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Abstract
In this paper, we consider a stochastic heat equation with multiplicative bi-fractional
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1 Introduction
In recent years, there has been considerable interest in studying fractional Brownian mo-
tion (fBm) due to its interesting properties and wide applications in various scientific ar-
eas such as turbulence, telecommunications, finance, and image processing. Some surveys
and complete literatures for fBm can be found in Alós et al. [], Biagini et al. [], Decreuse-
fond and Üstünel [], Gradinaru et al. [], Hu [], Mishura [], Nourdin [], Nualart [],
Tudor [], and the references therein. On the other hand, many authors have proposed
to use more general self-similar Gaussian processes and random fields as stochastic mod-
els. Such applications have raised many interesting theoretical questions about selfsimilar
Gaussian processes and fields in general. Therefore, some generalizations of the fBm have
been introduced. However, in contrast to the extensive studies on fBm, there has been lit-
tle systematic investigation on other self-similar Gaussian processes. The main reason is
the complexity of dependence structures for self-similar Gaussian processes that do not
have stationary increments. Therefore, it seems interesting to study some extensions of
fBm.

The bi-fractional Brownian motion BH,K with indices H ∈ (, ) and K ∈ (, ] is an ex-
tension of fBm with Hurst index H ∈ (, ), which was first introduced by Houdré and
Villa []. The bi-fBm BH,K with indices H ∈ (, ) and K ∈ (, ] is a zero-mean Gaussian
process B = {Bt , t ∈R} such that B =  and

E
[
BH,K

t BH,K
s

]
= RH,K (t, s) :=


K

[(|t|H + |s|H)K – |t – s|HK ]
.

Clearly, if K = , then the process is an fBm with Hurst parameter H . The process B is HK-
selfsimilar, but it has no stationary increments. It has Hölder-continuous paths of order
δ < HK , and its paths are not differentiable.
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Definition . A bi-fractional noise with parameters H , H ′ ∈ (, ), K , K ′ ∈ (, ] is a Gaus-
sian random field B = {Btx, t ≥ , x ∈R} with B = , EBtx = , and

E[BtxBsy] = RH,K (t, s)RH′ ,K ′ (x, y)

for all t, s ≥ . Moreover, the bi-fractional white noise with parameters H and K is a bi-
fractional noise with parameters H , K and H ′ = 

 , K ′ = .

In order to expound our aim in this paper, we recall a classical result. Consider the
stochastic heat equation

⎧
⎨

⎩

∂u
∂t (t, x) = �u(t, x) + α(t, x)u(t, x),

u(, x) = ϕ(x),
(.)

where (t, x) ∈ [,∞) × R
d , α(t, x) is a continuous function on [,∞) × R

d , and ϕ is a
bounded measurable function. Let W x

t = Wt + x be a d-dimensional Brownian motion
starting from the point x. Then we can get the following Feynman-Kac formula (see Frei-
dlin []) for the solution of stochastic heat equation (.):

u(t, x) = E
[
ϕ
(
W x

t
)

exp

{∫ t


α
(
t – s, W x

s
)

ds
}]

. (.)

In this paper, we extend the Feynman-Kac formula to the stochastic heat equation driven
by a bi-fractional noise:

⎧
⎨

⎩

∂u
∂t (t, x) = �u(t, x) + ( ∂

∂t∂x B(t, x))u(t, x),

u(, x) = ϕ(x),
(.)

where B is a bi-fractional noise with parameters H , K , H ′, K ′ such that HK > 
 , H ′K ′ > 

 ,
the stochastic integral is the Stratonovich integral, and ϕ is a bounded measurable func-
tion. The difference between (.) and (.) is that ∂

∂t∂x B(t, x) is a generalized random func-
tion, no longer a function of x and t. Denoting by EW the expectation with respect to the
Brownian motion W x

t , we can formally rewrite the Feynman-Kac formula for the equation
(.):

u(t, x) = EW
[
ϕ
(
W x

t
)

exp

{∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy)

}]
, (.)

where δ denotes the Dirac delta function. The aim of this paper is to show that the process
u(t, x) given by (.) is a weak solution of (.).

If K = , then the process B is a fractional Brownian sheet, and the questions stated were
first studied by Hu et al. [, ]. If K �= , then this process is not a fractional Brownian
sheet, and the questions stated were not studied and are not trivial. The main difficulty
consists in the complexity of the dependence structure of a self-similar Gaussian process
with nonstationary increments that does not have a representation based on the Wiener
integral. This paper is organized as follows. In Section , we present some preliminaries for
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the bi-fractional noise. In Section , we show that the stochastic Feynman-Kac functional
defined by

V (t, x) =
∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy) (.)

is well defined and exponentially integrable by using a suitable approximation of the Dirac
delta function under some suitable conditions. In Section , we show that the process
(.) is a weak solution to equation (.). In Section , we study the regularity of the weak
solution. We show that the solution is Hölder continuous and the probability law of the
solution admits a smooth density with respect to the Lebesgue measure.

2 Preliminaries
In this section, we briefly recall the definition and properties of the stochastic integral with
respect to a bi-fractional noise. As for a Gaussian process, we can construct a stochastic
calculus of variations with respect to B. We refer to Alós et al. [] and Nualart [] for a
complete description of stochastic calculus with respect to Gaussian processes. Here we
only recall the basic elements of this theory (see Es-sebaiy and Tudor []). More works
on bi-fBm can be found in Jiang and Wang [], Kruk et al. [], Lei and Nualart [],
Russo and Tudor [], Tudor and Xiao [], Shen and Yan [], Yan et al. [, ], and the
references therein.

As we pointed out before, a bi-fractional noise B = {Btx,  ≤ t ≤ T , x ∈R} on a probability
space (�,F , P) with indices H , H ′ ∈ (, ) and K , K ′ ∈ (, ] is a rather special class of self-
similar Gaussian random fields such that B =  and

E[BtxBsy] = RH,K (t, s)RH′ ,K ′ (x, y), (.)

where

RH,K (t, s) =


K

[(|t|H + |s|H)K – |t – s|HK ]
.

