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1 Introduction
We investigate the existence of positive solutions for the Sturm-Liouville problem

(
p(t)z′(t)

)′ + f
(
t, z(t)

)
=  a.e. on [, ] (.)

subject to the boundary conditions

{
αz() – βp()z′() = ,
γ z() + δp()z′() = ,

(.)

where α,β ,γ , δ ≥  and � := γβ + αγ
∫ 




p(μ) dμ + αδ > .
Problem (.)-(.) has been used to model many phenomena in physics and engineer-

ing. Such problems arise in the study of gas dynamics, fluid mechanics, nuclear physics,
chemically reacting systems, atomic calculations, the sources diffusion theory, and the
thermal ignition theory (see [–]). In most of these applications, the physical interest lies
in the existence of nonzero positive solutions.

The existence of nonzero positive solutions of (.)-(.) has been studied via the various
methods. For the positone case or the semipositone case (that is, f (t, z) ≥ –h on [, ] ×
[,∞), where h ≥  is a constant), the well-known fixed theorems in cone [] were used to
study the existence of nonzero positive solutions of (.)-(.); see, for example, [–] and
the references therein. The case that f has a functional lower bound (that is, f (t, z) ≥ –h(t)
on [, ] × [,∞), where h ∈ L+[, ]) was considered [], where f is required to satisfy
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that there exist  < a < b <  such that

∫ b

a
lim inf

z→∞ f (t, z)/z dt = ∞. (.)

Utilizing the first eigenvalues corresponding to the relevant linear operators, Li (The-
orem , []) proved the existence of positive solutions of the Sturm-Liouville prob-
lem (.)-(.) for the sublinear case or the superlinear case, where some limits such
as f∞ = limz→∞ inft∈[,] f (t, z)/z and f = limz→ inft∈[,] f (t, z)/z are bounded below, and
p ∈ C[, ]. The well-known fixed theorems in cone [] were used likewise in [].

Under some strict conditions imposed on f , employing lower and upper solutions, vari-
ational methods and the global bifurcation theory of Rabinowitz, Benmezaï [], Cui et al.
[], Tian and Ge [], and Zhang et al. [] studied the existence of multiple solutions and
sign-changing solutions of (.)-(.), respectively, where f is a continuous function that is
o(|z|) near , limz→∞ f ′(z) and limz→–∞ f ′(z) exist and are finite []; or f, f∞ ∈ (,∞) and
p ∈ C[, ] []; or f (t, z) is Lipschitz continuous for z uniformly and f ′

t (t, z) exists []; or
p ∈ C[, ], f ∈ C([, ] ×R

,R), and zf (t, z) ≥  [].
Different from methods used in the references mentioned, by investigating the property

of nonzero solutions of an integral equation and utilizing the Leray-Schauder fixed point
theorem in a Banach space, Yang and Zhou [] proved an existence result for problem
(.)-(.) under the sublinear condition, where p is not required to belong to C[, ] and
f and f∞ may not have any lower bound, that is, f and f∞ may take –∞. However, the
authors did not studied the superlinear case with f = –∞ in [].

In this paper, by establishing some inequalities (see, for example, Theorem . and
Lemma .) we shall prove new existence results of positive solutions for the superlin-
ear Sturm-Liouville problem (.)-(.) concerning the first eigenvalues corresponding to
the relevant linear operators. We do not assume that f satisfies (.), f > –∞ [] (see Re-
mark .), and the strict restrictions such as in [–, ]; p is also not required to belong
to C[, ] as in [, , , , , ].

This paper is organized as follows. In Section , we make some preliminaries for studying
the existence of positive solutions of (.)-(.). In Section , we prove the main results.
Finally, we give an example to show that the existing results are not applicable to our case.

2 Preliminaries
We first prove some inequalities (Theorem . and Lemma .), which play a key role in
the study of the existence of positive solutions of (.)-(.).

We make the following assumptions on f and p:

(C) f : [, ] ×R+(R+ = [,∞)) → R is a Carathéodory function, that is, f (·, z) is measur-
able for each fixed z ∈R+, f (t, ·) is continuous for almost every (a.e.) t ∈ [, ], and for
each r > , there exists gr ∈ L+[, ] such that

∣∣f (t, z)
∣∣ ≤ gr(t) for a.e. t ∈ [, ] and all z ∈ [, r],

where L+[, ] = {g ∈ L[, ] : g(s) ≥  a.e. [, ]}.
(C) f (t, ) ≥  for a.e. t ∈ [, ].
(C) p : [, ] →R+ \ {}, and p ∈ C[, ].
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Remark . Standard condition (C) has been widely used, for example, in [, ]. The
upper bound function gr in (C) is independent of z and belongs to L+[, ], which is more
general than the conditions used previously in [, ]. The condition f (t, z) ≤ C( + zp–)
for a.e. t ∈ [, ] and all z ∈ R+ was used in [] (n = ), whereas [] required gr in L∞

+ [, ].
It is easy to verify that f > –∞ [] or zf (t, z) ≥  [] or f (t, z) = f(t, z) + h(t)z [, ,

, , ] (f(t, z) ≥  for t ∈ [, ], z ≥ ) implies that (C) holds; the inverse is false, and
we do not require p ∈ C[, ] as in [, , , , , ]. Hence, conditions (C)-(C) are
weaker than the usual assumptions.

