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Abstract
In this paper, we give some properties about the (2,p)-Laplacian operator (p > 1,
p �= 2), and consider the existence of solutions to two kinds of partial differential
equations related to the (2,p)-Laplacian operator by those properties. Specifically, we
establish an existence result of positive solutions using fixed point index theory and
an existence result of nodal solutions via the quantitative deformation lemma.
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1 Introduction and main results
Recently, much attention has been paid to the existence of solutions to the following quasi-
linear elliptic problems of (q, p)-Laplacian type:

{
–�qu – �pu = h(x, u), x ∈ �,
u = , x ∈ ∂�,

(.)

where � ⊂ R
N , N ≥ , is a bounded domain with smooth boundary ∂�, p, q > , �pu =

div(|∇u|p–∇u) is the p-Laplacian of u, and the function h : �×R →R is a Carathéodory
function. By a solution u of (.), we mean that u, belonging to some Sobolev space, solves
(.) in the weak sense, i.e., u satisfies

∫
�

|∇u|q–∇u · ∇v +
∫

�

|∇u|p–∇u · ∇v =
∫

�

h(x, u)v, v ∈ C∞
 (�).

Moreover, by a non-negative nontrivial solution u of (.), we mean that u is a solution
of (.), u �=  and u(x) ≥  for x ∈ �; if u is a solution of (.) with u± �= , where u+ =
max{u, } and u– = max{u, }, then we say that u is a sign-changing solution of (.). We
know that solutions to (.) are the steady state solutions of the general reaction-diffusion
equation

ut = div
(
H(u)∇u

)
+ h(x, u), (.)

where H(u) = |∇u|q– + |∇u|p–. Equation (.) has a wide range of applications in physics
and related sciences such as biophysics [], plasma physics [], and chemical reaction de-
sign []. The stationary solutions to (.) have been studied by many authors; see [–].
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When q =  �= p and h(x, u) = a(x)|u|r–u + b(x)|u|s–u, Sidiropoulos in [] considered the
existence of non-negative solutions to (.) with the exponents r, s being subcritical and a,
b being essentially bounded functions. Their proofs are variational in character and rely ei-
ther on the fibering method or on the mountain pass theorem of Ambrosetti-Rabinowitz.
In [], with h(x, u) = θ |u|r– + |u|p∗–u, p < N ,  < q < p < p∗ = Np/(N – p), the authors es-
tablished the existence of multiple positive solutions of (.) by some standard variational
methods.

The purpose of this article is to give some properties and applications about the operator
–� – �p (p > , p �= ). Let H

(�) and W ,p
 (�) be the usual Sobolev spaces defined as the

completion of C∞
 (�) with respect to the norms ‖u‖H

(�) = (
∫
�

|∇u|)/ and ‖u‖W ,p
 (�) =

(
∫
�

|∇u|p)/p, respectively. When  < p < , let X = H
(�) and ‖u‖X = ‖u‖H

(�), or when
p > , let X = W ,p

 (�) and ‖u‖X = ‖u‖W ,p
 (�). Denote by X∗ the dual space of X. In addition,

by | · |q, we denote the usual norm in Lq(�), q ≥ .
It is well known that the operator –� or –�p is a homeomorphism in the Sobolev

space X. However, we do not know whether the operator –� – �p is a homeomorphism
in the single Sobolev space X and we do not have the related literature in our hands. Sim-
ilarly, it is obvious that the functional ϕ(u) = 


∫
�

|∇u| and ψ(u) = 
p
∫
�

|∇u|p belong to
C(H

(�),R) and C(W ,p
 (�),R), respectively. Whether the functional J = ϕ + ψ belongs

to C(X,R) is an interesting problem. For the reader’s convenience and completeness of the
paper, in Section , we will answer those questions and obtain the properties (a) and (b):

(a) the operator –� – �p is a homeomorphism from X to X∗ (Proposition .);
(b) the functional

J(u) =



∫
�

|∇u| +

p

∫
�

|∇u|p, u ∈ X,

belongs to C(X,R) (Proposition .).
As an application of the property (a), we will consider in Section  the following quasi-

linear elliptic equation:

{
–�u – �pu = f (x, u) + h(x), x ∈ �,
u = , x ∈ ∂�,

(.)

where h ∈ L∞(�) and f satisfies the following conditions:

(f) f ∈ C(� ×R,R), f (x, t) ≥  for all (x, t) ∈ � ×R+ and f (x, t) =  for all (x, t) ∈ � ×R–,
where R+ := [,∞) and R– := (–∞, ];

(f)

lim
t→∞

f (x, t)
t + tp– = f∞ < ∞, uniformly for x ∈ �.

The asymptotic behavior of f leads us to define the following two constants:

λ = inf

{∫
�

|∇u| : u ∈ H
(�),

∫
�

|u| = 
}
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and

μ = inf

{∫
�

|∇u|p : u ∈ W ,p
 (�),

∫
�

|u|p = 
}

.

Our main result as regards equation (.) is the following theorem.

Theorem . Suppose that f satisfies (f) and (f) with f∞ < λ when  < p <  or f∞ < μ

when p > . Then equation (.) has a non-negative solution. Moreover, equation (.) has
a non-negative nontrivial solution when h �= .