In other words, B is a bi-fractional Brownian sheet with Hurst parameters H and K in the
time variable and H ′ and K ′ in the space variable. Throughout this paper, we assume that
HK , H ′K ′ ≥ .

Let H be the completion of the linear space E generated by the indicator functions [,t],
t ∈ [, T], with respect to the inner product

〈[,s]×[,x], [,t]×[,y]〉H = RH,K (t, s)RH′ ,K ′ (x, y),

where we assume that [,x] = –[x,] if x < . The mapping ψ ∈ E → B(ψ) is an isometry
from E to the Gaussian space generated by B, and it can be extended to H. We will denote
this isometry by

B(ψ) =
∫ ∞



∫

R

ψ(t, x)B(dt, dx)

for ψ ∈H. For ϕ,ψ ∈ E , we have

E
[
B(ϕ)B(ψ)

]
= 〈ϕ,ψ〉H = κ

∫

R

+×R

ϕ(s, x)ψ(t, y)ζH,K (s, t)ζH′ ,K ′ (x, y) ds dt dx dy
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with a constant κ >  depending only on H , K , H ′, K ′, where

ζα,β (s, t) = |t – s|αβ–

with αβ > 
 , and

ζα,β (s, t) =
(|s|α + |t|α

)β–|st|α–

with αβ = 
 . Moreover, H denotes the class of measurable functions ψ on R+ × R satis-

fying

∫

R

+×R

ϕ(s, x)ψ(t, y)ζH,K (s, t)ζH′ ,K ′ (x, y) ds dt dx dy < ∞. (.)

Let us denote by S the set of smooth functionals of the form

F = f
(
B(ψ), B(ψ), . . . , B(ψn)

)
,

where f ∈ C∞
b (Rn) and ψi ∈ H. The Malliavin derivative DB of a functional F as before is

given by

DBF =
n∑

j=

∂f
∂xj

(
B(ψ), B(ψ), . . . , B(ψn)

)
ψj.

The derivative operator DB is then a closable operator from L(�) into L(�;H). We de-
note by D

, the closure of S with respect to the norm

‖F‖, :=
√

E|F| + E
∥∥DBF

∥∥
H.

The divergence integral δB is the adjoint of the derivative operator DB given by the duality
relationship

E
[
FδB(u)

]
= E

〈
DBF , u

〉
H (.)

for any element F ∈ D
, and any u ∈ L(�;H) in δB. A random variable u ∈ L(�;H) be-

longs to the domain of the divergence operator δB, denoted by Dom(δB), if

E
∣∣〈DBF , u

〉
H

∣∣ ≤ c‖F‖L(�)

for every F ∈ D
,, where c is a constant depending only on u. We have also the following

formula:

FB(ψ) = δB(Fψ) +
〈
DBF ,ψ

〉
H (.)

for any ψ ∈ H and any random variable F ∈ D
,. The operator δB is also called the Sko-

rokhod integral. The readers can refer to Nualart [] for a detailed account of the Malliavin
calculus with respect to a Gaussian process. If u and DBF are almost surely measurable
functions on R+ ×R satisfying condition (.), then the duality formula (.) can be writ-
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ten using the expression of the inner product in H:

E
[
δB(u)F

]
= κ

∫

R

+×R

(
DB

s,xF
)
u(t, y)ζH,K (s, t)ζH′ ,K ′ (x, y) ds dt dx dy.

3 The stochastic Feynman-Kac functional
Let W = {Wt , t ≥ } be a standard Brownian motion independent of B, and W x = W + x.
In this section, we study the stochastic Feynman-Kac functional

V (t, x) :=
∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy), (.)

where δ denotes the Dirac delta function. We denote by EW (�(B, W )) (resp., EB(�(B, W )))
the expectation of a functional �(B, W ) with respect to W (resp., with respect to B). We
use E to denote the composition EBEW , which is a random variable depending only on B
or W .

For any ε >  and τ > , we define the functions pε(x) and φτ (t) by

pε(x) =
√
πε

e– x
ε ≡ 

π

∫

R

eixξ e–ε
ξ
 dξ , x ∈R, (.)

and

φτ (t) =

τ

[,τ ](t), t ≥ .

Then φτ (t)pε(x) is an approximation of the Dirac delta function δ(t, x) as ε and τ tend to
zero.

Lemma . Let ζH,K be defined in Section , and let W = {Wt , t ≥ } be a standard Brow-
nian motion starting at zero. Then we have

E
[
ζH,K (Wt , Ws)

] ≤ CsH–

(t – s)–H

for all t > s > .

Proof Recall that if (G, G) is a Gaussian couple, then we can write

G =
Cov(G, G)

Var(G)
G +

√

Var(G) –
Cov(G, G)

Var(G)
η,

where η is a standard normal random variable independent of G, and Var(·) denotes the
variance. We then can write

Wt =
√

sξ +
√

t – sη

in distribution, where ξ and η are two independent standard normal random variables,
which implies that

ζH,K (Wt , Ws) =
|(√sξ +

√
t – sη)

√
sξ |H–

(|√sξ +
√

t – sη|H + |√sξ |H )–K
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in distribution. Thus, an elementary calculation shows that

E
( |(√sξ +

√
t – sη)

√
sξ |H–

(|√sξ +
√

t – sη|H + |√sξ |H )–K

)
≤ CsH–

(t – s)–H

for all  < s < t. �

Lemma . Let ζH,K be defined in Section . For all H , K ∈ (, ) and HK ≥ , we have
∫

R
pε(x + u)pε′ (y + v)ζH,K (u, v) du dv ≤ CζH,K (x, y) and (.)

∫

[,t]
φε(t – s – u)φε′ (t – r – v)ζH,K (u, v) du dv ≤ CζH,K (t – s, t – r) (.)

for all ε, ε′ > , s, r ∈ [, t], and x, y ∈ R.