A function z is said to be a positive solution of (.)-(.) if z ∈ C[, ] with z(t) ≥  on
[, ], z �≡ , p(t)z′(t) ∈ AC[, ], and z satisfies (.)-(.), where AC[, ] is the space of all
absolutely continuous functions on [, ].

Let C[, ] be continuous function space with norm ‖z‖ = max{|z(t)| : t ∈ [, ]}. It is well
known that z is a positive solution of (.)-(.) if and only if z ∈ C[, ] with z(t) �=  and
z(t) ≥  on [, ] satisfies the following integral equation [, , ]:

z(t) =
∫ 


G(t, s)f

(
s, z(s)

)
ds for t ∈ [, ], (.)

where G(t, s) is the Green function to –(p(t)z′(t))′ =  associated to the boundary condi-
tions (.) defined by

G(t, s) =

�

{
ω(t)ω(s), s ≤ t,
ω(s)ω(t), t < s,

(.)

where α,β ,γ , δ ≥ , � is in (.), and

ω(s) = β + α

∫ s




p(μ)

dμ,

ω(s) = δ + γ

∫ 

s


p(μ)

dμ.

Let g, h ∈ L+[, ] and
∫ 

 h(s) ds > . We define a few functions

χa(t) =
∫ a


G(t, s)g(s) ds on [, ],

χb(t) =
∫ 

b
G(t, s)g(s) ds on [, ],

χa,b(t) =
∫ b

a
G(t, s)h(s) ds on [, ],

where  < a < b <  are constants.
First, we prove one of two inequalities.

Theorem . Assume that (C) holds. Then there exist  < a < b <  such that

χa,b(t) ≥ χa(t) + χb(t) on [, ]

for all  < a ≤ a and b ≤ b < , that is, ϕa,b(t) := χa,b(t) – χa(t) – χb(t) ≥  on [, ].
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Proof The proof is divided into three steps.
Step . There exist  < ã < b̃ <  such that ϕ′

a,b(t) ≥  on [, a] and ϕ′
a,b(t) ≤  on [b, ] for

all  < a ≤ ã and b̃ ≤ b < .
Since � > , we know that ω(s) >  on (, ] and ω(s) >  on [, ). By direct computation

we have

χ ′
a(t) =


�p(t)

{
–γ

∫ t
 ω(s)g(s) ds + α

∫ a
t ω(s)g(s) ds for  ≤ t ≤ a,

–γ
∫ a

 ω(s)g(s) ds for t > a,

(
p(t)χ ′

a(t)
)′ =

{
–g(t) for  ≤ t ≤ a,
 for t > a,

χ ′
b(t) =


�p(t)

{
–γ

∫ t
b ω(s)g(s) ds + α

∫ 
t ω(s)g(s) ds for b ≤ t ≤ ,

α
∫ 

b ω(s)g(s) ds for t < b,

(
p(t)χ ′

b(t)
)′ =

{
–g(t) for b ≤ t ≤ ,
 for t < b,

χ ′
a,b(t) =


�p(t)

⎧
⎪⎨

⎪⎩

–γ
∫ t

a ω(s)h(s) ds + α
∫ b

t ω(s)h(s) ds for a ≤ t ≤ b,
α

∫ b
a ω(s)h(s) ds for t < a,

–γ
∫ b

a ω(s)h(s) ds for t > b,

(
p(t)χ ′

a,b(t)
)′ =

{
–h(t) for a ≤ t ≤ b,
 for t < a or t > b.

Then χa,χb,χa,b ∈ C[, ]; hence, ϕa,b ∈ C[, ], and

ϕ′
a,b(t) =


�p(t)

{
γ

∫ t
 ω(s)g(s) ds + αH(t) for  ≤ t ≤ a,

γ H(t) – α
∫ 

t ω(s)g(s) ds for b ≤ t ≤ ,
(.)

(
p(t)ϕ′

a,b(t)
)′ =

{
–h(t) for a ≤ t ≤ b,
g(t) for t < a or t > b,

(.)

where

H(t) =
∫ b

a
ω(s)h(s) ds –

[∫ a

t
ω(s)g(s) ds +

∫ 

b
ω(s)g(s) ds)

]
,

H(t) =
[∫ a


ω(s)g(s) ds +

∫ t

b
ω(s)g(s) ds

]
–

∫ b

a
ω(s)h(s) ds.

Since
∫ 

 h(s) ds >  and ω(s) >  on (, ] and ω(s) >  on [, ), there exist c, d ∈ (, )
such that c < d and

∫ d
c ωi(s)h(s) ds >  (i = , ). The absolute continuity of the Lebesgue

integral shows that there exist  < ã ≤ c < d ≤ b̃ <  satisfying

∫ b̃

ã
ω(s)h(s) ds >

∫ ã


ω(s)g(s) ds +

∫ 

b̃
ω(s)g(s) ds,

∫ b̃

ã
ω(s)h(s) ds >

∫ ã


ω(s)g(s) ds +

∫ 

b̃
ω(s)g(s) ds.
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Then, for  < a ≤ ã, b̃ ≤ b < ,

∫ b

a
ω(s)h(s) ds ≥

∫ b̃

ã
ω(s)h(s) ds >

∫ ã


ω(s)g(s) ds +

∫ 

b̃
ω(s)g(s) ds

≥
∫ a

t
ω(s)g(s) ds +

∫ 

b
ω(s)g(s) ds for  ≤ t ≤ a,

∫ b

a
ω(s)h(s) ds ≥

∫ b̃

ã
ω(s)h(s) ds >

∫ ã


ω(s)g(s) ds +

∫ 

b̃
ω(s)g(s) ds

≥
∫ a


ω(s)g(s) ds +

∫ t

b
ω(s)g(s) ds for b ≤ t ≤ .