Remark . When h =  the conditions in Theorem . cannot guarantee the existence
of nontrivial solution to (.). In fact, we can get the following.

Proposition . Assume that f (x, u) = λu+ + μ(u+)p– with  < λ,μ < min{λ,μ} and
h = . Then (.) has only zero solution.

Proof Suppose that u is a nontrivial solution to (.). Then

∫
�

|∇u| +
∫

�

|∇u|p = λ

∫
�

u + μ

∫
�

|u|p.

Hence,

 < (λ – λ)
∫

�

u ≤
∫

�

|∇u| – λ

∫
�

u

= μ

∫
�

|u|p –
∫

�

|∇u| ≤ (μ – μ)
∫

�

|u|p < ,

which is a contradiction. The proof is completed. �

As an application of the property (b), in Section , we will investigate the existence of
least energy sign-changing solution of the following equation:

{
–�u – �pu = g(u), x ∈ �,
u = , x ∈ ∂�.

(.)

By the symmetry, we only consider the case p > . Here, g ∈ C(R,R) satisfies the following
hypotheses:

(g) limt→ g(t)/t = ;
(g) for some constant q ∈ (p, p∗), lim|t|→∞ g(t)/|t|q– = , where p∗ = ∞ for N ≤ p, and

p∗ = Np/(N – p) for N > p;
(g) there exists μ > p such that lim|t|→∞ G(t)/|t|μ = ∞, where G(t) =

∫ t
 g(s) ds for all t ∈R;

(g) g(t)/|t|μ– is increasing on (–∞, ) and (,∞), respectively.

Our main result as regards equation (.) is the following theorem.

Theorem . If the assumptions (g)-(g) hold, then the problem (.) has one least energy
sign-changing solution.
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Remark . In general, in order to obtain sign-changing solutions, it is common to as-
sume that the nonlinearity satisfies g(t)t ≥ , t ∈ R. However, there are functions satisfy-
ing (g)-(g) but not having the property g(t)t ≥ , t ∈ R. For example, we consider the
following function:

g(t) =

{
t log t, t > ,
–t, t ≤ .

It is obvious that g satisfies (g)-(g). But g(t)t <  when  < t < . The proof of Theorem .
is based on the ideas from [, ] and we put some new ingredients in the proof process.

The paper is organized as follows. First, in Section , we prove the two properties related
to the operator –� – �p. Next, the applications of the properties (a) and (b) are given in
Sections  and , respectively. In this paper, ci (i = , , . . .) and the Cε denote various posi-
tive constant whose exact values are not essential to the analysis of the relevant problems.

2 Properties of the operator –� – �p

In this section, we show the properties (a) and (b) for the operator –� – �p. Before com-
pleting the proof of the property (a), we introduce some notations and lemmas first. Let
P = {u ∈ X : u(x) ≥ , a.e. x ∈ �} be the positive cone in X and let P∗ = {h ∈ X∗ : 〈h, u〉 ≥
, u ∈ P} be its dual cone. Define a nonlinear operator A : X → X∗ by

〈Au, v〉 =
∫

�

∇u · ∇v +
∫

�

|∇u|p–∇u · ∇v, u, v ∈ X.

Lemma . [] There exist constants ci (i = , , , ) such that, for all x, x ∈ R
N , when

 < p < ,

(x – x) · (|x|p–x – |x|p–x
) ≥ c

(|x| + |x|
)p–|x – x|, (.)∣∣|x|p–x – |x|p–x

∣∣ ≤ c|x – x|p–; (.)

when p > ,

(x – x) · (|x|p–x – |x|p–x
) ≥ c|x – x|p, (.)∣∣|x|p–x – |x|p–x

∣∣ ≤ c
(|x| + |x|

)p–|x – x|. (.)

Remark . In (.), when x = x = , we define (|x| + |x|)p–|x – x| = .

Proposition . The operator A is a homeomorphism from X to X∗ and A–(P∗) ⊂ P.

Proof First of all, we show that A is a homeomorphism. When  < p < , for any u, v ∈ X,
by (.), we have

〈Au – Av, u – v〉 =
∫

�

∣∣∇(u – v)
∣∣ +

∫
�

(|∇u|p–∇u – |∇v|p–∇v
) · ∇(u – v)

≥
∫

�

∣∣∇(u – v)
∣∣ + c

∫
�

(|∇u| + |∇v|)p–∣∣∇(u – v)
∣∣

≥
∫

�

∣∣∇(u – v)
∣∣.
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When p > , for any u, v ∈ X, by (.), we get

〈Au – Av, u – v〉 =
∫

�

∣∣∇(u – v)
∣∣ +

∫
�

(|∇u|p–∇u – |∇v|p–∇v
) · ∇(u – v)

≥
∫

�

∣∣∇(u – v)
∣∣ + c

∫
�

∣∣∇(u – v)
∣∣p

≥ c

∫
�

∣∣∇(u – v)
∣∣p.