Proof Let HK > 
 , and let ξ be a standard normal random variable. We then have (see Hu

et al. [])

E|x + εξ |–α ≤ C min
{
ε–α , x–α

}
(.)

for  < α < , ε, x > . As a corollary, we have
∫

R
pε(x + u)pε′ (y + v)ζH,K (u, v) du dv

= E
∣
∣εξ – x – ε′η + y

∣
∣HK– ≤ C|x – y|H′K ′–.

Similarly, we also get (.).
Let now HK = 

 . Then we have

∫

R
pε(x + u)pε′ (y + v)ζH,K (u, v) du dv

=
∫

R
pε(x + u)pε′ (y + v)

|uv|H– du dv
(|u|H + |v|H )–K

= E
[ |(εξ – x)(ε′η – y)|H–

(|εξ – x|H + |ε′η – y|H )–K

]
≤ Cζ (x, y).

On the other hand, for HK = 
 , we have

pε(x) ≥ pε(x)[,
√

ε](x) =
√
πε

e– x
ε [,

√
ε](x) ≥ √

πe
φ√

ε(x)

for all ε > , which gives
∫

[,t]
φε(t – s – u)φε′ (t – r – v)ζH,K (u, v) du dv

≤ C
∫

R
pε(t – s – u)pε′ (t – r – v)ζH,K (u, v) du dv ≤ CζH,K (t – s, t – r)

for all ε, ε′ >  and s, r > . �
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We obtain some approximations as follows:

Bε,τ (t, x) =
∫ t



∫

R

φτ (t – s)pε(x – y)B(s, y) ds dy, (.)

Aε,τ
t,x (r, y) =

∫ t


φτ (t – s – r)pε

(
W x

s – y
)

ds, (.)

and

V ε,τ (t, x) =
∫ t



∫

R

Aε,τ
t,x (r, y)B(dr, dy) (.)

for all t, s, r ≥  and x, y ∈R. Then
• Bε,τ (t, x) is an approximation of the bi-fractional noise B(t, x);
• Aε,τ

t,x (r, y) is an approximation of the Dirac delta function δ(W x
t–r – y).

Theorem . Suppose that HK ≥ , H ′K ′ ≥ , and HK + H ′K ′ > . Then for any τ > 
and ε > , we have that Aε,τ

t,x belongs to H and the family of random variables V ε,τ (t, x)
converges in L to a limit denoted by

V (t, x) :=
∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy),

which is called the stochastic Feynman-Kac functional. Conditional on W , V (t, x) is a
Gaussian random variable with mean  and variance

σ (W ) = κ

∫ t



∫ t


|r – s|HK–ζH′ ,K ′ (Wr , Ws) dr ds. (.)

Proof Let ε, ε′, τ , τ ′ > . Clearly, the condition HK + H ′K ′ >  implies that HK > . To
show that Aε,τ

t,x belongs to the space H almost surely, we compute the inner product

 ≤ 〈
Aε,τ

t,x , Aε′ ,τ ′
t,x

〉
H = κ

∫

[,t]

∫

R
pε

(
W x

s – y
)
pε′

(
W x

r – z
)
φτ (t – s – u)

· φτ ′ (t – r – v)|u – v|HK–ζH′ ,K ′ (y, z) dy dz du dv ds dr

≤ C
∫

[,t]
|s – r|HK–ζH′ ,K ′ (Ws, Wr) ds dr (.)

by Lemma ..
For all H ′K ′ >  and t ≥ , we have

EW (〈
Aε,τ

t,x , Aε′ ,τ ′
t,x

〉
H

) ≤ C
∫

[,t]
|s – r|HK–EζH′ ,K ′ (Ws, Wr) ds dr

= C
∫

[,t]
|s – r|HK–E|Ws – Wr|H′K ′– ds dr

= CtHK+H′K ′–E
(|ξ |H′K ′–) < ∞,
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where ξ is a standard normal random variable. Similarly, for all H ′K ′ =  and t ≥ , we
also have

EW (〈
Aε,τ

t,x , Aε′ ,τ ′
t,x

〉
H

) ≤ C
∫ t



∫ t


|s – r|HK+H′– ds dr < ∞

by Lemma ..
Therefore, Aε,τ

t,x belongs to the spaceH almost surely for all ε >  and τ > , which implies
that the random variables V ε,τ (t, x) are well defined, and we get

EW EB[
V ε,τ (t, x)V ε′ ,τ ′

(t, x)
]

= EW [〈
Aε,τ

t,x , Aε′ ,τ ′
t,x

〉
H

]
.

It follows from the dominated convergence theorem that there exists a constant C de-
pending only on t, H , K , H ′K ′ such that

EW EB[
V ε,τ (t, x)V ε′ ,τ ′

(t, x)
] −→ C

as ε, ε′, τ , τ ′ tend to zero. This shows that

E
[∣∣V ε,τ (t, x) – V ε′ ,τ ′

(t, x)
∣
∣] −→ 

as ε, ε′, τ , τ ′ tend to zero. As a consequence, V ε,τ (t, x) converges in L to a limit denoted
by V (t, x).

Finally, by a similar argument we obtain (.), and the proof is completed. �

Now, we show the exponential integrability of the random variable V (t, x) defined in
Theorem ..

Theorem . Let the random variable V (t, x) be defined in Theorem .. If HK , H ′K ′ ≥ 
and HK + H ′K ′ > , then we have

E
[
eλV (t,x)] < ∞ (.)

for any λ ∈R.

Proof Let HK , H ′K ′ ≥  and HK + H ′K ′ > . Then HK >  and H ′K ′ ≥ . Denote

�t :=
∫ t



∫ t


|r – s|HK–ζH′ ,K ′ (Wr , Ws) dr ds

and �t =
√

�t for all t ≥ . Then �t ≥  is nondecreasing and pathwise continuous. It
follows from (.) and the scaling property of Brownian motion that

E
[
eλV (t,x)] = EW E

[
eλV (t,x) | W

]
= EW [

eVar(λV (t,x)|W )]

= E
[

exp

{
λ

∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy)

}]

= E
[

exp

{


λκ

∫ t



∫ t


|r – s|HK–ζH′ ,K ′ (Wr , Ws) dr ds

}]

for all t ≥ .
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Case I: HK , H ′K ′ >  and HK + H ′K ′ > . We have

E
[
eλV (t,x)] = E

[
exp

{


λκ

∫ t



∫ t


|r – s|HK–|Wr – Ws|H′K ′– dr ds

}]

= E
[

exp

{


λκtHK+H′K ′–�

}]

for all t ≥ . Then it suffices to show that the random variable � has exponential moments
of all orders. This will be done in two steps.

