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Abstract
We consider the existence of multiple positive solutions for the following nonlinear
fractional differential equations of nonlocal boundary value problems:

{
Dα
0+u(t) + f (t,u(t)) = 0, 0 < t < 1,

u(0) = 0, Dβ
0+u(0) = 0, Dβ

0+u(1) =
∑∞

i=1 ξiD
β
0+u(ηi),

where 2 < α ≤ 3, 1 ≤ β ≤ 2, α – β ≥ 1, 0 < ξi ,ηi < 1 with
∑∞

i=1 ξiη
α–β–1
i < 1. Existence

result of at least two positive solutions is given via fixed point theorem on cones. The
nonlinearity f may be singular both on the time and the space variables.

MSC: 26A33; 34B15; 34B18

Keywords: fractional differential equations; nonlocal boundary value problem;
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1 Introduction
The purpose of this paper is to investigate the multiplicity of positive solutions for the
following nonlocal boundary value problems of singular fractional differential equations:

{
Dα

+u(t) + f (t, u(t)) = ,  < t < ,
u() = , Dβ

+u() = , Dβ
+u() =

∑∞
i= ξiDβ

+u(ηi),
()

where  < α ≤ ,  ≤ β ≤ , α – β ≥ ,  < ξi,ηi <  with
∑∞

i= ξiη
α–β–
i < , f ∈ C(J ×

R++,R+), J = (, ), R+ = [, +∞), R++ = (, +∞), Dα
+ is the standard Riemann-Liouville’s

fractional derivative of order α. The nonlinearity f permits singularities at t = ,  and
u = . A function u ∈ C[, ] is said to be a positive solution of BVP () if u(t) >  on (, )
and u satisfies () on [, ].

Recently, much attention has been paid on the study of nonlocal boundary value prob-
lems of fractional differential equations; see [–] and [–]. By virtue of the contrac-
tion map principle and the fixed point index theory, Bai [] investigated the existence and
uniqueness of positive solutions for the following fractional differential equation:

Dα
+u(t) + f

(
t, u(t)

)
= ,  < t < ,  < α ≤ , (A)
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subject to three point boundary value conditions

u() = , u() = μu(ξ ),

where  < μξα– < ,  ≤ μ ≤ ,  < ξ < , f is continuous on [, ] × [, +∞). When
f : [, ] × [, +∞) → [, +∞) satisfies Carathéodory type conditions, by using some fixed
point theorems, like Leray-Schauder nonlinear alternative and a mixed monotone method,
Li et al. [], Xu et al. [, ] obtained the existence and multiplicity results of positive so-
lutions for the fractional differential equation (A) with fractional derivative in boundary
conditions

u() = , Dβ
+u() = μDβ

+u(ξ ),  ≤ β ≤ .

In , Lv [] and Yang et al. [] discussed the existence of minimal and maximal and the
uniqueness of positive solutions for fractional differential equation (A) under multi-point
boundary value conditions,

u() = , Dβ
+u() =

m–∑
i=

ξiDβ
+u(ηi),  ≤ β ≤ .

Motivated by the above papers, when  < α ≤  and f is continuous, Li et al. [] obtained
the existence results of at least one and unique solutions for fractional differential equation
(A) subject to more general multi-point boundary value conditions

u() = , Dβ
+u() = , Dβ

+u() =
m–∑
i=

ξiDβ
+u(ηi).

The tools to obtain the main results are the nonlinear alternative of the Leray-Schauder
and the Banach contraction mapping principle.

Compared with the existing literature, this paper has the following two new features.
First, different from [], infinite-point boundary value conditions are considered in this
paper. At the same time, the nonlinearity f in this paper permits singularities with respect
to both the time and the space variables which is seldom considered at present. Second,
the purpose of this paper is to investigate the existence of multiple positive solutions for
BVP (). As to multiple positive solutions, it is worth pointing out that conditions imposed
on f are different from that in []. To achieve this goal, first we convert the expression of
the unique solution into an integral form and then get the Green function BVP (). After
further discussion of the properties of the Green function, a suitable cone is constructed
to obtain the main result in this paper by means of the Guo-Krasnoselskii fixed point
theorem.