Hence, A is a strongly monotone operator.
Then we claim A is continuous from X to X∗. Assume un → u in X. For all w ∈ X, when

 < p < , by the Hölder inequality, the Sobolev embedding theorem, and (.), we obtain

∣∣〈Aun – Au, w〉∣∣
=

∣∣∣∣
∫

�

(|∇un|p–∇un – |∇u|p–∇u
) · ∇w +

∫
�

(∇un – ∇u) · ∇w
∣∣∣∣

≤
∫

�

∣∣|∇un|p–∇un – |∇u|p–∇u
∣∣|∇w| +

∫
�

∣∣∇(un – u)
∣∣|∇w|

≤ c

∫
�

∣∣∇(un – u)
∣∣p–|∇w| +

∫
�

∣∣∇(un – u)
∣∣|∇w|

≤ c

(∫
�

∣∣∇(un – u)
∣∣

)(p–)/(∫
�

|∇w|
)/

|�|(–p)/

+
(∫

�

∣∣∇(un – u)
∣∣

)/(∫
�

w
)/

≤ c‖un – u‖p–
X ‖w‖X + ‖un – u‖X‖w‖X ; (.)

similarly, when p > , by the Hölder inequality, the Sobolev embedding theorem, and (.),
we can get

∣∣〈Aun – Au, w〉∣∣
≤

∫
�

∣∣|∇un|p–∇un – |∇u|p–∇u
∣∣|∇w| +

∫
�

∣∣∇(un – u)
∣∣|∇w|

≤ c

∫
�

(|∇un| + |∇u|)p–∣∣∇(un – u)
∣∣|∇w| +

∫
�

∣∣∇(un – u)
∣∣|∇w|

≤ c

(∫
�

(|∇un| + |∇u|)p
)(p–)/p(∫

�

∣∣∇(un – u)
∣∣p

)/p(∫
�

|∇w|p
)/p

+ c‖un – u‖X‖w‖X

≤ c
(‖un‖X + ‖u‖X

)p–‖un – u‖X‖w‖X + c‖un – u‖X‖w‖X . (.)

Thus, ‖Aun – Au‖ →  as n → ∞. By the strong monotone operator theorem ([], The-
orem .A, p.), A is a homeomorphism.

To show the second part of this proof, we assume that w ∈ P∗. By the first part of the
lemma, there exists u ∈ X such that∫

�

[|∇u|p–∇u · ∇v + ∇u · ∇v
]

= 〈w, v〉, v ∈ X. (.)
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Taking v = u– in (.), we have
∫
�

|∇u–|p +
∫
�

|∇u–| ≤ . Hence u(x) ≥  almost every-
where for x ∈ �, that is, u ∈ P. Then the proof is completed. �

Next, we show the property (b) for the operator –� – �p.

Proposition . The functional

J(u) =



∫
�

|∇u| +

p

∫
�

|∇u|p, u ∈ X,

belongs to C(X,R).

Proof For any u ∈ X, we define the functional J(u) =
∫
�

|∇u| and J(u) =
∫
�

|∇u|p for
convenience. The proof will be completed by considering the following two cases.

(i) When  < p < , since J(u) =
∫
�

|∇u| = ‖u‖
X , J is of C(X,R). Hence we only need

to show that J is of C(X,R).
We first show J is Gâteaux differentiable. In fact, let u, v ∈ X. For fixed x ∈ � and  <

|t| < , there exists a constant λ ∈ [, ] such that


|t|

∣∣∣∣∇(u + tv)
∣∣p – |∇u|p∣∣ ≤ p

∣∣∇(u + λtv)
∣∣p–|∇v| ≤ p

(|∇u| + |∇v|)p–|∇v|.

By the Hölder inequality and the Sobolev embedding theorem, we find that

∫
�

∣∣(|∇u| + |∇v|)p–|∇v|∣∣ ≤
(∫

�

(|∇u| + |∇v|)
)(p–)/(∫

�

|∇v|
)/

|�|(–p)/

≤ c
(‖u‖X + ‖v‖X

)p–‖v‖X < ∞.

Hence, (|∇u| + |∇v|)p–|∇v| ∈ L. By the Lebesgue theorem, we obtain

〈
J ′
(u), v

〉
= lim

t→

∫
�

|∇(u + tv)|p – |∇u|p
t

= p lim
t→

∫
�

|∇u + λt∇v|p–∇(u + λtv) · ∇v

= p
∫

�

|∇u|p–∇u · ∇v.

Next, we show the continuity of the Gâteaux differentiability. Assume un → u as n → ∞
in X. Therefore, similar to (.), we can deduce

∣∣〈J ′
(un) – J ′

(u), v
〉∣∣ ≤ p

∫
�

∣∣|∇un|p–∇un – |∇u|p–∇u
∣∣|∇v|

≤ c

∫
�

∣∣∇(un – u)
∣∣p–|∇v|

≤ c‖un – u‖p–
X ‖v‖X .

Obviously,
∥∥J ′

(un) – J ′
(u)

∥∥ ≤ c‖un – u‖p–
X → , n → ∞.