Step . By the identity

|Bs – Br|β– = C
∫

R

|Bs – x| β–
 |Br – x| β–

 dx (.)

for all  < β <  we have

�t =
∫

R
η

t (u, x) du dx,

where

ηt = C
∫ t


|s – u| HK–

 |Bs – x| H′K ′–
 ds.

Denote B̃s = Bt+s – Bt for all t, s ≥ . Then we have

η̃t (u, x) := ηt+t (u, x) – ηt (u, x) = C
∫ t+t

t

|s – u| HK–
 |Bs – x| H′K ′–

 ds

= C
∫ t


|s + t – u| HK–

 |B̃s + Bt – x| H′K ′–
 ds

for t, t > . It follows from triangular inequality and translation invariance that

�t+t ≤ �t +
(∫

R

[
ηt+t (u, x) – ηt (u, x)

] du dx
)/

= �t + �̃t

for t, t > , where �̃t is independent of {�s,  ≤ s ≤ t} and has the same distribution
as �t . Therefore, the process �t is subadditive.

Step . By Theorem .. in [] we have

E
[
eθ�t

]
< ∞

and

lim
t→∞


t

log E
[
eθ�t

]
= �(θ ) = �()θ


HK+H′K ′–
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for any θ , t > , by the scaling property, where  ≤ �(θ ) < ∞. It follows from the Chebyshev
inequality that

lim sup
t→∞


t

log P(�t ≥ t) ≤ �(θ ) – θ = �()θ


HK+H′K ′– – θ

for all θ > , which gives

lim sup
t→∞


t

log P(�t ≥ t) ≤ min
θ>

(
�()θ


HK+H′K ′– – θ

)
.

Hence, there exists a >  such that

lim sup
t→∞


t

log P(�t ≥ t) ≤ –a

and

P
(
� ≥ t

–HK–H′K ′


) ≤ e– 
 at

when t > N for some N > . Combining this with the fact that

E�(X) = E
∫ X


φ(x) dx + �() =

∫ ∞


φ(x)P(X ≥ x) dx + φ()

for �(y) =
∫ y

 φ(x) dx + �() and all random variables X ≥ , we get

E
[
exp

(
θ�


HK+H′K ′–


)]
=

∫ ∞


P
(
θ�


HK+H′K ′–
 ≥ x

)
ex dx + 

≤
∫ N


ex dx +

∫ ∞

N
P
(
θ�


HK+H′K ′–
 ≥ x

)
ex dx + 

≤
∞∑

k=N

P
(
θ�


HK+H′K ′–
 ≥ k

)
ek+ + eN ≤

∞∑

k=N

e– ak
θ

+k+ + eN

for all θ < a
 . This gives the critical integrability

E
[
exp

(
θ�


HK+H′K ′–


)]
< ∞,

which implies that E[exp(λ�
 )] < ∞ for all λ > .

Thus, we have proved the theorem for HK , H ′K ′ >  and HK + H ′K ′ > .
Case II: HK > , H ′K ′ =  and HK + H ′K ′ > . We have

E
[
eλV (t,x)] = E

[
exp

{


λκ

∫ t



∫ t


|r – s|HK–ζH′ ,K ′ (Wr , Ws) dr ds

}]

for all t ≥ . Now the proof follows similarly to Case I. �
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4 The Feynman-Kac formula
In this section, we give the Feynman-Kac formula of equation (.). Let us first recall the
definitions of the Stratonovich integral and weak solution to (.). For any ε, τ > , we
define

Ḃε,τ (t, x) =
∫ t



∫

R

φτ (t – s)pε(x – y)B(ds, dy). (.)

To provide a notion of solution for the stochastic heat equation driven by bi-fractional
sheet (.), we need the following definition of the Stratonovich integral, which is intro-
duced by Russo and Vallois [] and Hu et al. [].

Definition . Let a random field v = {v(t, x), t ≥ , x ∈R} satisfy

∫ T



∫

R

∣
∣v(t, x)

∣
∣dx dt < ∞

almost surely for all T > . We define the Stratonovich integral as

∫ T



∫

R

v(t, x)B(dt, dx) := lim
ε,τ↓

∫ T



∫

R

v(t, x)Ḃε,τ (t, x) dx dt

if the limit exists in probability.

Definition . We say that a random field u = {u(t, x), t ≥ , x ∈ R} is a weak solution of
(.) if, for any C∞-function f with compact support on R, we have

∫

R

u(t, x)f (x) dx =
∫

R

f (x)ϕ(x) dx

+



∫ t



∫

R

u(s, x)�f (x) dx ds +
∫ t



∫

R

u(s, x)f (x)B(ds, dx)

almost surely for all t ≥ .

Theorem . Let HK , H ′K ′ > , HK + H ′K ′ > , and let ϕ be a bounded measurable
function. Then the process

u(t, x) = EW
[
ϕ
(
W x

t
)

exp

{∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy)

}]
(.)

is a weak solution to (.), where EW denotes the expectation with respect to the Brownian
motion W x

t , and δ denotes the Dirac delta function.