2 Preliminaries and several lemmas
Definitions and useful lemmas from fractional calculus theory can be found in the recent
literature [–], we omit them here.
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Lemma  ([]) Assume that u ∈ C(, ) ∩ L(, ) with a fractional derivative of order α > 
that belongs to C(, ) ∩ L(, ). Then

Iα
+Dα

+u(t) = u(t) + Ctα– + Ctα– + · · · + CN tα–N

for some Ci ∈ R, i = , , . . . , N , where N is the smallest integer greater than or equal to α.

Lemma  Let y ∈ L[, ] and  < α ≤ , the unique solution of
{

Dα
+u(t) + y(t) = ,

u() = , Dβ
+u() = , Dβ

+u() =
∑∞

i= ξiDβ
+u(ηi),

()

is

u(t) =
∫ 


G(t, s)y(s) ds,

where

G(t, s) =


p()�(α)

{
p(s)( – s)α–β–tα– – p()(t – s)α–,  ≤ s ≤ t ≤ ,
p(s)( – s)α–β–tα–,  ≤ t ≤ s ≤ ,

()

here p(s) =  –
∑

s≤ηi
ξi( ηi–s

–s )α–β–.

Proof By Lemma , we get

u(t) = –Iα
+ y(t) + Ctα– + Ctα– + Ctα–. ()

It follows from the condition u() =  that C = . Considering the relation Dα
+ tγ =

�(γ +)
�(γ –α+) tγ –α , we have

Dβ

+ u(t) = Dβ

+

(
–

∫ t




�(α)

(t – s)α–y(s) ds
)

+ C
�(α)

�(α – β)
tα–β– + C

�(α – )
�(α – β – )

tα–β–.

Since  < α ≤ ,  ≤ β ≤ , and α ≥ β + , we have – ≤ α – β –  ≤ . Thus, C = . As
deduced by the boundary value condition Dβ

+u() =
∑∞

i= ξiDβ
+u(ηi), we have

–


�(α – β)

∫ 


( – s)α–β–y(s) ds + C

�(α)
�(α – β)

= –
∞∑
i=


�(α – β)

ξi

∫ ηi


(ηi – s)α–β–y(s) ds + C

∞∑
i=

ξi
�(α)

�(α – β)
η

α–β–
i ,

which implies that

C =
∫ 



( – s)α–β–

�(α)( –
∑∞

i= ξiη
α–β–
i )

y(s) ds –
∞∑
i=

ξi

∫ ηi



(ηi – s)α–β–

�(α)( –
∑∞

i= ξiη
α–β–
i )

y(s) ds

=
∫ 



( – s)α–β–p(s)
�(α)p()

y(s) ds,
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where p(s) =  –
∑

s≤ηi
ξi( ηi–s

–s )α–β–. Thus, we have

u(t) = –
∫ t




�(α)

(t – s)α–y(s) ds +
∫ 



( – s)α–β–p(s)
�(α)p()

y(s) ds · tα–

=
∫ t



p(s)( – s)α–β–tα– – p()(t – s)α–

�(α)p()
y(s) ds

+
∫ 

t

p(s)( – s)α–β–tα–

�(α)p()
y(s) ds

=
∫ 


G(t, s) ds. �

Lemma  The function p(s) > , s ∈ [, ], and p is nondecreasing on [, ].

Proof By direct computation, we have

p′(s) =
∑
s≤ηi

ξi(α – β – )(ηi – s)α–β–( – s)β+–α

+ ξi(β +  – α)(ηi – s)α–β–( – s)β–α

=
∑
s≤ηi

ξi(ηi – s)α–β–( – s)β–α
[
(α – β – )( – s) + (β +  – α)(ηi – s)

]

=
∑
s≤ηi

ξi(ηi – s)α–β–( – s)β–α(α – β – )( – ηi) ≥ .

Then we have p is a nondecreasing function on [, ], which implies that p(s) ≥ p() =∑∞
i= ξiη

α–β–
i > , s ∈ [, ]. �

Lemma  The function G(t, s) defined by () admits the following properties:
(i) G(t, s) > , ∂

∂t G(t, s) > ,  < t, s < ;
(ii) maxt∈[,] G(t, s) = G(, s) = 

p()�(α) [p(s)( – s)α–β– – p()( – s)α–],  ≤ s ≤ ;
(iii) G(t, s) ≥ tα–G(, s),  ≤ t, s ≤ .

