{1}{\Gamma(\beta)}\left(\|a\|_{0}+\|b\|_{0}\|x\|_{0}^{p-1}+\|c\|_{0}\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1}\right) \cdot \frac{1}{\beta} t^{\beta} \\
\leq & \frac{1}{\Gamma(\beta+1)}\left[\|a\|_{0}+\|c\|_{0}\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1}\right. \\
& \left.+\|b\|_{0}\left(A+\frac{2}{\Gamma(\alpha+1)} \| D_{0^{+} x \|_{0}}^{\alpha}\right)^{p-1}\right], \quad \forall t \in[0,1] . \tag{4.6}
\end{align*}
$$

By $M x=N_{\lambda} x, D_{0^{+}}^{\alpha} x(0)=0$, and Lemma 2.1, one has

$$
\phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)=\lambda I_{0^{+}}^{\beta} N x(t),
$$

which, together with $\left|\phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)\right|=\left|D_{0^{+}}^{\alpha} x(t)\right|^{p-1}$ and (4.6), implies

$$
\begin{align*}
\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1} \leq & \frac{1}{\Gamma(\beta+1)}\left[\|a\|_{0}+\|c\|_{0}\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1}\right. \\
& \left.+\|b\|_{0}\left(A+\frac{2}{\Gamma(\alpha+1)}\left\|D_{0^{+}}^{\alpha} x\right\|_{0}\right)^{p-1}\right] \tag{4.7}
\end{align*}
$$

If $p<2$, from (4.7) and Lemma 2.2, we have

$$
\begin{aligned}
\left\|D_{0^{+}}^{\alpha}\right\|_{0}^{p-1} \leq & \frac{1}{\Gamma(\beta+1)}\left[\|a\|_{0}+A^{p-1}\|b\|_{0}\right. \\
& \left.+\left(\frac{2^{p-1}\|b\|_{0}}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_{0}\right)\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1}\right]
\end{aligned}
$$

Then, based on (4.3), one has

$$
\begin{equation*}
\left\|D_{0^{+}}^{\alpha} x\right\|_{0} \leq\left[\frac{\|a\|_{0}+A^{p-1}\|b\|_{0}}{\left(1-\gamma_{1}\right) \Gamma(\beta+1)}\right]^{q-1}:=K_{1} . \tag{4.8}
\end{equation*}
$$

Thus, from (4.5), we have

$$
\begin{equation*}
\|x\|_{0} \leq A+\frac{2 K_{1}}{\Gamma(\alpha+1)} \tag{4.9}
\end{equation*}
$$

Similarly, if $p \geq 2$, we obtain

$$
\begin{align*}
& \left\|D_{0^{+}}^{\alpha} x\right\|_{0} \leq\left[\frac{\|a\|_{0}+2^{p-2} A^{p-1}\|b\|_{0}}{\left(1-\gamma_{2}\right) \Gamma(\beta+1)}\right]^{q-1}:=K_{2} \tag{4.10}\\
& \|x\|_{0} \leq A+\frac{2 K_{2}}{\Gamma(\alpha+1)} \tag{4.11}
\end{align*}
$$

Therefore, combining (4.8), (4.10) with (4.9), (4.11), we have

$$
\begin{aligned}
\|x\|_{X} & =\max \left\{\|x\|_{0},\left\|D_{0^{+}}^{\alpha} x\right\|_{0}\right\} \\
& \leq \max \left\{K_{1}, K_{2}, A+\frac{2 K_{1}}{\Gamma(\alpha+1)}, A+\frac{2 K_{2}}{\Gamma(\alpha+1)}\right\}:=K .
\end{aligned}
$$