In order to prove the theorem, we need some preliminaries. Consider the approximation
of (.) given by the following stochastic heat equation driven by a random potential:

⎧
⎨

⎩

∂
∂t uε,τ = 

�uε,τ + uε,τ Ḃε,τ (t, x),

uε,τ (, x) = ϕ(x).
(.)
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By Fubini’s theorem and (.) we can write

∫ t


Ḃε,τ (t – s, W x

s
)

ds =
∫ t


ds

∫ t



∫

R

φτ (t – s – r)pε

(
W x

s – y
)
B(dr, dy)

=
∫ t



∫

R

(∫ t


φτ (t – s – r)pε

(
W x

s – y
)

ds
)

B(dr, dy) = V ε,τ (t, x),

where V ε,τ (t, x) is defined by (.). It follows from the classical Feynman-Kac formula that

uε,τ (t, x) = EW
[
ϕ
(
W x

t
)

exp

{∫ t


Ḃε,τ (t – s, W x

s
)

ds
}]

= EW [
ϕ
(
W x

t
)

exp
(
V ε,τ (t, x)

)]
,

where W x is a standard Brownian motion independent of B and starting at x.

Lemma . Let V (t, x) be given by (.). Define the process

u(t, x) = EW [
ϕ
(
W x

t
)

exp
(
V (t, x)

)]
, t ≥ , x ∈R. (.)

Then we have

lim
ε,τ↓

EB∣
∣uε,τ (t, x) – u(t, x)

∣
∣p =  (.)

for all p ≥ , x ∈R, and t ≥ .

Proof For all p ≥ , x ∈R, and t ≥ , we have

EB∣∣uε,τ (t, x) – u(t, x)
∣∣p = EB∣∣EW (

ϕ
(
W x

t
)[

exp
(
V ε,τ (t, x)

)
– exp

(
V (t, x)

)])∣∣p

≤ ‖ϕ‖p
∞E

∣∣exp
(
V ε,τ (t, x)

)
– exp

(
V (t, x)

)∣∣p.

On the other hand, we have

E
[
exp

(
λV ε,τ (t, x)

)]
= E exp

(


λ∥∥Aε,τ (t, x)

∥∥
H

)

≤ E exp

(


λC

∫ t



∫ t


|r – s|HK–|Wr – Ws|H′K ′– dr ds

)
< ∞

for all ε, τ > , which deduces, for any λ ∈R,

sup
ε,τ>

E
[
exp

(
V ε,τ (t, x)

)]
< ∞.

Combining this with the fact that

exp
(
V ε,τ (t, x)

) −→ exp
(
V (t, x)

)

in probability, by Theorem . we obtain the lemma. �
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Proof of Theorem . Let f be a smooth function with compact support. Then we have

∫

R

uε,τ (t, x)f (x) dx =
∫

R

ϕ(x)f (x) dx +



∫ t



∫

R

uε,τ (s, x)�f (x) dx ds

+
∫ t



∫

R

uε,τ (s, x)f (x)Ḃε,τ (s, x) dx ds (.)

almost surely for all t ≥ . Therefore, to end the proof, we only need to prove that

∫ t



∫

R

uε,τ (s, x)f (x)Ḃε,τ (s, x) dx ds −→
∫ t



∫

R

u(s, x)f (x)B(ds, dx) (.)

in probability as ε and τ tend to zero. It follows from Lemma . that the random variables
of the right-hand side in (.) converges in L to the random variable

ϒ :=
∫

R

u(t, x)f (x) dx –
∫

R

f (x)ϕ(x) dx –



∫ t



∫

R

u(s, x)�f (x) dx ds (.)

as ε and τ tend to zero. Denote

Cε,τ (t) =
∫ t



∫

R

[
uε,τ (s, x) – u(s, x)

]
f (x)Ḃε,τ (s, x) dx ds, t ≥ ,

for all ε, τ > . Then, since limε,τ↓ Cε,τ (t) =  in L, (.) implies that
∫ t



∫

R

u(s, x)f (x)Ḃε,τ (s, x) dx ds =
∫ t



∫

R

uε,τ (s, x)f (x)Ḃε,τ (s, x) dx ds – Cε,τ (t)

converges to ϒ in probability as ε and τ tend to zero. So we have that u(s, x)f (x) is
Stratonovich integrable and

∫ t



∫

R

u(s, x)f (x)B(ds, dx) = ϒ .

Thus, to end the proof, we only need to show that

Cε,τ (t) −→ 

in L as ε and τ tend to zero. Denote

ψε,τ (r, z) :=
∫ t



∫

R

[
uε,τ (s, x) – u(s, x)

]
f (x)φτ (s – r)pε(x – z) dx ds

for all ε, τ > , r ≥ , and z ∈ R and by δB(ψε,τ ) =
∫ t


∫
R

ψε,τ (r, z)δB(r, z) the divergence or
the Skorokhod integral ψε,τ . Then we have

Cε,τ (t) =
∫ t



∫

R

ψε,τ (r, z)δB(r, z)

+
∫ t



∫

R

f (x)
〈
DB(

uε,τ (s, x) – u(s, x)
)
,φτ (s – ·)pε(x – ·)〉H dx ds

≡ Cε,τ
 (t) + Cε,τ

 (t)

for all ε, τ >  and t ≥ , and the theorem follows from the next lemmas. �
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Lemma . Let f be a smooth function with compact support. Then Cε,τ
 (t) converges to

zero in L for all t ≥  as ε and τ tend to zero.

Proof For the process Cε,τ
 , we estimate

E
∣∣Cε,τ

 (t)
∣∣ ≤ E

(∥∥ψε,τ∥∥
H

)
+ E

∥∥Dψε,τ∥∥
H⊗H (.)

by using the L-estimate for the Skorokhod integral.
Step I. We first have

E
(∥∥ψε,τ∥∥

H
)

=
∫ t



∫

R

∫ t



∫

R

E
[
uε,τ (s, x) – u(s, x)

][
uε,τ (r, y) – u(r, y)

]

· f (x)f (y)
〈
φτ (s – ·)pε(x – ·),φτ (r – ·)pε(z – ·)〉H dx ds dy dr (.)

for all ε, τ > . Notice that

〈
φτ (s – ·)pε(x – ·),φτ (r – ·)pε(z – ·)〉H

= κ

∫ t



∫ t


φτ (s – u)φτ (r – v)|u – v|HK– dv du

·
∫

R

∫

R

pε(x – z)pε(y – w)|z – w|H′K ′– dz dw

≤ C|s – r|HK–|x – y|H′K ′–

for all s, r ≥  and x, y ∈R by Lemma .. We see that, as a consequence, the integrand on
the right-hand side of (.) converges to zero as ε and τ tend to zero for any s, r ≥  and
x, y ∈R.