Hence J ∈ C(X,R).
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(ii) When p > , J =
∫
�

|∇u|p is of C(X,R) (see [], Proposition ., p.). Hence we
only show that J(u) is of C(X,R). Letting u, v ∈ X, for fixed  < |t| < , we have


|t|

∣∣∣∣∇(u + tv)
∣∣ – |∇u|∣∣ =

∣∣t|∇v| + ∇u · ∇v
∣∣ ≤ |∇v| + |∇u||∇v|.

By the Hölder inequality and the Sobolev embedding theorem, we get∫
�

(|∇v| + |∇u||∇v|) ≤ c‖v‖
X + c‖u‖X‖v‖X < ∞.

Hence, |∇v| + |∇u||∇v| ∈ L. Then

〈
J ′
(u), v

〉
= lim

t→

∫
�

|∇(u + tv)| – |∇u|
t

= lim
t→

∫
�

(
t|∇v| + ∇u · ∇v

)

= 
∫

�

∇u · ∇v.

Assume un → u as n → ∞ in X. Therefore, similar to (.), we can find that

∣∣〈J ′
(un) – J ′

(u), v
〉∣∣ ≤ 

∫
�

∣∣∇(un – u)
∣∣|∇v| ≤ c‖un – u‖X‖v‖X .

Then

∥∥J ′
(un) – J ′

(u)
∥∥ ≤ c‖un – u‖X → , n → ∞.

Hence, J ∈ C(X,R). The proof is completed. �

3 An application of the property (a)
In this section, we mainly show Theorem . by the fixed point index theory. Hence, we
first introduce a proposition about the fixed point index.

Proposition . (see []) Let E be a real Banach space, V ⊂ E be a cone, and U ⊂ V be
a bounded open subset of V . If the completely continuous operator B : U → V has no fixed
point on ∂U , then there exists an integer i(B, U , V ), which is regarded as the fixed point
index, and the following statements hold:

(i) If B : U → U is a constant mapping, then i(B, U , V ) = .
(ii) Assume that U and U are disjoint open subsets of U and B has no fixed point in

U \ (U ∪ U), then i(B, U , V ) = i(B, U, V ) + i(B, U, V ), where
i(B, Ui, V ) = i(BUi , Ui, V ), i = , .

(iii) If H : [, ] × U → V is a completely continuous homotopy and H(t, u) �= u for any
(t, u) ∈ [, ] × ∂U , then i(H(t, ·), U , V ) is independent of t ∈ [, ].

(iv) If i(B, U , V ) �= , then B has a fixed point in U .

Before proving Theorem ., we need to give some definitions and a lemma, which will
be used to prove Theorem .. We define the operators L and K by

〈Lu, v〉 =
∫

�

f (x, u)v, u, v ∈ X,
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〈Ku, v〉 =

{∫
�

uv, u, v ∈ X, p ∈ (, ),∫
�

|u|p–uv, u, v ∈ X, p ∈ (,∞).

Lemma . Suppose that f satisfies (f) and (f). Then when  < p < , we have

lim‖u‖X→∞,u∈P

Lu – f∞Ku
‖u‖X

= ;

when p > , we have

lim‖u‖X→∞,u∈P

Lu – f∞Ku
‖u‖p–

X
= .

Proof When  < p < , by (f), (f), for any ε > , there is a constant Cε >  such that

∣∣f (x, t) – f∞t
∣∣ ≤ εt + Cε , x ∈ �, t ≥ .

For u ∈ P \ {}, letting w = u/‖u‖X , by the Hölder inequality and the Sobolev embedding
theorem, we obtain

sup
‖v‖X≤

∣∣∣∣
〈

Lu – f∞Ku
‖u‖X

, v
〉∣∣∣∣ ≤ sup

‖v‖X≤

∫
�

|f (x, u) – f∞u|
‖u‖X

|v|

≤ sup
‖v‖X≤

∫
�

(
εw|v| + Cε‖u‖–

X |v|)
≤ sup

‖v‖X≤

(
ε|w||v| + Cε‖u‖–

X |v||�|/)
≤ sup

‖v‖X≤

(
εc‖w‖X‖v‖X + Cεc‖u‖–

X ‖v‖X
)

≤ εc + Cεc‖u‖–
X .

Then, when ‖u‖X → ∞, we have

lim‖u‖X→∞,u∈P

Lu – f∞Ku
‖u‖X

= .

Similarly, when p > , we get

∣∣f (x, t) – f∞tp–∣∣ ≤ εtp– + Cε , x ∈ �, t ≥ .

For u ∈ P \ {}, letting w = u/‖u‖X , we can find that

sup
‖v‖X≤

∣∣∣∣
〈

Lu – f∞Ku
‖u‖p–

X
, v

〉∣∣∣∣ ≤ sup
‖v‖X≤

∫
�

|f (x, u) – f∞up–|
‖u‖p–

X
|v|

≤ sup
‖v‖X≤

∫
�

(
εw|v| + Cε‖u‖–p

X |v|)
≤ Cεεc + c‖u‖–p

X .
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Then, when ‖u‖X → ∞, we have

lim‖u‖X→∞,u∈P

Lu – f∞Ku
‖u‖p–

X
= .