From these inequalities we obtain H(t) ≥  on [, a] and H(t) ≤  on [b, ].
By � >  we see that α >  if γ =  and γ >  if α =  by (.), and then ϕ′

a,b(t) ≥  on
[, a] and ϕ′

a,b(t) ≤  on [b, ] for all  < t ≤ a and b ≤ t < .
Step . There exist  < a ≤ ã and b̃ ≤ b <  satisfying ϕa,b() ≥  and ϕa,b() ≥  for

 < a ≤ a and b ≤ b < .
If β = , then we see that G(, s) = , χa() = , χb() = , χa,b() = , and ϕa,b() = . If

δ = , then we have χa() = , χb() = , χa,b() = , and ϕa,b() = .
We prove the following facts:
(i) If β > , then there exist  < a ≤ ã and b̃ ≤ b <  satisfying ϕa,b() ≥  for

 ≤ a ≤ a and b ≤ b ≤ .
(ii) If δ > , then there exist  < a ≤ ã and b̃ ≤ b <  satisfying ϕa,b() ≥  for

 < a ≤ a and b ≤ b < .
(i) Let β > . The equality G(, s) = β

�
ω(s) shows

χa,b() =
∫ b

a
G(, s)h(s) ds =

β

�

∫ b

a
ω(s)h(s) ds.

From
∫ b̃

ã ω(s)h(s) ds >  and the absolute continuity of the Lebesgue integral we know
that there exist  < a ≤ ã and b̃ ≤ b <  satisfying

∫ a


G(, s)g(s) ds +

∫ 

b

G(, s)g(s) ds ≤ β

�

∫ b̃

ã
ω(s)h(s) ds.

This implies

χa() + χb() =
∫ a


G(, s)g(s) ds +

∫ 

b
G(, s)g(s) ds

≤
∫ a


G(, s)g(s) ds +

∫ 

b

G(, s)g(s) ds

≤ β

�

∫ b̃

ã
ω(s)h(s) ds

≤ β

�

∫ b

a
ω(s)h(s) ds =

∫ b

a
G(, s)h(s) ds = χa,b()

for  < a ≤ a and b ≤ b < , that is, ϕa,b() ≥  for  < a ≤ a and b ≤ b < .
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(ii) Let δ > . The equality G(, s) = δ
�
ω(s) implies

χa,b() =
∫ b

a
G(, s)h(s) ds =

δ

�

∫ b

a
ω(s)h(s) ds.

By
∫ b̃

ã ω(s)h(s) ds >  and the absolute continuity of the Lebesgue integral we know that
there exist  < a ≤ ã and b̃ ≤ b <  satisfying

∫ a


G(, s)g(s) ds +

∫ 

b

G(, s)g(s) ds ≤ δ

�

∫ b̃

ã
ω(s)h(s) ds.

This shows that

χa() + χb() =
∫ a


G(, s)g(s) ds +

∫ 

b
G(, s)g(s) ds

≤
∫ a


G(, s)g(s) ds +

∫ 

b

G(, s)g(s) ds

≤ δ

�

∫ b̃

ã
ω(s)h(s) ds

≤ δ

�

∫ b

a
ω(s)h(s) ds =

∫ b

a
G(, s)h(s) ds = χa,b()

for  < a ≤ a and b ≤ b < , that is, ϕa,b() ≥  for  < a ≤ a and b ≤ b < .
Let

a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ã if β = , δ = ,
a if β > , δ = ,
a if β = , δ > ,
min{a, a} if β > , δ > ,

b =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b̃ if β = , δ = ,
b if β > , δ = ,
b if β = , δ > ,
max{b, b} if β > , δ > .

Then ϕa,b() ≥  and ϕa,b() ≥  for  < a ≤ a and b ≤ b < .
Step . ϕa,b(t) ≥  on [, ] for  ≤ a ≤ a and b ≤ b < .
If there exists t ∈ [, ] such that ϕa,b(t) < , then let ν ∈ [, ] satisfy

ϕa,b(ν) = min
{
ϕa,b(t) : t ∈ [, ]

}
< .

Then ν ∈ (, ) by Step  and ϕ′
a,b(ν) = .

By Step , ϕ′
a,b(t) ≥  on [, a] and ϕ′

a,b(t) ≤  on [b, ] for all  < a ≤ a and b ≤ b < .
Hence, by Step , ϕa,b(t) ≥  on [, a] and ϕa,b(t) ≥  on [b, ]. This implies ν ∈ (a, b).

Let π (t) =
∫ t

a p(s)ϕ′
a,b(s) ds on [a, b]. By (.) we have

π ′′(t) =
(
p(t)ϕ′

a,b(t)
)′ = –h(t) ≤  a.e. (a, b),
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and thus π ′ is decreasing on (a, b). This implies

p(t)ϕ′
a,b(t) = π ′(t) ≥ π ′(ν) = p(ν)ϕ′

a,b(ν) =  on [a,ν].

This, together with (C) (p(t) >  on [, ]), shows that ϕ′
a,b(t) ≥  on [a,ν] and ϕa,b(ν) ≥

ϕa,b(a) ≥ , which is a contradiction. �

Next, we define a function

f ∗(t, y) =

{
f (t, y) if y ≥ ,
f (t, ) if y < .