On the other hand, from the proof of Lemma . we have that

E
[∣∣uε,τ (s, x)

∣
∣] ≤ C < ∞

for any s, r ≥  and x, y ∈ R, which shows that the integrand on the right-hand side of
(.) is bounded. Then, by the dominated convergence theorem we have that E(‖ψε,τ‖

H)
converges to zero as ε and τ tend to zero.

Step II. We next show that

E
∥∥Dψε,τ∥∥

H⊗H −→ 

as ε and τ tend to zero. Clearly, we have

Duε,τ (t, x) = EB[
f (Wt + x) exp

(
V ε,τ

t,x
)
Aε,τ (t, x)

]
.

Let W  and W  be two independent Brownian motions. Then

E
〈
Duε,τ (t, x), Duε′ ,τ ′

(t, x)
〉
H

= EBEW,W
[
f
(
W 

t + x
)
f
(
W 

t + x
)

· exp
{

V ε,τ
W  (t, x) + V ε′ ,τ ′

W  (t, x)
}〈

Aε,τ
t,x

(
W ), Aε′ ,τ ′

t,x
(
W )〉

H
]
,
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where EW,W is the expectation with respect to (W, W), and

Aε,τ
t,x

(
W i) =

∫ t


φτ (t – s – ·)pε

(
W i

s + x – ·)ds

and

V ε,τ
W i (t, x) =

∫ t



∫

R

Aε,τ
t,x

(
W i)(r, y)B(dr, dy)

for all t ≥  and x ∈R. Then, from the previous results we have

lim
ε,τ↓

〈
Duε,τ (t, x), Duε,τ (t, x)

〉
H

= E

[

f
(
W 

t + x
)
f
(
W 

t + x
)

· exp

(


κ

∑

j,k=

∫ t



∫ t


|s – r|HK–∣∣W j

s – W k
r
∣∣H′K ′– dr ds

)

· κ
∫ t



∫ t


|s – r|HK–∣∣W 

s – W 
r
∣∣H′K ′– dr ds

]

,

which implies that uε,τ (t, x) converges in the space D, to u(t, x) as ε and τ tend to zero
and

E
∥∥Dψε,τ∥∥

H ≤ C < ∞

for all ε, τ > , x ∈R, and s ∈ [, t]. It follows that

E
∥
∥Dψε,τ∥∥

H⊗H =
∫ t



∫

R

∫ t



∫

R

f (x)f (y)

· E
〈
DB(

uε,τ (s, x) – u(s, x)
)
, DB(

uε,τ (r, y) – u(r, y)
)〉
H

· 〈φτ (s – ·)pε(x – ·),φτ (r – ·)pε(y – ·)〉H dx ds dy dr

converges to zero as ε and τ tend to zero. Hence, Cε,τ
 (t) converges to zero in L as ε and

τ tend to zero, and the lemma follows. �

Lemma . Let f be a smooth function with compact support. Then Cε,τ
 (t) converges to

zero in L for all t ≥  as ε and τ tend to zero.

Proof Denote

Cε,τ
, (t) :=

∫ t



∫

R

f (x)EW [
ϕ
(
W x

s
)

exp
(
V ε,τ (s, x)

)〈
Aε,τ

s,x ,φτ (s – ·)pε(x – ·)〉H
]

dx ds

and

Cε,τ
, (t) :=

∫ t



∫

R

f (x)EW [
ϕ
(
W x

s
)

exp
(
V (s, x)

)〈
δ
(
W x

s––
)
,φτ (s – ·)pε(x – ·)〉H

]
dx ds



Yu et al. Boundary Value Problems  (2016) 2016:66 Page 16 of 22

for all ε, τ >  and t ≥ . Then we can decompose Cε,τ
 (t) as

Cε,τ
 (t) = Cε,τ

, (t) – Cε,τ
, (t)

for all ε, τ >  and t ≥ . Clearly, by Lemma . we have

〈
Aε,τ

s,x ,φτ (s – ·)pε(x – ·)〉H = κ

∫

[,s]

∫

R
|r – v|HK–|y – z|H′K ′–φτ (s – u)pε

(
W x

u – y
)

· φ(s – v)pε(x – z) dy dz dr dv du

≤ C
∫ s


rHK–|Wr|H′K ′– dr

and

〈
δ
(
W x

s––
)
,φτ (s – ·)pε(x – ·)〉H

= κ

∫

[,s]

∫

R

vHK–|W x
r – y|H′K ′–φτ (r – v)pε(x – y) dy dv dr

≤ C
∫ s


rHK–|Wr|H′K ′– dr

for all ε, τ >  and t ≥ . Notice that

∫ s


rHK–|Wr|H′K ′– dr

is square integrable for all HK + H ′K ′ > . In fact, we have

E
(∫ s


rHK–|Wr|H′K ′– dr

)

=
∫ s



∫ r


(rv)HK–E|WrWv|H′K ′– dr dv

≤ C
∫ s


rHK+H′K ′–

∫ r


vHK–(r – v)H′K ′– dr dv

= Cs(HK+H′K ′)–.

It follows from the dominated convergence theorem that Cε,τ
, (t) and Cε,τ

, (t) both converge
in L to

κ

∫ t



∫

R

f (x)EW
(

ϕ
(
W x

s
)

exp
(
V (s, x)

)∫ s


rHK–|Wr|H′K ′– dr

)
dx ds

for all t ≥  as ε and τ tend to zero, which says that Cε,τ
 (t) converges to zero in L as ε and

τ tend to zero. This completes the proof. �

Theorem . Let H ′K ′ = , HK > 
 , and let ϕ be a bounded measurable function. Then

the process

u(t, x) = EW
[
ϕ
(
W x

t
)

exp

{∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy)

}]
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is a weak solution to (.), where EW denotes the expectation with respect to the Brownian
motion W x

t , and δ denotes the Dirac delta function.