The proof is completed. �

Because of the assumptions (f) and (f), f satisfies the subcritical condition. By [],
Proposition B., p., we know L : X → X∗ is compact. Hence, A–L is a completely con-
tinuous operator. Since A–h is a constant operator, then the operator T : X → X, where
T is defined by T = A–L + A–h, is a completely continuous operator.

Now we are ready to prove Theorem ..

Proof of Theorem . In order to prove Theorem ., we only need to show the fixed point
index i(T , Pr , P) =  for large r. To this end, we define a completely continuous homotopy
function H : [, ] × X → X∗ by

H(t, u) = tLu + th, (t, u) ∈ [, ] × P.

We claim that there exists R >  such that the operator equation

Au = H(t, u) (.)

has no solution on [, ] × ∂Pr for r > R. We prove by contradiction. Suppose that there
exists a sequence {(tn, un)} ⊂ [, ] × P such that

tn → t, ‖un‖ → ∞, n → ∞,

where (tn, un) satisfies (.), that is,

∫
�

∇un · ∇v +
∫

�

|∇un|p–∇un · ∇v = tn

∫
�

f (x, un)v + tn

∫
�

hv, v ∈ X.

Let ωn = un/‖un‖X . Then

‖un‖X

∫
�

∇ωn · ∇v + ‖un‖p–
X

∫
�

|∇wn|p–∇wn · ∇v

= tn

∫
�

f (x, un)v + tn

∫
�

hv. (.)

Since {wn} is bounded in P, we may assume for some w ∈ P, by passing to a subsequence
if necessary, that wn ⇀ w ∈ P.

When  < p < , by (.), we can calculate that

∫
�

∇ωn · ∇v + ‖un‖p–
X

∫
�

|∇wn|p–∇wn · ∇v

= tn

∫
�

f (x, un) – f∞un

‖un‖X
v + tnf∞

∫
�

ωnv + tn

∫
�

hv
‖un‖X

, (.)
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taking v = wn in (.) and letting n → ∞, by Lemma ., we have

 = tf∞
∫

�

ω
.

Hence,

λ = tλf∞
∫

�

w
 ≤ f∞λ

∫
�

ω
 ≤ f∞,

which contradicts f∞ < λ.
When p > , by (.), we can deduce


‖un‖p–

X

∫
�

∇ωn · ∇v +
∫

�

|∇wn|p–∇wn · ∇v

= tn

∫
�

f (x, un) – f∞up–
n

‖un‖p–
X

v + tnf∞
∫

�

ωp–
n v + tn

∫
�

hv
‖un‖p–

X
.

Similarly, we get

 = tf∞
∫

�

ω
p
.

Hence,

μ = tμf∞
∫

�

wp
 ≤ f∞μ

∫
�

ω
p
 ≤ f∞,

which contradicts f∞ < μ.
Consequently, taking r > R, we obtain

i(AT , Pr , P) = i
(
A–H(, ·), Pr , P

)
= i

(
A–H(, ·), Pr , P

)
= . (.)

By (.), we know the problem (.) has a non-negative solution u ∈ X. Especially, when
h �= , it is quite evident that u =  is not the solution of the problem (.). Hence, (.) has
a non-negative nontrivial solution. The proof is completed. �

4 An application of the property (b)
In this section, we first define the energy functional I : X →R by

I(u) =



∫
�

|∇u| +

p

∫
�

|∇u|p –
∫

�

G(u), v ∈ X.

It is obvious that the functional I is well defined and belongs to C(X,R) by Proposition ..
Furthermore,

〈
I ′(u), v

〉
=

∫
�

∇u · ∇v +
∫

�

|∇u|p–∇u · ∇v –
∫

�

g(u)v, u, v ∈ X.

Clearly, critical points of I are the weak solutions to (.). Moreover, if u ∈ X is a solution
to (.) and u± �= , where u+ = max{u, } and u– = min{u, }, then u is a sign-changing
solution.
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In order to get a sign-changing solution to (.), we first need to seek a minimizer of the
energy functional I over the constraint:

M =
{

u ∈ X : u± �= ,
〈
I ′(u), u+〉

=
〈
I ′(u), u–〉

= 
}

,

and then we need to prove that the minimizer is a sign-changing solution to (.).
Now we first state the following lemmas.

Lemma . Assume that (g)-(g) hold, and u ∈ X with u± �= . Then there is a unique
pair (s, t) ∈ (,∞) × (,∞) such that su+ + tu– ∈ M.

Proof For any u ∈ X with u± �= , we define

P(s) =
〈
I ′(su+ + tu–)

, su+〉
= s

∫
�

∣∣∇u+∣∣ + sp
∫

�

∣∣∇u+∣∣p –
∫

�

g
(
su+)

su+ (.)

= s
[∫

�

∣∣∇u+∣∣ + sp–
∫

�

∣∣∇u+∣∣p –
∫

�

g(su+)u+

s

]
. (.)

By the conditions (g) and (g), for any ε > , there exists Cε >  such that

∣∣g(t)
∣∣ ≤ ε|t| + Cε|t|q–, t ∈R. (.)

According to the condition (g), we have, for each η ∈R,

lim
t→

g(tη)
t

= . (.)