That is, Ω_{1} is bounded.
Step 2. $\Omega_{2}=\{x \in \operatorname{Ker} M \mid Q N x=0\}$ is bounded.
For $x \in \Omega_{2}$, one has $x(t)=d, \forall d \in \mathbb{R}$. Then we have

$$
\int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} f(\tau, d, 0) d \tau\right) d s=0
$$

which together with $\left(\mathrm{H}_{3}\right)$ implies $|d| \leq B$. Thus we obtain

$$
\|x\|_{X} \leq \max \{B, 0\}=B
$$

Hence Ω_{2} is bounded.
Step 3. If (4.1) holds, then

$$
\Omega_{3}=\{x \in \operatorname{Ker} M \mid \lambda I x+(1-\lambda) J Q N x=0, \lambda \in[0,1]\}
$$

is bounded, where $J: \operatorname{Im} Q \rightarrow \operatorname{Ker} M$ is a homeomorphism such that $J(d)=d, \forall d \in \mathbb{R}$. If (4.2) holds, then

$$
\Omega_{3}^{\prime}=\{x \in \operatorname{Ker} M \mid-\lambda I x+(1-\lambda) J Q N x=0, \lambda \in[0,1]\}
$$

is bounded.
For $x \in \Omega_{3}$, we have $x(t)=d, \forall d \in \mathbb{R}$, and

$$
\lambda d=-(1-\lambda) \phi_{p}\left[\frac{1}{\rho} \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} f(\tau, d, 0) d \tau\right) d s\right] .
$$

If $\lambda=1$, then $d=0$. If $\lambda \in[0,1)$, we can show $|d| \leq B$. Otherwise, if $|d|>B$, in view of (4.1), one has

$$
\begin{aligned}
0 \leq \lambda d^{2}= & -(1-\lambda) \phi_{p}\left[\frac{\phi_{q}(d)}{\rho} \int_{0}^{1}(1-s)^{\alpha-1}\right. \\
& \left.\cdot \phi_{q}\left(\int_{0}^{s}(s-\tau)^{\beta-1} f(\tau, d, 0) d \tau\right) d s\right]<0
\end{aligned}
$$

which is a contradiction. Hence Ω_{3} is bounded.
Similar to the above argument, we can show Ω_{3}^{\prime} is also bounded.
Step 4. All conditions of Lemma 2.3 are satisfied.
Define

$$
\Omega=\left\{x \in X \mid\|x\|_{X}<\max \{K, B\}+1\right\} .
$$

Clearly, $\left(\Omega_{1} \cup \Omega_{2} \cup \Omega_{3}\right) \subset \Omega\left(\right.$ or $\left.\left(\Omega_{1} \cup \Omega_{2} \cup \Omega_{3}^{\prime}\right) \subset \Omega\right)$. From Lemma 3.1 and Lemma 3.2, M is a quasi-linear operator and N_{λ} is M-compact in $\bar{\Omega}$. Moreover, by the above arguments, we see that the following two conditions are satisfied:
$\left(\mathrm{C}_{1}\right) \quad M x \neq N_{\lambda} x$ for every $(x, \lambda) \in[(\operatorname{dom} M \backslash \operatorname{Ker} M) \cap \partial \Omega] \times(0,1) ;$
$\left(\mathrm{C}_{2}\right) Q N x \neq 0$ for every $x \in \operatorname{Ker} M \cap \partial \Omega$.
Now we verify the condition $\left(\mathrm{C}_{3}\right)$ of Lemma 2.3. Let us define the homotopy

$$
H(x, \lambda)= \pm \lambda I x+(1-\lambda) J Q N x .
$$

According to the above argument, we know

$$
H(x, \lambda) \neq 0, \quad \forall x \in \partial \Omega \cap \operatorname{Ker} M
$$

Thus we have

$$
\begin{aligned}
\operatorname{deg}\{Q N, \Omega \cap \operatorname{Ker} M, \theta\} & =\operatorname{deg}\{H(\cdot, 0), \Omega \cap \operatorname{Ker} M, \theta\} \\
& =\operatorname{deg}\{H(\cdot, 1), \Omega \cap \operatorname{Ker} M, \theta\} \\
& =\operatorname{deg}\{ \pm I, \Omega \cap \operatorname{Ker} M, \theta\} \neq 0 .
\end{aligned}
$$

So the condition $\left(\mathrm{C}_{3}\right)$ of Lemma 2.3 is satisfied.
Therefore, the operator equation $M x=N x$ has at least one solution in $\operatorname{dom} M \cap \bar{\Omega}$. That is, BVP (1.1)-(1.2) has at least one solution in X.