Let z ∈ C[, ]. We define the map A from C[, ] to C[, ] by

Az(t) =
∫ 


G(t, s)f ∗(s, z(s)

)
ds, (.)

where G(t, s) is as in (.).
We prove a key fact.

Theorem . Assume that (C)-(C) hold. Let  < a < b < , w ∈ C[, ] with w(t) ≥ 
on [, ], and w∗(t) =

∫ b
a G(t, s)w(s) ds. If z = νAz + μw∗ has a solution z ∈ C[, ] for some

ν >  and μ ≥ , then z(t) ≥  for t ∈ [, ].

Proof Let

w(t) =

{
w(t) if a ≤ t ≤ b,
 if  ≤ t < a or b < t ≤ .

Then w∗(t) =
∫ 

 G(t, s)w(s) ds and z(t) = ν
∫ 

 G(t, s)[f ∗(s, z(s)) + μ

ν
w(s)] ds. Let f(s, z) =

f ∗(s, z) + μ

ν
w(s). Then f(s, ) ≥  a.e. for s ∈ [, ]. A very similar argument to that of

Theorem .()-() in [] shows that z(t) ≥  on [, ], and the details are omitted. �

We continue with some preliminaries. Let g ∈ L+[, ] be such that

f (t, z) + g(t) ≥  a.e. [, ] and for all z ∈R+. (.)

Notation

w(t) =
∫ 


G(t, s)g(s) ds. (.)

Let z ∈ C[, ] satisfy

z(t) = Az(t) + μw∗(t) (.)

and

α(t) = z(t) + w(t), (.)

where A is defined by (.), μ ≥ , and w∗(t) has the properties as in Theorem ..
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Let ‖α‖ = max{|α(t)| : t ∈ [, ]}. We prove other inequalities.

Lemma . Assume that (C), (C), and (C) hold. Let ρ >  and ‖α‖ > ( P
p

+ )(ρ + ‖w‖).
Then there exist a, b ∈ [, ] with a < b such that z(t) ≥ ρ on [a, b] and

a ≤ P(ρ + ‖w‖)
p(‖α‖ – ρ – ‖w‖)

, (.)

b ≥  –
P(ρ + ‖w‖)

p(‖α‖ – ρ – ‖w‖)
, (.)

where

p = min
{

p(t) : t ∈ [, ]
}

, P = max
{

p(t) : t ∈ [, ]
}

.

In order to prove Lemma ., we need to prove the following propositions.

Proposition . Let θ : [, ] → R be continuous, and θ ′(t) exist for t ∈ (, ) and be de-
creasing on (, ). Then θ is concave down on [, ].

Proof Let t, t ∈ [, ], t < t, and λ ∈ (, ). By the differential mean-value theorem and
the decrease in θ ′ there exist ξ ∈ (t,λt + ( – λ)t) and ξ ∈ (λt + ( – λ)t, t) such that

θ
(
λt + ( – λ)t

)
–

[
λθ (t) + ( – λ)θ (t)

]

= λ
[
θ
(
λt + ( – λ)t

)
– θ (t)

]
+ ( – λ)

[
θ
(
λt + ( – λ)t

)
– θ (t)

]

= λ( – λ)θ ′(ξ)(t – t) – λ( – λ)θ ′(ξ)(t – t)

= λ( – λ)
[
θ ′(ξ) – θ ′(ξ)

]
(t – t) ≥ .

Hence, θ is concave down on [, ]. �

Let

ξ (t) =
∫ t


p(s)α′(s) ds on [, ],

η(t) = –
∫ 

t
p(s)α′(s) ds on [, ].

Proposition . Let (C) hold, and t̃ ∈ [, ] be such that α(̃t) = max{α(t), t ∈ [, ]}. Then
the following assertions hold.

() α(t) ≥  on [, ], α(̃t) = ‖α‖, and α ∈ C[, ].
() ξ (t) and η(t) are concave down on [, ].
() (i) If t̃ < , then α(t) is decreasing on [̃t, ].

(ii) If t̃ > , then α(t) is increasing on [,̃ t].
(iii) If  < t̃ < , then α(t) is increasing on [,̃ t] and decreasing on [̃t, ].

Proof () Letting ν = , Theorem . shows z(t) ≥  on [, ]. This implies α(t) ≥  on
[, ], f ∗ = f , and α(̃t) = ‖α‖. The result α ∈ C[, ] follows from (.) and (.).
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() From (.) and (.) we have

ξ ′′(t) = η′′(t) =
(
p(t)α′(t)

)′

=
(
p(t)z′(t)

)′ +
(
p(t)w′(t)

)′

= –
(
f
(
t, z(t)

)
+ g(t)

)
+ μ

(
p(t)w′

∗(t)
)′ ≤  a.e. [, ].