Thus, by (.), (.), and the Lebesgue theorem, we get

lim
s→+

∫
�

g(su+)u+

s
= . (.)

Since u+ �= , then it follows from (.) and (.) that P(s) >  for s >  small.
By the conditions (g) and (g), we find that

lim|t|→∞
g(t)

|t|μ–t
= ∞. (.)

By (.) and g ∈ C(R,R), we see, for any M > , there exists a constant c >  such that,
for any t ∈R,

g(t)t ≥ M|t|μ – c. (.)

According to (.) and (.), we obtain

P(s) ≤ s
∫

�

∣∣∇u+∣∣ + sp
∫

�

∣∣∇u+∣∣p – Msμ

∫
�

∣∣u+∣∣μ + c|�|

= sμ

[
s–μ

∫
�

∣∣∇u+∣∣ + sp–μ

∫
�

∣∣∇u+∣∣p + s–μc|�| – M
∫

�

∣∣u+∣∣μ]
.
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Because of the arbitrariness of M, we see that P(s) <  for s large. Thus, there exists s > 
such that P(s) = .

Similarly, we define

Q(t) =
〈
I ′(su+ + tu–)

, tu–〉
= t

∫
�

∣∣∇u–∣∣ + tp
∫

�

∣∣∇u–∣∣p –
∫

�

g
(
tu–)

tu–.

By the similar way, we get there exists t >  such that Q(t) = .
Next, we prove the uniqueness. Suppose that there exist s, s such that  < s < s and

P(s) = P(s) = , that is,


sμ–



∫
�

∣∣∇u+∣∣ +


sμ–p


∫
�

∣∣∇u+∣∣p =
∫

�

g(su+)
|su+|μ–

∣∣u+∣∣μ.

It also holds if s is replaced by s. Therefore,

(


sμ–


–


sμ–


)∫
�

∣∣∇u+∣∣ +
(


sμ–p


–


sμ–p



)∫
�

∣∣∇u+∣∣p

=
∫

�

[
g(su+)

|su+|μ– –
g(su+)

|su+|μ–

]∣∣u+∣∣μ,

which is absurd in view of (g) and  < s < s. Then there exists a unique s such that
P(s) = . Similarly, the uniqueness of t can be proved. The proof is completed. �

Lemma . For fixed u ∈ X with u± �= , the vector (s, t) obtained in Lemma . is the
unique maximum point of the function φ : R+ ×R+ →R defined as φ(s, t) = I(su+ + tu–).

Proof From the proof of Lemma ., (s, t) is the unique critical point of φ in (,∞) ×
(,∞). By the assumption (g), we deduce that φ(s, t) → –∞ uniformly as |(s, t)| → ∞.
So it is sufficient to check that a maximum point cannot be achieved on the boundary of
[,∞) × [,∞). Without loss of generality, we may assume that (, t̄) is a maximum point
of φ. By (.) and

φ′
s(s, t̄) =

〈
I ′(su+ + t̄u–)

, u+〉
= s

∫
�

∣∣∇u+∣∣ + sp–
∫

�

∣∣∇u+∣∣p –
∫

�

f
(
su+)

u+

= s
[∫

�

∣∣∇u+∣∣ + sp–
∫

�

∣∣∇u+∣∣p –
∫

�

f (su+)u+

s

]
,

we have there exists s̃ >  small enough such that for any s ∈ (, s̃) we have φ′
s(s, t̄) > . It

implies that φ(s, t) is an increasing function with respect to s when s ∈ (, s̃), that is, the
pair (, t̄) is not a maximum point of φ in R+ ×R+. Hence (s, t) is the unique maximum
point. The proof is completed. �

Lemma . Assume that (g)-(g) hold. Then m := inf{I(u) : u ∈ M} >  can be achieved.

Proof For every u ∈ M, we have 〈I ′(u), u±〉 = . Thus by (.), we get
∫

�

|∇u| +
∫

�

|∇u|p =
∫

�

g(u)u ≤ ε

∫
�

|u| + Cε

∫
�

|u|q. (.)
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According to the Sobolev embedding theorem, we have

‖u‖
H

(�) + ‖u‖p
X ≤ εc‖u‖

H
(�) + Cεc‖u‖q

X . (.)

It suggests there exists a constant α >  such that ‖u‖X ≥ α.
Since the conditions (g) and (g) imply that

H(t) = tg(t) – μG(t) ≥ , t ∈R, (.)

and H(t) is increasing when t >  and decreasing when t < , then we can find that

I(u) = I(u) –

μ

〈
I ′(u), u

〉

=
(




–

μ

)
‖u‖

H
(�) +

(

p

–

μ

)
‖u‖p

X +

μ

[
g(u)u – μG(u)

]

≥
(


p

–

μ

)
‖u‖p

X

≥
(


p

–

μ

)
αp, (.)

which implies m ≥ (/p – /μ)αp > .
Let {un} ⊂ M satisfy I(un) → m. Then {un} is bounded in X by (.). We may assume

there exists u ∈ X, by passing to a subsequence if necessary, such that u±
n ⇀ u±

 weakly
in X. Next, we show u±

 �= . In fact, since un ∈ M, then similar to (.), we have

∫
�

∣∣∇u±
n
∣∣ +

∫
�

∣∣∇u±
n
∣∣p =

∫
�

g
(
u±

n
)
u±

n ≤ ε

∫
�

∣∣u±
n
∣∣ + Cε

∫
�

∣∣u±
n
∣∣q. (.)