5 Solutions of BVP (1.1)-(1.3)

We will give a theorem on the existence of solutions for BVP (1.1)-(1.3).
Define the operator $M_{1}: \operatorname{dom} M_{1} \cap X^{1} \rightarrow Z$ by

$$
\begin{equation*}
M_{1} x=D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x\right) \tag{5.1}
\end{equation*}
$$

where $\operatorname{dom} M_{1}=\left\{x \in X^{1} \mid D_{0^{+}}^{\beta} \phi_{p}\left(D_{0^{+}}^{\alpha} x\right) \in Z\right\}$. Then BVP (1.1)-(1.3) is equivalent to the operator equation

$$
M_{1} x=N x, \quad x \in \operatorname{dom} M_{1},
$$

where $N=N_{1}$ and $N_{\lambda}: X^{1} \rightarrow Z, \lambda \in[0,1]$ is defined by (3.2).
By similar arguments to Section 3, we obtain

$$
\begin{aligned}
\operatorname{Ker} M_{1}= & \left\{x \in X^{1} \mid x(t)=d, \forall t \in[0,1], d \in \mathbb{R}\right\}, \\
\operatorname{Im} M_{1}= & \left\{z \in Z \mid \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(-\int_{0}^{1}(1-\tau)^{\beta-1} z(\tau) d \tau\right.\right. \\
& \left.\left.+\int_{0}^{s}(s-\tau)^{\beta-1} z(\tau) d \tau\right) d s=0\right\} .
\end{aligned}
$$

Lemma 5.1 The operator M_{1}, defined by (5.1), is a quasi-linear operator.

Let $X_{1}^{1}=\operatorname{Ker} M_{1}$, define the projector $P_{1}: X^{1} \rightarrow X^{1}$ and the semi-projector $Q_{1}: Z \rightarrow Z$ by

$$
\begin{aligned}
P_{1} x(t)= & x(0), \quad \forall t \in[0,1], \\
Q_{1} z(t)= & \phi_{p}\left[\frac { 1 } { \rho _ { 1 } } \int _ { 0 } ^ { 1 } (1 - s) ^ { \alpha - 1 } \phi _ { q } \left(-\int_{0}^{1}(1-\tau)^{\beta-1} z(\tau) d \tau\right.\right. \\
& \left.\left.+\int_{0}^{s}(s-\tau)^{\beta-1} z(\tau) d \tau\right) d s\right], \quad \forall t \in[0,1],
\end{aligned}
$$

where $\rho_{1}=\frac{1}{\beta q-1} \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(-1+s^{\beta}\right) d s<0$. Furthermore, let $\Omega^{1} \subset X^{1}$ be an open bounded set, choose $X_{2}^{1}=\operatorname{Ker} P_{1}, Z_{1}^{1}=\operatorname{Im} Q_{1}$ and define the operator $R_{1}: \overline{\Omega^{1}} \times[0,1] \rightarrow X_{2}^{1}$ by

$$
\begin{aligned}
R_{1}(x, \lambda)(t)= & I_{0^{+}}^{\alpha} \phi_{q}\left[I_{0^{+}}^{\beta}(I-Q) N_{\lambda} x+\tilde{d}\left((I-Q) N_{\lambda} x\right)\right](t) \\
= & \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \phi_{q}\left[\frac{1}{\Gamma(\beta)}\right. \\
& \cdot \int_{0}^{s}(s-\tau)^{\beta-1}\left(\lambda f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right)-Q N_{\lambda} x(\tau)\right) d \tau \\
& \left.-\frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-\tau)^{\beta-1}\left((I-Q) N_{\lambda} x(\tau)\right) d \tau\right] d s,
\end{aligned}
$$

where $\tilde{d}: Z \rightarrow \mathbb{R}$ is defined by

$$
\begin{aligned}
\tilde{d}(z) & =-I_{0^{+}}^{\beta} z(1) \\
& =-\frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1} z(s) d s .
\end{aligned}
$$

Lemma 5.2 The operator $N_{\lambda}: X^{1} \rightarrow Z, \lambda \in[0,1]$, defined by (3.2), is M-compact in $\overline{\Omega^{1}}$.