Condition (C) implies ξ ′′ ∈ L[, ] and η′′(t) ∈ L[, ]. Hence, ξ ′(t) ∈ AC[, ] and η′(t) ∈
AC[, ]. For  ≤ t ≤ t ≤ , we have

ξ ′(t) – ξ ′(t) =
∫ t

t

ξ ′′(s) ds ≤ ,

that is, ξ ′(t) is decreasing on [, ]. By Proposition ., ξ (t) is concave down on [, ].
A similar argument shows that η′(t) is decreasing on [, ] and η(t) is concave down on

[, ].
() (i) If t̃ < , then

α′ (̃t) = lim
t→̃t+

α(̃t) – α(t)
t̃ – t

≤ ,

and η′ (̃t) = p(̃t)α′ (̃t) ≤ .
From the decrease of η′ in t we see that p(t)α′(t) = η′(t) ≤ η′ (̃t) ≤  for t > t̃, and by (C)

α′(t) ≤  for t > t̃. This implies that α(t) is decreasing on [̃t, ].
(ii) If t̃ > , then

α′ (̃t) = lim
t→̃t–

α(̃t) – α(t)
t̃ – t

≥ ,

and ξ ′ (̃t) = p(̃t)α′(̃t) ≥ .
Since ξ ′ is decreasing in [, ], we see that p(t)α′(t) = ξ ′(t) ≥ ξ ′ (̃t) ≥  and α′(t) ≥  on

[,̃ t] by (C). Hence, α(t) is increasing on [,̃ t].
(iii) The result follows from (i) and (ii). �

Proposition . (i) p(α(t) – α()) ≤ ξ (t) ≤ Pα(t) on [,̃ t] if t̃ > .
(ii) p(α(t) – α()) ≤ η(t) ≤ Pα(t) on [̃t, ] if t̃ < .

Proof (i) By Proposition .(), part (ii), α′(s) ≥  on [,̃ t], and, for t ∈ [,̃ t], we have

ξ (t) =
∫ t


p(s)α′(s) ds ≥ p

∫ t


α′(s) ds = p

(
α(t) – α()

)

and

ξ (t) =
∫ t


p(s)α′(s) ds ≤ P

∫ t


α′(s) ds = P

(
α(t) – α()

) ≤ Pα(t).

(ii) From Proposition .(), part (i), α′(s) ≤ , and, for t ∈ [̃t, ], we have

η(t) =
∫ 

t
p(s)

(
–α′(s)

)
ds ≥ p

∫ 

t

(
–α′(s)

)
ds = p

(
α(t) – α()

)
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and

η(t) =
∫ 

t
p(s)

(
–α′(s)

)
ds ≤ P

∫ 

t

(
–α′(s)

)
ds = P

(
α(t) – α()

) ≤ Pα(t). �

Proposition . If ‖α‖ > ( P
p

+ )(ρ + ‖w‖) and α() ≤ ρ + ‖w‖, then there exists t ∈ (,̃ t)
such that ξ (t) = P(ρ + ‖w‖) and t ≤ P(ρ+‖w‖)

p(‖α‖–ρ–‖w‖) .

Proof By Proposition .(i) we see that ξ (̃t) ≥ p(‖α‖–α()). Noticing that α() ≤ ρ +‖w‖,
we have ξ (̃t) > P(ρ + ‖w‖) and t̃ > . The result ξ (t) = P(ρ + ‖w‖) follows from ξ () = .

By Proposition .(), ξ (t) is concave down on [,̃ t]. This implies ξ (t) ≥ ξ (̃t)
t̃ t for t ∈ [,̃ t].

Then

P
(
ρ + ‖w‖) = ξ (t) ≥ ξ (̃t)

t̃
t.

This, together with Proposition .(i) and Proposition .(), implies

t ≤ P(ρ + ‖w‖)̃t
ξ (̃t)

≤ P(ρ + ‖w‖)
ξ (̃t)

≤ P(ρ + ‖w‖)
p(α(̃t) – α())

≤ P(ρ + ‖w‖)
p(‖α‖ – ρ – ‖w‖)

. �

Proposition . If ‖α‖ > ( P
p

+ )(ρ + ‖w‖) and α() ≤ ρ + ‖w‖, then there exists t ∈ (̃t, )
such that η(t) = P(ρ + ‖w‖) and t ≥  – P(ρ+‖w‖)

p(‖α‖–ρ–‖w‖) .

Proof From Proposition .(ii) we see that η(̃t) ≥ p(α(̃t) – α()). Noticing that α() ≤
ρ + ‖w‖, we have η(̃t) > P(ρ + ‖w‖) and t̃ < . The result η(t) = P(ρ + ‖w‖) follows from
η() = .

By Proposition .(), η(t) is concave down on [̃t, ]. This implies η(t) ≥ η(̃t)
–̃t ( – t) for

t ∈ [̃t, ]. Then

P
(
ρ + ‖w‖) = η(t) ≥ η(̃t)

 – t̃
( – t).

This, together with Proposition .(ii) and Proposition .(), implies

 – t ≤ P(ρ + ‖w‖)( – t̃)
η(̃t)

≤ P(ρ + ‖w‖)
η(̃t)

≤ P(ρ + ‖w‖)
p(α(̃t) – α())

≤ P(ρ + ‖w‖)
p(‖α‖ – ρ – ‖w‖)

,

that is, t ≥  – P(ρ+‖w‖)
p(‖α‖–ρ–‖w‖) . �

Proof of Lemma . Noticing that ‖α‖ > ρ + ‖w‖ and utilizing Proposition .(), we have
the following fact:

(P) if t̃ ∈ [a, b], α(a) ≥ ρ + ‖w‖, and α(b) ≥ ρ + ‖w‖, then z(t) ≥ ρ on [a, b].
In fact, if t̃ = a, then by Proposition .(), part (i), η(t) is decreasing on [a, b]. If t̃ = b,

then Proposition .(), part (ii), implies that α(t) is increasing on [a, b]. If a < t̃ < b, then
by Proposition .(), part (iii), η(t) is decreasing on [̃t, b], and α is increasing on [a,̃ t].
Hence, α(t) ≥ ρ + ‖w‖ on [a, b], and

z(t) = α(t) – w(t) ≥ ρ +
(‖w‖ – w(t)