Similar to the discussion below (.) there exists a constant α >  such that ‖u±
n ‖X ≥ α,

and then it follows from (.) that

α
p
 ≤ ε

∫
�

∣∣u±
n
∣∣ + Cε

∫
�

∣∣u±
n
∣∣q, n = , , . . . . (.)

Since {un} is bounded in X and the embedding X ↪→ L(�) holds, there is c >  such that

α
p
 ≤ εc + Cε

∫
�

∣∣u±
n
∣∣q.

Choosing ε = αp/(c), we obtain

∫
�

∣∣u±
n
∣∣q ≥ α

p


Cε

.

By u±
n ⇀ u±

 weakly in X and the compactness of the embedding X ↪→ Lq(�), we get

∫
�

∣∣u±

∣∣q ≥ α

p


Cε

, (.)

then u±
 �= .
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The conditions (g) and (g) combined with u±
n → u±

 in Lq(�) yield

lim
n→∞

∫
�

g
(
u±

n
)
u±

n =
∫

�

g
(
u±


)
u±

 , lim
n→∞

∫
�

G
(
u±

n
)

=
∫

�

G
(
u±


)
. (.)

By (.), (.), and the weak lower semicontinuity of the norm, we can deduce

∫
�

∣∣∇u±

∣∣ +

∫
�

∣∣∇u±

∣∣p ≤ lim inf

n→∞

[∫
�

∣∣∇u±
n
∣∣ +

∫
�

∣∣∇u±
n
∣∣p

]

= lim inf
n→∞

∫
�

g
(
u±

n
)
u±

n =
∫

�

g
(
u±


)
u±

 . (.)

According to Lemma . and (.), there exists (s, t) ∈ (, ] × (, ] such that ũ = su+
 +

tu–
 ∈ M. Since (.) and (.), we then have

m ≤ I(ũ) –

μ

〈
I ′(ũ), ũ

〉

=
(




–

μ

)∫
�

|∇ũ| +
(


p

–

μ

)∫
�

|∇ũ|p +

μ

∫
�

[
g(ũ)ũ – μG(ũ)

]

=
(




–

μ

)∫
�

∣∣∇su+

∣∣ +

(



–

μ

)∫
�

∣∣∇tu–

∣∣

+
(


p

–

μ

)∫
�

∣∣∇su+

∣∣p +

(

p

–

μ

)∫
�

∣∣∇tu–

∣∣p

+

μ

∫
�

[
g
(
su+


)
su+

 – μG
(
su+


)]

+

μ

∫
�

[
g
(
tu–


)
tu–

 – μG
(
tu–


)]

≤
(




–

μ

)∫
�

∣∣∇u+

∣∣ +

(



–

μ

)∫
�

∣∣∇u–

∣∣

+
(


p

–

μ

)∫
�

∣∣∇u+

∣∣p +

(

p

–

μ

)∫
�

∣∣∇u–

∣∣p

+

μ

∫
�

[
g
(
u+


)
u+

 – μG
(
u+


)]

+

μ

∫
�

[
g
(
u–


)
u–

 – μG
(
u–


)]

=
(




–

μ

)∫
�

|∇u| +
(


p

–

μ

)∫
�

|∇u|p +

μ

∫
�

[
g(u)u – μG(u)

]

≤ lim inf
n→∞

[
I(un) –


μ

〈
I ′(un), un

〉]
= m.

Thus we deduce that s = t = , that is, ũ = u and I(u) = m. Then the proof is com-
pleted. �

Proof of Theorem . In order to prove Theorem ., we need to show I ′(u) =  by the
quantitative deformation lemma.

It is clear that 〈I ′(u), u+
〉 = 〈I ′(u), u–

〉 = . It follows from Lemma . that, for (s, t) ∈
R+ ×R+ and (s, t) �= (, ), we have I(su+

 + tu–
) < I(u+

 + u–
) = m. It follows from (.) that∫

�
|u±

 |q ≥ α
p
 /(Cε) := βq. Then |u±

 |q ≥ β . We denote

Sq = inf
u∈X,|u|q=

∫
�

|∇u|q. (.)
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We assume that I ′(u) �= . Then there exist r,ρ >  such that ‖I ′(v)‖ ≥ ρ for all ‖v –
u‖X ≤ r. Let δ ∈ (, min{(βSq)/, r/}), D = ( – σ ,  + σ ) × ( – σ ,  + σ ), and ϕ(s, t) =
su+

 + tu–
 , where  < σ < min{/, δ/‖u‖X}. By Lemma . again, we get

m̄ = max
∂D

I ◦ ϕ < m. (.)