Our second result, based on Lemma 5.1 and Lemma 5.2, is stated as follows.

Theorem 5.1 Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Assume that:
$\left(\mathrm{H}_{4}\right)$ there exists a constant $A_{1}>0$ such that, for $\forall x \in \operatorname{dom} M_{1} \backslash \operatorname{Ker} M_{1}$ satisfying $|x(t)|>A_{1}$ for $\forall t \in[0,1]$, we have

$$
\begin{gathered}
\int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(-\int_{0}^{1}(1-\tau)^{\beta-1} f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right) d \tau\right. \\
\left.\quad+\int_{0}^{s}(s-\tau)^{\beta-1} f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right) d \tau\right) d s \neq 0
\end{gathered}
$$

$\left(\mathrm{H}_{5}\right)$ there exists a constant $B_{1}>0$ such that, for $\forall r_{1} \in \mathbb{R}$ with $\left|r_{1}\right|>B_{1}$, we have either

$$
\begin{aligned}
& \phi_{q}\left(r_{1}\right) \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(-\int_{0}^{1}(1-\tau)^{\beta-1} f\left(\tau, r_{1}, 0\right) d \tau\right. \\
& \left.\quad+\int_{0}^{s}(s-\tau)^{\beta-1} f\left(\tau, r_{1}, 0\right) d \tau\right) d s>0
\end{aligned}
$$

or

$$
\begin{aligned}
& \phi_{q}\left(r_{1}\right) \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(-\int_{0}^{1}(1-\tau)^{\beta-1} f\left(\tau, r_{1}, 0\right) d \tau\right. \\
& \left.\quad+\int_{0}^{s}(s-\tau)^{\beta-1} f\left(\tau, r_{1}, 0\right) d \tau\right) d s<0
\end{aligned}
$$

and $\left(\mathrm{H}_{1}\right)$ is true. Then BVP (1.1)-(1.3) has at least one solution, provided that

$$
\begin{align*}
& \delta_{1}:=\frac{2}{\Gamma(\beta+1)}\left[\frac{2^{p-1}\|b\|_{0}}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_{0}\right]<1, \quad \text { if } p<2 ; \\
& \delta_{2}:=\frac{2}{\Gamma(\beta+1)}\left[\frac{2^{2 p-3}\|b\|_{0}}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_{0}\right]<1, \quad \text { if } p \geq 2 . \tag{5.2}
\end{align*}
$$

Proof Let

$$
\Omega_{1}^{1}=\left\{x \in \operatorname{dom} M_{1} \backslash \operatorname{Ker} M_{1} \mid M_{1} x=N_{\lambda} x, \lambda \in(0,1)\right\} .
$$

Now we prove Ω_{1}^{1} is bounded.
For $x \in \Omega_{1}^{1}$, one has $N x \in \operatorname{Im} M_{1}=\operatorname{Ker} Q_{1}$. Thus we have

$$
\begin{aligned}
& \int_{0}^{1}(1-s)^{\alpha-1} \phi_{q}\left(-\int_{0}^{1}(1-\tau)^{\beta-1} f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right) d \tau\right. \\
& \left.\quad+\int_{0}^{s}(s-\tau)^{\beta-1} f\left(\tau, x(\tau), D_{0^{+}}^{\alpha} x(\tau)\right) d \tau\right) d s=0 .
\end{aligned}
$$