Proof (i) For  < s ≤ t < , noticing that  < α ≤ , by Lemma , is easy to see that

G(t, s) =


p()�(α)
[
p(s)( – s)α–β–tα– – p()(t – s)α–]

≥ 
p()�(α)

[
p()( – s)α–tα– – p()(t – s)α–]

=


�(α)
tα–

[
( – s)α– –

(
 –

s
t

)α–]
≥ .

It is clear that for  < t ≤ s < , G(t, s) > .
By direct computation, we have

∂

∂t
G(t, s) =


p()�(α)

⎧⎪⎨
⎪⎩

(α – )p(s)( – s)α–β–tα–

– (α – )p()(t – s)α–,  ≤ s ≤ t ≤ ,
(α – )p(s)( – s)α–β–tα–,  ≤ t ≤ s ≤ .
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It is clear that ∂
∂t G(t, s) is continuous on [, ] × [, ]. For  < s ≤ t < , noticing that  ≤

β ≤ , we get

∂

∂t
G(t, s) =


p()�(α)

[
(α – )p(s)( – s)α–β–tα– – (α – )p()(t – s)α–]

=
(α – )

p()�(α)
tα–

[
p(s)( – s)α–β– – p()

(
 –

s
t

)α–]

≥ (α – )p(s)
p()�(α)

tα–
[

( – s)α– –
(

 –
s
t

)α–]
≥ .

It is clear that for  < t ≤ s < , ∂
∂t G(t, s) > .

(ii) By (i), we know that G(t, s) is increasing with respect to t, thus we have maxt∈[,] G(t,
s) = G(, s) = 

p()�(α) [p(s)( – s)α–β– – p()( – s)α–],  ≤ s ≤ .
(iii) For  ≤ s ≤ t ≤ , we get

G(t, s) =


p()�(α)
[
tα–p(s)( – s)α–β– – p()(t – s)α–]

=


p()�(α)
tα–

[
p(s)( – s)α–β– – p()

(
 –

s
t

)α–]

≥ 
p()�(α)

tα–[p(s)( – s)α–β– – p()( – s)α–]

= tα–G(, s).

For  ≤ t ≤ s ≤ , we have

G(t, s) =


p()�(α)
tα–p(s)( – s)α–β–

= tα– · 
p()�(α)

p(s)( – s)α–β–

≥ tα–G(, s). �

We make the following assumptions:

(H) f : (J ×R++,R+) is continuous.
(H) There exist a, b ∈ C(J ,R+), g ∈ C(R++,R+) such that

f (t, u) ≤ a(t)g(u) + b(t), ∀t ∈ J , u ∈ R++

and

a∗
r =

∫ 


a(t)gr(t) dt < +∞

for any r > , where

gr(t) = max
{

g(u) : tα–r ≤ u ≤ r
}
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and

b∗ =
∫ 


b(t) dt < +∞.

(H) There exists c ∈ C(J ,R+) such that

f (t, u)
c(t)u

→ +∞ as u → +∞

uniformly for t ∈ J , and

c∗ =
∫ 


c(t) dt < +∞.

(H) There exists d ∈ C(J ,R+) such that

f (t, u)
d(t)

→ +∞ as u → +

uniformly for t ∈ J , and

d∗ =
∫ 


d(t) dt < +∞.

Let E = C[, ] be the Banach space equipped with the maximum norm ‖u‖ =
max≤t≤ |u(t)| and let P be the cone of nonnegative functions in C[, ] with the following
form:

P =
{

u ∈ E|u(t) ≥ tα–‖u‖, t ∈ [, ]
}

.

Denote P+ = {u ∈ P : ‖u‖ > } and Pmn = {u ∈ P, m ≤ ‖u‖ ≤ n} for any n > m > .
Define the operator T as follows:

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds,  ≤ t ≤ . ()

Clearly, T : P\{} → C[, ].

Lemma  Suppose that (H) and (H) hold, then for any j > i > , T : Pij → P is completely
continuous.