Corollary . Let HK , H ′K ′ ≥  and HK + H ′K ′ > . Then the solution

u(t, x) = EW
[
ϕ
(
W x

t
)

exp

{∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy)

}]

has finite moments of all orders.

Recall that an Ft-adapted Lp(R)-valued stochastic process u : [, T]×R → u(t, x,ω) ∈R

is a mild solution to SPDE (.) for any T >  if u(t, x) satisfies the integral equation

u(t, x) =
∫

R

G(t; x, y)ϕ(y) dy +
∫ t



∫

R

G(t – s; x – y)u(s, y)BH (ds, dy) (.)

for each t ∈ [, T], where G(t – s; x, y) denotes the heat kernel, that is, the fundamental
solution of the heat equation

∂u
∂t

(t, x) = �u(t, x).

Moreover, we say that the uniqueness of (.) holds if whenever u and u are any two
solutions to (.) with the same initial value, then u(t, x) = u(t, x) a.s. for all t ∈ [, T] and
x ∈R.

Theorem . Let HK , H ′K ′ ≥  and HK + H ′K ′ > . If ϕ is a bounded measurable
function, then the process

u(t, x) = EW
[
ϕ
(
W x

t
)

exp

{∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy)

}]

is a mild solution to (.), where EW denotes the expectation with respect to the Brownian
motion W x

t , and δ denotes the Dirac delta function.

5 Regularity of the weak solution
In this section, we give the Hölder continuity of the solution of (.) and show that the
probability law of the solution admits a smooth density by using the Feynman-Kac formula
established in the previous section.

Theorem . Let HK , H ′K ′ > , HK + H ′K ′ > , and let u(t, x) be the solution of (.).
Then (t, x) �→ u(t, x) is Hölder continuous with order ν ∈ (, 

 (HK + H ′K ′ – )) in time t
and x, that is, for any T , M > , there is a positive random variable KT ,M such that almost
surely, for any t, s ∈ [, T] and x, y ∈ [–M, M], we have

∣
∣u(t, y) – u(s, x)

∣
∣ ≤ KT ,M

(|t – s|ν + |x – y|ν).

Proof Let p ≥ . Notice that

u(t, x) = EW [
ϕ
(
W x

t
)
eV (t,x)]
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for all t ≥  and x ∈R, where V (t, x) is given by (.). Then

EB∣∣u(t, y) – u(s, x)
∣∣p = EB∣∣EW (

ϕ
(
W y

t
)
eV (t,y) – ϕ

(
W x

s
)
eV (s,x))∣∣p

≤ CEB∣∣EW ϕ
(
W y

t
)(

eV (t,y) – eV (s,x))∣∣p

+ CEB∣∣EW eV (s,x)(ϕ
(
W y

t
)

– ϕ
(
W x

s
))∣∣p

≤ CEB∣∣EW (
eV (t,y) – eV (s,x))∣∣p

+ C|y – x|pEB∣∣EW eV (s,x)∣∣p

since ϕ is bounded and the function

x �→ EW [
ϕ
(
W x

t
)]

= EW [
ϕ(Wt + x)

]

is C∞. Thus, we need only to estimate

EB∣
∣EW (

eV (t,y) – eV (s,x))∣∣p.

To see this, we have

EB∣∣EW (
eV (t,y) – eV (s,x))∣∣p

≤ EB∣∣EW ([
V (t, y) – V (s, x)

]
eV (t,y)∨V (s,x))∣∣p

≤ EB((
EW ([

V (t, y) – V (s, x)
]))p/(EW e(V (t,y)∨V (s,x)))p/)

≤ (
EB(

EW ([
V (t, y) – V (s, x)

]))p)/(EB(
EW e(V (t,y)∨V (s,x)))p)/

by Cauchy’s inequality. By the equivalence between the L-norm and the Lp-norm for a
Gaussian random variable, Minkowski’s inequality, and the exponential integrability, we
can get

(
EW e(V (t,y)∨V (s,x)))p ≤ EW ep(V (t,y)∨V (s,x)) ≤ CT ,M < ∞

for all |x|, |y| ≤ M and s, t ∈ [, T]. Consequently, the theorem follows from the estimate

EB∣∣u(t, y) – u(s, x)
∣∣p ≤ C

(
EB(

EW ([
V (t, y) – V (s, x)

]))p)/

≤ C
(
EW EB[

V (t, y) – V (s, x)
])p/

and the next lemma. �

Lemma . Let V (t, x) be given by (.), and let T , M > . Then we have

EB([
V (t, y) – V (s, x)

]) ≤ C
(|t – s|HK+H′K ′– + |x – y|HK+H′K ′–) (.)

for all t, s ∈ [, T] and x, y ∈ [–M, M], where C >  is a constant depending only on T and M.
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Proof We have

EB[
V (t, y) – V (s, x)

] = κEW
(∫ s



∫ s


|r – v|HK–|Ws–r – Ws–v|H′K ′– dr dv

+
∫ t



∫ t


|r – v|HK–|Wt–r – Wt–v|H′K ′– dr dv

– 
∫ s



∫ t


|r – v|HK–|Ws–r – Wt–v + x – y|H′K ′– dr dv

)

≡ �(s, t; x, y)

for all t > s ≥  and x > y. Now, in order to end the proof, we need only to estimate
�(s, t; x, y).