) ≥ ρ on [a, b].
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The rest is divided into four cases.
Case . α() ≥ ρ + ‖w‖ and α() ≥ ρ + ‖w‖.
The result follows from (P).
() α() ≥ ρ + ‖w‖, α() < ρ + ‖w‖.
Since α() < ρ + ‖w‖, then t̃ < . Proposition . shows that there exists t ∈ (̃t, ) such

that η(t) = P(ρ + ‖w‖) and t ≥  – P(ρ+‖w‖)
p(‖α‖–ρ–‖w‖) . By Proposition .(ii), α(t) ≥ ρ + ‖w‖.

(P) implies z(t) ≥ ρ on [, t].
() α() < ρ + ‖w‖, α() ≥ ρ + ‖w‖.
Since α() < ρ + ‖w‖, we have t̃ > . By Proposition ., there exists t ∈ (̃t, ) such that

ξ (t) = P(ρ +‖w‖) and t ≤ P(ρ+‖w‖)
p(‖α‖–ρ–‖w‖) . By Proposition .(i), α(t) ≥ ρ +‖w‖. The result

z(t) ≥ ρ on [t, ] follows from (P).
() α() < ρ + ‖w‖, α() < ρ + ‖w‖.
Since α() < ρ + ‖w‖ and α() < ρ + ‖w‖, we have  < t̃ < . By Propositions . and .

there exist t ∈ (,̃ t) and t ∈ (̃t, ) such that η(t) = P(ρ + ‖w‖) = ξ (t) and

t ≤ P(ρ + ‖w‖)
p(‖α‖ – ρ – ‖w‖)

,

t ≥  –
P(ρ + ‖w‖)

p(‖α‖ – ρ – ‖w‖)
.

The inequality z(t) ≥ ρ on [t, t] follows from (P).
Let

a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 if α() ≥ ρ + ‖w‖ if α() ≥ ρ + ‖w‖,
 if α() ≥ ρ + ‖w‖ if α() < ρ + ‖w‖,
t if α() < ρ + ‖w‖ if α() ≥ ρ + ‖w‖,
t if α() < ρ + ‖w‖ if α() < ρ + ‖w‖,

b =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 if α() ≥ ρ + ‖w‖,α() ≥ ρ + ‖w‖,
t if α() ≥ ρ + ‖w‖,α() < ρ + ‖w‖,
 if α() < ρ + ‖w‖,α() ≥ ρ + ‖w‖,
t if α() < ρ + ‖w‖,α() < ρ + ‖w‖.

Then z(t) ≥ ρ on [a, b].
Let

K =
{

z ∈ C[, ] : z(t) ≥  on [, ]
}

.

Then K is the standard positive cone of C[, ], and K is a total cone. It defines the partial
order ≤ of C[, ] by x ≤ y if and only if y – x ∈ K .

Let g ∈ L+[, ] with
∫ 

 g(s) ds >  and z ∈ C[, ]. We define two linear maps by

Lgz(t) =
∫ 


G(t, s)g(s)z(s) ds,

L(n)
g z(t) =

∫ – 
n


n

G(t, s)g(s)z(s) ds,

where /n ≤ a, b ≤  – /n,
∫ – 

n

n

g(s) ds > , and a and b are as in Theorem ..
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It is easy to know that Lg and L(n)
g are compact in C[, ] and map K into K . Let

r(Lg), r(L(n)
g ) denote the radiuses of the spectra of Lg and L(n)

g , respectively. Since  <
∫ – 

n

n

g(s) ds ≤ ∫ 
 g(s) ds < ∞, it is easy to verify that  < r(L(n)

g ), r(Lg) < ∞ []. �

Notation

μ(Lg) =


r(Lg)
, μ

(
L(n)

g
)

=


r(L(n)
g )

.

When g ≡ , μ(Lg) is written usually as μ.

It was proved by Nussbaum ([], Lemma ) that the radius of the spectrum is continu-
ous, that is, if L, Lm : X → X are compact linear operators and limm→∞ ‖Lm – L‖ = , then
limm→∞ r(Lm) = r(L). We use this result to prove the following lemma.

Lemma . For any ε > , there exists n >  such that μ(Lg) + ε ≥ μ(L(n)
g ) for n ≥ n.

Proof It is easy to verify that limn→∞ ‖L(n)
g – Lg‖ = . Then limn→∞ r(L(n)

g ) = r(Lg), and then
limn→∞ μ(L(n)

g ) = μ(Lg). The result follows. �

Lemma . ([], Theorem .) Let K be a total cone in a real Banach space X, and let L
be a compact linear operator with L(K) ⊆ K . If r(L) > , then there is ϕ ∈ K \ {θ} such that
Lϕ = r(L)ϕ.

We shall use the following known result (see, for example, []), which can be proved by
using Leray-Schauder degree theory for compact maps in Banach spaces.

Lemma . Let X be a real Banach space, � and � be two bounded open sets of X, and
θ ∈ � ⊂ �, where θ is zero element of X. Assume that F : � \ � → X is compact and
satisfies

() x �= μFx for x ∈ ∂� and  < μ ≤ .
() There exists y ∈ X \ {θ} such that x �= Fx + μy for x ∈ ∂� and μ ≥ .