From $\left(\mathrm{H}_{4}\right)$, there exists a constant $\eta \in[0,1]$ such that $|x(\eta)| \leq A_{1}$. Hence, by (4.4), one has

$$
\begin{equation*}
\|x\|_{0} \leq A_{1}+\frac{2}{\Gamma(\alpha+1)}\left\|D_{0^{+}}^{\alpha} x\right\|_{0} . \tag{5.3}
\end{equation*}
$$

Since $M_{1} x=N_{\lambda} x, D_{0^{+}}^{\alpha} x(1)=0$, one has

$$
\phi_{p}\left(D_{0^{+}}^{\alpha} x(t)\right)=-\lambda I_{0^{+}}^{\beta} N x(1)+\lambda I_{0^{+}}^{\beta} N x(t),
$$

which together with (4.6) and (5.3) implies

$$
\begin{align*}
\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1} \leq & \frac{2}{\Gamma(\beta+1)}\left[\|a\|_{0}+\|c\|_{0}\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1}\right. \\
& \left.+\|b\|_{0}\left(A_{1}+\frac{2}{\Gamma(\alpha+1)}\left\|D_{0^{+}}^{\alpha} x\right\|_{0}\right)^{p-1}\right] . \tag{5.4}
\end{align*}
$$

If $p<2$, from (5.4) and Lemma 2.2, we have

$$
\begin{aligned}
\left\|D_{0^{+}}^{\alpha}\right\|_{0}^{p-1} \leq & \frac{2}{\Gamma(\beta+1)}\left[\|a\|_{0}+A_{1}^{p-1}\|b\|_{0}\right. \\
& \left.+\left(\frac{2^{p-1}\|b\|_{0}}{(\Gamma(\alpha+1))^{p-1}}+\|c\|_{0}\right)\left\|D_{0^{+}}^{\alpha} x\right\|_{0}^{p-1}\right] .
\end{aligned}
$$

Then, in view of (5.2), one has

$$
\begin{equation*}
\left\|D_{0^{+}}^{\alpha} x\right\|_{0} \leq\left[\frac{2\left(\|a\|_{0}+A_{1}^{p-1}\|b\|_{0}\right)}{\left(1-\delta_{1}\right) \Gamma(\beta+1)}\right]^{q-1}:=T_{1} . \tag{5.5}
\end{equation*}
$$

Similarly, if $p \geq 2$, we obtain

$$
\begin{equation*}
\left\|D_{0^{+}}^{\alpha} x\right\|_{0} \leq\left[\frac{2\left(\|a\|_{0}+2^{p-2} A_{1}^{p-1}\|b\|_{0}\right)}{\left(1-\delta_{2}\right) \Gamma(\beta+1)}\right]^{q-1}:=T_{2} \tag{5.6}
\end{equation*}
$$

Therefore, from (5.3), (5.5), and (5.6), we have

$$
\|x\|_{X} \leq \max \left\{T_{1}, T_{2}, A_{1}+\frac{2 T_{1}}{\Gamma(\alpha+1)}, A_{1}+\frac{2 T_{2}}{\Gamma(\alpha+1)}\right\} .
$$

That is, Ω_{1}^{1} is bounded.

The remainder of proof are similar to the proof of Theorem 4.1, so we omit the details.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors contributed equally in this article. They read and approved the final manuscript.

Acknowledgements

The authors would like to thank the anonymous referee for his/her valuable comments, which have improved the presentation and quality of the manuscript. This research was supported by the Fundamental Research Funds for the Central Universities (2015XKMS072).

Received: 9 November 2015 Accepted: 17 February 2016 Published online: 23 February 2016