Proof For any u ∈ Pij, then i ≤ ‖u‖ ≤ j. By the definition of cone P, we have

itα– ≤ u(t) ≤ j, ∀t ∈ [, ]. ()

It is not difficult to see that condition (H) implies that

a∗
ij =

∫ 


a(t)gij(t) dt < +∞ ()
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for any j > i > , where

gij(t) = max
{

g(u) : itα– ≤ u ≤ j
}

. ()

By (H), (H), (), and Lemma (ii), we get

f
(
t, u(t)

) ≤ a(t)gij(t) + b(t), ∀t ∈ J ()

and

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds

≤ 
p()�(α)

∫ 



[
p(s)( – s)α–β– – p()( – s)α–]f

(
s, u(s)

)
ds

≤ 
p()�(α)

∫ 


p(s)( – s)α–β–f

(
s, u(s)

)
ds

≤ 
p()�(α)

∫ 



[
a(s)gij(s) + b(s)

]
ds

≤ 
p()�(α)

(
a∗

ij + b∗), ∀t ∈ [, ], ()

which implies that T is well defined. By Lemma (iii), we have

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds

≤
∫ 


G(, s)f

(
s, u(s)

)
ds, ∀t ∈ [, ] ()

and

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds

≥ tα–
∫ 


G(, s)f

(
s, u(s)

)
ds, ∀t ∈ [, ], ()

which means that T maps Pij into P.
Next, we are in a position to show that T is completely continuous. Let un, ū ∈ Pij, ‖un –

ū‖ →  (n → ∞), then limn→∞ un(t) = ū(t), t ∈ [, ]. Let

(Tu)(t) = f
(
t, u(t)

)
,  < t < , u ∈ Pij,

(Tu)(t) =
∫ 


G(t, s)u(s) ds,  < t < , u ∈ L[, ].

By (H),

lim
n→∞ f

(
t, un(t)

)
= f

(
t, ū(t)

)
,  < t < . ()
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Similar to () and (), for un, ū ∈ Pij, we have

f
(
t, un(t)

) ≤ a(t)gij(t) + b(t), f
(
t, ū(t)

) ≤ a(t)gij(t) + b(t), ∀t ∈ J .

Thus, we have

∣∣f (t, un(t)
)

– f
(
t, ū(t)

)∣∣ ≤ 
[
a(t)gij(t) + b(t)

]
= σ (t) ∈ L[, ]. ()

It follows from (), (), and the Lebesgue dominated convergence theorem that
limn→∞

∫ 
 |(Tun)(t) – (Tū(t))|dt = , which implies that T : Pij → L[, ] is continu-

ous. By the Arzela-Ascoli theorem, we know that T : L[, ] → C[, ] is completely
continuous. As a consequence, T = T ◦ T : Pij → C[, ] is completely continuous. �

In order to prove the main theorem, we state the following Guo-Krasnoselskii fixed point
theorem.

Lemma  ([]) Let 
 and 
 be two bounded open sets in Banach space E such that θ ∈

 and 
 ⊂ 
, A : P ∩ (
\
) → P a completely continuous operator, where θ denotes
the zero element of E and P a cone of E. Suppose that one of the two conditions holds:

(i) ‖Au‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂
; ‖Au‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂
;
(ii) ‖Au‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂
; ‖Au‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂
.

Then A has a fixed point in P ∩ (
\
).

3 Main result
Theorem  Let conditions (H)-(H) be satisfied. Assume in addition that there exists r > 
such that


p()�(α)

(
a∗

r + b∗) < r, ()

where a∗
r and b∗ are defined in condition (H). Then the boundary value problem () has

at least two positive solutions u∗ and u∗∗ with  < ‖u∗‖ < r < ‖u∗∗‖.

Proof By Lemma , the operator T defined by () is completely continuous from Pmn into
P for any n > m > . We need only to prove that T has two fixed points u∗ and u∗∗ ∈ P+

with  < ‖u∗‖ < r < ‖u∗∗‖.
By condition (H), there exists r >  such that

f (t, u) ≥ α–
(∫ 




G
(




, s
)

c(s) ds
)–

c(t)u, ∀t ∈ J , u ≥ r. ()

Choose

r > max
{

α–r, r
}

. ()

For u ∈ P, ‖u‖ = r, we have, by the construction of cone P,

u(t) ≥ tα–r ≥
(




)α–

r > r, ∀t ∈
[




, 
]

. ()