Then F has a fixed point in � \ �.

3 New results of positive solutions of (1.1)-(1.2)
In this section, we utilize the inequalities established in Theorem . and Lemma . to
prove new existence results of positive solutions of (.)-(.).

Theorem . Assume that (C)-(C) and the following conditions hold.
(i) There exist r > , φ ∈ L+[, ] with

∫ 
 φ(s) ds >  and ε ∈ (,μ(Lφ)) such that

f (t, z) ≤ (
μ(Lφ) – ε

)
φ(t)z for a.e. t ∈ [, ] and all z ∈ [, r]. (.)

(ii) There exist ρ > , ψ ∈ L+[, ] with
∫ 

 ψ(s) ds >  and ε >  such that

f (t, z) ≥ (
μ(Lψ ) + ε

)
ψ(t)z for a.e. t ∈ [, ] and all z ∈ [ρ,∞). (.)

Then (.)-(.) has a positive solution.
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Proof By (C) there exists gρ ∈ L+[, ] such that

∣∣f (t, z)
∣∣ ≤ gρ (t) for a.e. t ∈ [, ] and all z ∈ [,ρ].

Let g(t) = gρ (t). By (ii), we see that f (t, z) + g(t) ≥  a.e. [,] and all z ∈ [,∞), that is, f
satisfies (.).

Set g(t) = g(t) and h(t) = ε
 ρψ(t) in Theorem .. Then there exist  < a < b <  such

that ϕa,b(t) ≥  on [, ] for all  < a ≤ a and b ≤ b < .
By Lemma . there exists n >  such that /n ≤ a, b ≤  – /n, μ(Lψ ) + ε/ ≥

μ(L(n)
ψ ) > , and ( nP

p
+ )(ρ + ‖w‖) > r + ‖w‖. From the result mentioned we see that

ϕ 
n

,– 
n

(t) ≥  on [, ].

Let R = ( nP
p

+ )(ρ + ‖w‖) and

� =
{

z ∈ C[, ],‖z‖ < r
}

,

� =
{

z ∈ C[, ],‖z + w‖ < R
}

.

Then θ ∈ � ⊂ �, where w is as in (.).
Without loss of generality, we may assume that A has no fixed point in ∂� (otherwise, if

A has a fixed point z in ∂�, then by Theorem . we know that z(t) ≥  on [, ], z(t) �= ,
and f ∗(s, z(s)) = f (s, z(s)), so that the result is already proved). The rest is divided into three
steps.

Step . We prove that, for z ∈ ∂� and  < μ ≤ ,

z �= μAz. (.)

Suppose on the contrary that there exist z ∈ ∂� and  < μ ≤  such that z = μAz. Putting
w∗ ≡  on [, ], Theorem . shows that z(t) ≥  and z(t) �= . This, together with (i),
implies

z = μAz = μ

∫ 


G(t, s)f ∗(s, z(s)

)
ds

= μ

∫ 


G(t, s)f

(
s, z(s)

)
ds

≤ μ
(
μ(Lφ) – ε

)∫ 


G(t, s)φ(s)z(s) ds

≤ (
μ(Lφ) – ε

)∫ 


G(t, s)φ(s)z(s) ds

=
(
μ(Lφ) – ε

)
Lφz = Sz,

where S = (μ(Lφ) – ε)Lφ .
Since S(K) ⊆ K and r(S) < , we have that (I – S)– exists and is increasing [, ]. From

the previous inequality we have z ≤ (I – S)–θ = θ , which is a contradiction. Hence, (.)
holds.

Step . Let Tz = μ(L(n)
ψ )L(n)

ψ z. Then T(K) ⊆ K and r(T) = . Lemma . shows that
there exists z∗ ∈ K \ {θ} such that Tz∗ = z∗. By direct computation we obtain
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p(t)z′
∗(t) =

μ(L(n)
ψ )

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
∫ – 

n


n
w(s)ψ(s)z∗(s) ds

–γ
∫ t


n

w(s)ψ(s)z∗(s) ds,  ≤ t < /n,

+α
∫ – 

n
t w(s)ψ(s)z∗(s) ds, /n ≤ t ≤  – /n,

–γ
∫ – 

n


n
w(s)ψ(s)z∗(s) ds,  – /n < t ≤ ,

and

(
p(t)z′

∗(t)
)′ = μ

(
L(n)

ψ

)
{

,  ≤ t < /n or  – /n < t ≤ ,
–ψ(t)z∗(t),  – /n ≤ t ≤ .

From this, we know p(t)z′∗(t) ∈ AC[, ] and (p(t)z′∗(t))′ ≤  a.e. [, ].
We prove that, for z ∈ ∂� and μ ≥ ,

z �= Az + μz∗. (.)

In fact, if there exist z ∈ ∂� (that is, ‖α‖ = ‖z + w‖ = R, α in (.)) and μ ≥  such that
z = Az + μz∗, then μ >  since A has no fixed point in ∂�. Lemma . implies that there
exist a and b satisfying (.), (.), and z(t) ≥ ρ on [a, b].