References

1. Agarwal, RP, Belmekki, M, Benchohra, M: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 47, Article ID 981728 (2009)
2. Agarwal, RP, Benchohra, M, Hamani, S: Boundary value problems for fractional differential equations. Georgian Math. J. 16, 401-411 (2009)
3. Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)
4. Delbosco, D, Rodino, L: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204, 609-625 (1996)
5. He, JH : Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57-58 (1998)
6. He, JH: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 15, 86-90 (1999)
7. Jaradat, OK, Al-Omari, A, Momani, S: Existence of mild solutions for fractional semilinear initial value problems. Nonlinear Anal. 69, 3153-3159 (2008)
8. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
9. Agarwal, RP, O'Regan, D, Stanek, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57-68 (2010)
10. Babakhani, A, Gejji, VD: Existence of positive solutions of nonlinear fractional differential equations. J. Math. Anal. Appl. 278, 434-442 (2003)
11. Bai, Z: On solutions of some fractional m-point boundary value problems at resonance. Electron. J. Qual. Theory Differ. Equ. 2010, Article ID 37 (2010)
12. Bai, Z, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005)
13. Benchohra, M, Hamani, S, Ntouyas, SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 71, 2391-2396 (2009)
14. Chen, T, Liu, W: An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator. Appl. Math. Lett. 25, 1671-1675 (2012)
15. Chen, T, Liu, W, Hu, Z: New results on the existence of periodic solutions for a higher-order Liénard type p-Laplacian differential equation. Math. Methods Appl. Sci. 34, 2189-2196 (2011)
16. Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210-3217 (2012)
17. Chen, T, Liu, W, Yang, C: Antiperiodic solutions for Liénard-type differential equation with p-Laplacian operator. Bound. Value Probl. 2010, Article ID 194824 (2010)
18. Darwish, MA, Ntouyas, SK: On initial and boundary value problems for fractional order mixed type functional differential inclusions. Comput. Math. Appl. 59, 1253-1265 (2010)
19. El-Shahed, M, Nieto, JJ: Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order. Comput. Math. Appl. 59, 3438-3443 (2010)
20. Feng, H, Lian, H, Ge, W: A symmetric solution of a multipoint boundary value problem with one-dimensional p-Laplacian at resonance. Nonlinear Anal. 69, 3964-3972 (2008)
21. Jiang, D, Gao, W: Upper and lower solution method and a singular boundary value problem for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 252, 631-648 (2000)
22. Jiang, W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 74, 1987-1994 (2011)
23. Kilbas, AA, Trujillo, JJ: Differential equations of fractional order: methods, results and problems - I. Appl. Anal. 78, 153-192 (2001)
24. Kilbas, AA, Trujillo, JJ: Differential equations of fractional order: methods, results and problems - II. Appl. Anal. 81, 435-493 (2002)
25. Kosmatov, N : A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 2010, Article ID 135 (2010)
26. Lian, $\mathrm{L}, \mathrm{Ge}, \mathrm{W}$: The existence of solutions of m-point p-Laplacian boundary value problems at resonance. Acta Math. Appl. Sin. 28, 288-295 (2005)
27. Liu, B, Yu, J: On the existence of solutions for the periodic boundary value problems with p-Laplacian operator. J. Syst. Sci. Math. Sci. 23, 76-85 (2003)
28. Pang, $H, G e, W$, Tian, M: Solvability of nonlocal boundary value problems for ordinary differential equation of higher order with a p-Laplacian. Comput. Math. Appl. 56, 127-142 (2008)
29. Su, H, Wang, B, Wei, Z, Zhang, X: Positive solutions of four-point boundary value problems for higher-order p-Laplacian operator. J. Math. Anal. Appl. 330, 836-851 (2007)
30. Su, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64-69 (2009)
31. Zhang, J, Liu, W, Ni, J, Chen, T: Multiple periodic solutions of p-Laplacian equation with one-side Nagumo condition. J. Korean Math. Soc. 45, 1549-1559 (2008)
32. Samko, SG, Kilbas, AA, Marichev, Ol: Fractional Integrals and Derivatives: Theory and Applications. Gordon \& Breach, Switzerland (1993)
33. Lian, H: Boundary value problems for nonlinear ordinary differential equations on infinite intervals. Doctoral thesis (2007)
34. Ge, W, Ren, J: An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian. Nonlinear Anal. 58, 477-488 (2004)
35. Ge, W: Boundary Value Problems for Ordinary Nonlinear Differential Equations. Science Press, Beijing (2007)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