Zhang and Zhong Boundary Value Problems  (2016) 2016:65 Page 9 of 11

So, we get from () and ()

(Tu)
(




)
=

∫ 


G

(



, s
)

f
(
s, u(s)

)
ds

≥ α–
(∫ 




G
(




, s
)

c(s) ds
)– ∫ 




G
(




, s
)

c(s)u(s) ds

≥ α–
(∫ 




G
(




, s
)

c(s) ds
)– ∫ 




G
(




, s
)

c(s) ds ·
(




)α–

r = r. ()

Therefore,

‖Tu‖ = max
t∈[,]

∥∥(Tu)(t)
∥∥ ≥

∥∥∥∥(Tu)
(




)∥∥∥∥ ≥ r = ‖u‖, ∀u ∈ P,‖u‖ = r. ()

By condition (H), there exists r >  such that

f (t, u) ≥
(∫ 




G
(




, s
)

d(s) ds
)–

d(t)r, ∀t ∈ J ,  < u < r. ()

Choose

 < r < min{r, r}. ()

For u ∈ P, ‖u‖ = r, we have

r > r = ‖u‖ ≥ rtα– > , ∀t ∈ J .

So, we get

(Tu)
(




)
=

∫ 


G

(



, s
)

f
(
s, u(s)

)
ds

≥
(∫ 




G
(




, s
)

d(s) ds
)– ∫ 




G
(




, s
)

d(s)r ds

≥
(∫ 




G
(




, s
)

d(s) ds
)– ∫ 




G
(




, s
)

d(s) ds · r = r > r. ()

Therefore,

‖Tu‖ = max
t∈[,]

∥∥(Tu)(t)
∥∥ ≥

∥∥∥∥(Tu)
(




)∥∥∥∥ > r = ‖u‖, ∀u ∈ P,‖u‖ = r. ()

On the other hand, for u ∈ P, ‖u‖ = r, similar to (), by (H), Lemma (iii) and (), we
get

(Tu)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds

≤ 
p()�(α)

∫ 



[
p(s)( – s)α–β– – p()( – s)α–]f

(
s, u(s)

)
ds
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≤ 
p()�(α)

∫ 


p(s)( – s)α–β–f

(
s, u(s)

)
ds

≤ 
p()�(α)

∫ 


( – s)α–β–f

(
s, u(s)

)
ds

≤ 
p()�(α)

(
a∗

r + b∗) < r, ∀t ∈ [, ]. ()

Thus, from (), we get

‖Tu‖ < ‖u‖, ∀u ∈ P,‖u‖ = r. ()

We know from (), (), (), and Lemma  that T has two fixed points u∗, u∗∗ ∈ Prr

such that  < r < ‖u∗‖ < r < ‖u∗∗‖ ≤ r. �

4 An example
Example  Consider the following infinite-point boundary value problems:

⎧⎨
⎩

D


+u(t) + 

 √(–t)
(u + 


√

u ) + 
 √t(–t)

= ,  < t < ,

u() = , D


+u() = , D



+u() =

∑∞
i=


 i–D



+u( 

i ).
()

Conclusion BVP () has at least two positive solutions u∗ and u∗∗ with  < ‖u∗‖ < r <
‖u∗∗‖.

Proof In this problem, α = 
 , β = 

 , ξi = 
 i–, ηi = 

i , f (t, u) = 
 √(–t)

(u + 

√

u ) + 
 √t(–t)

.

By simple computation, we have �( 
 ) = .,

∑∞
i= ξiη

α–β–
i = . < , p() = ..

For any r > , it is easy to see that (H) holds for a(t) = 
 √(–t)

, g(u) = u + 

√

u , b(t) =


 √t(–t)
, and

a∗
r =

∫ 


a(t)gr(t) dt <

∫ 




 √( – t)

(
r +


t 


√

r

)
dt < +∞, ()

b∗ =
∫ 




 √t(–t)
dt = .. Obviously, (H) and (H) hold for c(t) = d(t) = 

 √(–t)
, and

c∗ = d∗ = .. Take r = , we have, by (),


p()�(α)

(
a∗

 + b∗) <


. × .
× (. + . + .)

= . <  = r.

Consequently, () holds, and our conclusion follows from Theorem . �
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