Since 
n

= P(ρ+‖w‖)
p(‖α‖–ρ–‖w‖) , we have  < a ≤ /n ≤ a, b ≤  – /n ≤ b < , and by

Lemma . we get z(t) ≥ ρ on [/n,  – /n].
By Theorem ., letting ν = , we see that z(t) ≥  on [, ] and, by (ii),

z(t) =
∫ 


G(t, s)f

(
s, z(s)

)
ds + μz∗(t),

=
∫ 

n


G(t, s)f

(
s, z(s)

)
ds +

∫ 

– 
n

G(t, s)f
(
s, z(s)

)
ds

+
∫ – 

n


n

G(t, s)f
(
s, z(s)

)
ds + μz∗(t)

≥ –
∫ 

n


G(t, s)g(s) ds –

∫ 

– 
n

G(t, s)g(s) ds

+
(
μ(Lψ ) + ε

)∫ – 
n


n

G(t, s)ψ(s)z(s) ds + μz∗(t)

= –χ 
n

(t) – χ– 
n

(t) +
(
μ(Lψ ) + ε/

)∫ – 
n


n

G(t, s)ψ(s)z(s) ds

+ ε/
∫ – 

n


n

G(t, s)ψ(s)z(s) ds + μz∗(t)

and

z(t) ≥ –χ 
n

(t) – χ– 
n

(t) + χ 
n

,– 
n

(t)

+ μ
(
L(n)

ψ

)∫ – 
n


n

G(t, s)ψ(s)z(s) ds + μz∗(t)
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= ϕ 
n

,– 
n

(t) + μ
(
L(n)

ψ

)∫ – 
n


n

G(t, s)ψ(s)z(s) ds + μz∗(t)

≥ μ
(
L(n)

ψ

)∫ – 
n


n

G(t, s)ψ(s)z(s) ds + μz∗(t).

Then z(t) ≥ μz∗(t) for t ∈ [, ].
Let

μ∗ = sup
{
σ : z(t) ≥ σ z∗(t),  ≤ t ≤ 

}
.

Then  < μ ≤ μ∗ < ∞ and z(t) ≥ μ∗z∗(t) for  ≤ t ≤ .
On the other hand, for t ∈ [, ], we have

z(t) ≥ μ
(
L(n)

ψ

)∫ – 
n


n

G(t, s)ψ(s)z(s) ds + μz∗(t)

≥ μ∗μ
(
L(n)

ψ

)∫ – 
n


n

G(t, s)ψ(s)z∗(s) ds + μz∗(t)

= μ∗μ
(
L(n)

ψ

)∫ – 
n


n

G(t, s)ψ(s)z∗(s) ds + μz∗(t)

= μ∗Tz∗(t) + μz∗(t) = μ∗z∗(t) + μz∗(t) =
(
μ∗ + μ

)
z∗(t).

From the definition of μ∗ we have μ∗ ≥ μ∗ + μ > μ∗, which is a contradiction. Hence, (.)
holds.

Step . Condition (C) implies that A is compact from C[, ] to C[, ]. By Lemma .,
A has a fixed point z in � \ �. From Theorem . we obtain z(t) ≥  on [, ] and then
f ∗ = f . This, together with (.), implies that z is a positive solution of (.)-(.). �

Let E be a fixed subset of [, ] of measure zero, and

f (z) = sup
t∈[,]\E

f (t, z), f (z) = inf
t∈[,]\E

f (t, z).

Notation

f  = lim sup
z→+

f (z)/z, f∞ = lim inf
z→∞ f (z)/z.

Utilizing Theorem ., we have the following:

Corollary . Let (C)-(C) and f  < μ < f∞ hold. Then (.)-(.) has at least one positive
solution.

Proof By f  < μ, for any ε ∈ (,μ), there exists r >  such that f (t, z) ≤ (μ – ε)z for
 ≤ z ≤ r. Since f∞ > μ, there exist ε >  and ρ >  such that f (t, z) ≥ (μ + ε)z for
z ≥ ρ. Let ψ(t) =  and φ(t) = . The result follows from Theorem .. �
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Remark . f  < μ < f∞ corresponds to the superlinear condition []. However, []
needed f  > –∞, whereas we need neither the assumption f  > –∞ nor p ∈ C[, ] in
this paper. Hence, Theorem . includes the superlinear case, and Corollary . improves
Theorem  in [].

Example . Let f (t, z) = t 
 (cz – z/), where c >  is a constant. Then f satisfies (C)-

(C). Let φ(t) = ψ(t) = t 
 and r = 

c . Then f (t, z) ≤  for t ∈ [, ], z ∈ [, r], and (i) in
Theorem . holds obviously. Let c > μ(Lψ ), ε = c–μ(Lψ )

 > , and ρ = 
ε


. Then

f (t, z) = t


(
cz – z/) = t



[(

μ(Lψ ) + ε
)
z +

(
εz – z/)] ≥ (

μ(Lψ ) + ε
)
ψ(t)z

for t ∈ [, ] and z ∈ [ρ,∞), and (ii) in Theorem . holds. By Theorem . problem (.)-
(.) has one positive solution for any  < μ(Lψ ) < c.

Remark . In Example ., the superlinear condition (Theorem (F) in []) is false
since f  = –∞, f does not satisfy the strict conditions as in [–], limz→∞ mina≤t≤b f (t,
z)/z = a 

 c < ∞ [], and
∫ b

a lim infz→∞ f (t, z)/z dt = 
 (b 

 –a 
 )c < ∞ [] for all  < a < b < ,

p is not required to belong to C[, ] [, , , , , ]. Hence, the existing results can
be not utilized to treat Example .. So the results obtained in this paper fill in the gap in
the study of problem (.)-(.).
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