For ε = min{(m – m̄)/,ρδ/} and S = B(u, δ), [], Lemma ., p. yields a deformation
η such that

(i) η(, u) = u, if u /∈ I–([m – ε, m + ε]) ∩ Sδ ;
(ii) η(, Im+ε ∩ S) ⊂ Im–ε ;

(iii) ‖η(, u) – u‖ ≤ δ for all u ∈ X .
By Lemmas . and ., for (s, t) ∈ D, we know I(ϕ(s, t)) ≤ m < m+ε, that is, ϕ(s, t) ∈ Im+ε .

Since

∥∥ϕ(s, t) – u
∥∥p

X =
∥∥su+

 + tu–
 – u+

 – u–

∥∥p

X

= |s – |p∥∥u+

∥∥p

X + |t – |p∥∥u–

∥∥p

X

≤ σ p‖u‖p
X

< δp,

we know that ϕ(s, t) ∈ S. By (ii), we have I(η(,ϕ(s, t))) < m – ε. It is clear that

max
(s,t)∈D

I
(
η
(
,ϕ(s, t)

))
< m. (.)

We claim that η(,ϕ(D)) ∩ M �= ∅. In fact, define ψ(s, t) = η(,ϕ(s, t)) on D,

�(s, t) =
(〈

I ′(ϕ(s, t)
)
, su+


〉
,
〈
I ′(ϕ(s, t)

)
, tu–


〉)

=
(〈

I ′(su+

)
, su+


〉
,
〈
I ′(tu–


)
, tu–


〉)

,

�(s, t) =
(〈

I ′(ψ(s, t)
)
,
(
ψ(s, t)

)+〉
,
〈
I ′(ψ(s, t)

)
,
(
ψ(s, t)

)–〉)
,

and define

P(s) =
〈
I ′(su+


)
, su+


〉

= s
∫

�

∣∣∇u+

∣∣ + sp

∫
�

∣∣∇u+

∣∣p –

∫
�

g
(
su+


)
su+

,

Q(t) =
〈
I ′(tu–


)
, tu–


〉

= t
∫

�

∣∣∇u–

∣∣ + tp

∫
�

∣∣∇u–

∣∣p –

∫
�

g
(
su–


)
su–

,

and the matrix

B =

[
P′() 

 Q′()

]
.

By (g) and g ∈ C(R,R), we obtain

g ′(t)t ≥ (μ – )g(t)t, t ∈R. (.)
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According to (.) and 〈I ′(u), u+
〉 = , we get

P′() = 
∫

�

∣∣∇u+

∣∣ + p

∫
�

∣∣∇u+

∣∣p –

∫
�

g ′(u+

)∣∣u+


∣∣ –

∫
�

g
(
u+


)
u+



≤ 
∫

�

∣∣∇u+

∣∣ + p

∫
�

∣∣∇u+

∣∣p – (μ – )

∫
�

g
(
u+


)
u+

 –
∫

�

g
(
u+


)
u+



= 
∫

�

∣∣∇u+

∣∣ + p

∫
�

∣∣∇u+

∣∣p – μ

∫
�

g
(
u+


)
u+



= 
∫

�

∣∣∇u+

∣∣ + p

∫
�

∣∣∇u+

∣∣p – μ

∫
�

∣∣∇u+

∣∣ – μ

∫
�

∣∣∇u+

∣∣p

= ( – μ)
∫

�

∣∣∇u+

∣∣ + (p – μ)

∫
�

∣∣∇u+

∣∣p < .

Similarly, we have

Q′() ≤ ( – μ)
∫

�

∣∣∇u–

∣∣ + (p – μ)

∫
�

∣∣∇u–

∣∣p < .

Thus, we can deduce

J�(, ) = det B > .

Therefore, by the fact that (, ) is the unique isolated zero point of the C function, we
have

deg(�, D, ) = ind
(
�, (, )

)
= sgn J�(, ) = .

It follows from m̄ < m – ε, (.), and (i) above that ϕ = ψ on ∂D. Thus deg(� , D, ) =
deg(�, D, ) = . Hence, there exists a pair (s, t) ∈ D such that �(s, t) = . Next we need
to prove ψ±(s, t) �= . We first prove ψ+(s, t) �= . Since |u±

 |q ≥ β , for (s, t) ∈ D, we
have |ϕ+(s, t)|q = s|u+|q ≥ β/ and |ϕ–(s, t)|q = t|u–|q ≥ β/. By (iii) and (.), we
have

∣∣ψ(s, t) – ϕ(s, t)
∣∣
q ≤ S–

q
∥∥ψ(s, t) – ϕ(s, t)

∥∥
X ≤ S–

q δ.

This implies that

∣∣ψ±(s, t) – ϕ±(s, t)
∣∣
q ≤ ∣∣ψ(s, t) – ϕ(s, t)

∣∣
q ≤ S–

q δ.

Thus we obtain

∣∣ψ±(s, t)
∣∣
q ≥ ∣∣ϕ±(s, t)

∣∣
q – S–

q δ ≥ β


– S–

q δ > ,

which yields ψ±(s, t) �= . Thus η(,ϕ(s, t)) = ψ(s, t) ∈M, which is a contradiction to
(.). Then u is a critical point of I , that is, u is a least energy sign-changing solution
for equation (.). The proof is completed. �
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