Step I. We estimate �(t, t; x, y) for all t ∈ [, T] and M ≥ x > y ≥ –M. We have

�(t, t; x, y) = κ

∫ t



∫ t


|r – v|HK–

· E
(|Wt–r – Wt–v|H′K ′– – |Wt–r – Wt–v + x – y|H′K ′–)dr dv

= κ

∫ t



∫ t


|r – v|HK+H′K ′–E

(
|ξ |H′K ′– –

∣
∣∣
∣ξ +

x – y√|r – v|
∣
∣∣
∣

H′K ′–)
dr dv,

where ξ denotes a standard normal variable. An elementary calculation shows that (see
Hu et al. [])

E
(|ξ |–α – |ξ + w|–α

) ≤ C min
{

, w + w–α
}

with  < α <  and w ≥ , which gives

�(t, t; x, y) ≤ C
∫

D

|r – v|HK+H′K ′– dr dv + C
∫

D

|r – v|HK+H′K ′– (x – y)

|r – v| dr dv

≤ C
∫

D

|r – v|HK+H′K ′– dr dv + C(x – y)+β

∫

D

|r – v|HK+H′K ′––β dr dv

≤ C(x – y)HK+H′K ′–,

where D = {(r, v)| ≤ r, v ≤ t; |r – v| ≤ x – y} and D = [, t] – D.
Step II. We estimate �(s, t; x, x) for all  ≤ s < t ≤ T and x ∈ [–M, M]. We have

�(s, t; x, x) = κ

(∫ s



∫ s


|r – v|HK+H′K ′– dr dv +

∫ t



∫ t


|r – v|HK+H′K ′– dr dv

– 
∫ s



∫ t


|r – v|HK–|t – v – s + r|H′K ′– dr dv

)

= κ

∫ t

s

∫ t

s
|r – v|HK+H′K ′– dr dv

+ κ

∫ s



∫ t


|r – v|HK–(|r – v|H′K ′– –

∣
∣(t – s) + (r – v)

∣
∣H′K ′–)dr dv

≡ κ
(
�(s, t) + �(s, t)

)
.
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Clearly, the first integral �(s, t) equals C|t – s|HK+H′K ′–. For the second integral �(s, t),
by the substitution

u = r – v, w = v

we have

�(s, t) =
∫ s



∫ t


|r – v|HK–(|r – v|H′K ′– –

∣∣(t – s) + (r – v)
∣∣H′K ′–)dr dv

=
∫ t


dw

∫ s

–t
|u|HK–(|u|H′K ′– –

∣
∣(t – s) + u

∣
∣H′K ′–)du

= t
∫ s

–t
|u|HK–(|u|H′K ′– –

∣∣(t – s) + u
∣∣H′K ′–)du

≤ C(t – s)HK+H′K ′–,

which implies

�(s, t; x, x) ≤ C(t – s)HK+H′K ′–

for all  ≤ s < t ≤ T and x ∈R.
Thus, we have obtained estimate (.). �

Theorem . Let H ′K ′ = , HK > 
 , and let u(t, x) be the solution of (.). Then (t, x) �→

u(t, x) is Hölder continuous with order ν ∈ (, 
 (HK – 

 )) in time t and x, that is, for
any T , M > , there is a positive random variable KT ,M such that almost surely, for any
t, s ∈ [, T] and x, y ∈ [–M, M], we have

∣∣u(t, y) – u(s, x)
∣∣ ≤ KT ,M

(|t – s|ν + |x – y|ν).

Now, we show that the probability law of the solution u(t, x) of (.) has a smooth density
with respect to the Lebesgue measure for any t and x. To simplify, we let ϕ(x) ≡ . It follows
that

u(t, x) = EW [
eVW (t,x)]

for any t and x, where

VW (t, x) =
∫ t



∫

R

δ
(
W x

t–r – y
)
B(dr, dy).

Theorem . Suppose that HK , H ′K ′ ≥ , HK + H ′K ′ > . Fix t >  and x ∈ R. Then,
the law of u(t, x) has a smooth density.

Proof We first prove the theorem for HK , H ′K ′ > . Clearly, the Malliavin derivative of
the solution is

DB
r,yu(t, x) = EW [

eVW (t,x)δ
(
W x

t–r – y
)]

.
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By the general criterion for the smoothness of densities (see Nualart []) we only need to
show that ‖DB(t, x)‖H has negative moments of all orders for any t >  and x ∈R, that is,

E
(∥∥DB(t, x)

∥
∥p
H

)
< ∞

for all p > , t > , and x ∈R. We have

∥∥DB(t, x)
∥∥
H = EW [

eVW (t,x)+VW (t,x)〈δ
(
W ,x

t–r – y
)
, δ

(
W ,x

t–r – y
)〉
H

]

= κEW
[

eVW (t,x)+VW (t,x)
∫ t



∫ t


|r – s|HK–∣∣W 

t–r – W 
t–s

∣
∣H′K ′– ds dr

]

for any t >  and x ∈ R, where W  and W  are independent Brownian motions. Using
Jensen’s inequality and Hölder’s inequality, we obtain

∥
∥DB(t, x)

∥
∥–p
H ≤ κ–pE

[
e–p[VW (t,x)+VW (t,x)]

·
(∫ t



∫ t


|r – s|HK–∣∣W 

t–r – W 
t–s

∣
∣H′K ′– ds dr

)–p]

≤ κ–p[Ee–pp[VW (t,x)+VW (t,x)]] 
p

·
[

E
(∫ t



∫ t


|r – s|HK–∣∣W 

t–r – W 
t–s

∣∣H′K ′– ds dr
)–pp] 

p

for any t > , x ∈R, p > , and p, p >  with 
p

+ 
p

= . Now, let us estimate the final two
terms. From Theorem . we have

Ee–λ[VW (t,x)+VW (t,x)] < ∞

for all λ > . Moreover, by Jensen’s inequality again, we have

E
(∫ t



∫ t


|r – s|HK–∣∣W 

t–r – W 
t–s

∣
∣H′K ′– ds dr

)–q

≤ t–q–E
∫ t



∫ t


|r – s|q(–HK )∣∣W 

t–r – W 
t–s

∣
∣(–H′K ′q) ds dr

= t–q–
∫ t



∫ t


|r – s|q(–HK )E

∣∣W 
t–r – W 

t–s
∣∣(–H′K ′)q ds dr

= t–q–E|ξ |q(–H′K ′)
∫ t



∫ t


|r – s|q(–HK )|t – r – s|(–H′K ′)q ds dr

= Ctq(–HK–H′K ′) < ∞

for any t >  and q > . Similarly, we can prove the theorem for H ′K ′ =  and HK > .
This completes the proof. �
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